UNIverse - Public Research Portal
Profile Photo

Prof. Dr. Oliver Schilling

Department of Environmental Sciences
Profiles & Affiliations

Projects & Collaborations

16 found
Show per page
Project cover

Understanding the deep groundwater system and methane origins in the Bushveld Igneous Complex using environmental noble gas tracers

Research Project  | 4 Project Members

The ICDP-funded Bushveld Drilling Project (BVDP) aims to generate a continuous vertical stratigraphic sequence of the mineral and resources-rich Bushveld Igneous Complex (BIC) in South Africa. Within this framework, a specific focus is directed towards gathering water-related data, aimed at enhancing the understanding of deep groundwater systems in relation to water and energy security. The present project complements the already ongoing and funded collaborative activities between the Hydrogeology group of UniBas, the main partner's group at University of the Free State, and the BVDP, via the addition of state-of-the-art measurements of radio-noble gases dissolved in water. The determination of the radio-noble gas isotope concentrations of 39Ar, 37Ar, 85Kr, and 81Kr, alongside the already planned analyses of classic environmental tracers [i.e., stable water isotopes (∂18O, ∂2H), atmospheric noble gas concentrations (He, Ar, Kr, Xe), and other ratio isotopes (3H,3He, and 4He)] will allow the characterization (i) of the residence times and flow dynamics of the suspected hundreds-of-thousands- to millions-of-years old deep groundwater, which in turn enables the assessment of the spatial extents and hydraulic properties of the different lithological units in the BIC, (ii) of the origins of suspected large amounts of dissolved CH4, which in turn enables assessment of the potential for using CH4 from the BIC for sustainable energy production, and (iii) enable estimating the quantity, quality, and vulnerability of groundwater and therefore the suitability for using it as a drinking water source.


Project cover

Integrated Hydrological Modelling for Operational Forecasting and Decision-making

Research Project  | 6 Project Members

80% of Switzerland's drinking water is originating from groundwater. Climate change-induced droughts and increased demand for irrigation put groundwater under considerable pressure and cause widespread concern. In 2021, two popular initiatives were launched to protect groundwater and 2 parliamentary motions concerning groundwater were accepted in 2022/23. Now, for more than 3000 wells capture zones have to be delineated until 2035, and 4000km of rivers have to be restored within the next 70 years. Groundwater modelling plays an important role in tackling these challenges. However, the robustness of the current modelling practice is undermined by the poor characterisation of the subsurface, the computational challenges to jointly simulate surface- and groundwater and by the large resulting uncertainties. Consequently, stakeholders have to deal with complex issues but cannot fully exploit the potential of modelling to help them make relevant decisions.

In this project, we are addressing these shortcomings by (1) Employing cutting-edge mass-spectrometry technology to expand the available tracer methods with non-toxic gas tracers injected into the subsurface. This will greatly expand the spatial and temporal scales of available tracer methods and open new pathways to subsurface characterisation. (2) Building on the latest generation of integrated surface-subsurface hydrological models (ISSHM). This will allow joint consideration of the surface, the subsurface, and the operational infrastructure. Through the direct simulation of tracers, the model calibration is also far more robust and unique. (3) Providing the technological and computational means for real-time data assimilation in ISSHMs. This will guarantee that the model is always close to the real system state and thus can be continuously used to support operational decision-making. We have demonstrated the technical feasibility of all of these developments in our previous work.

This BRIDGE Discover project allows us to move this fundamental research to an operational level by collaborating among the three institutions through 12 coordinated work packages. In close collaboration with the relevant stakeholders, we develop and assess the efficiency of our hydrogeological service for two pilot studies: one to increase the efficiency of irrigation for agriculture, and the second one to predict the influence of a renaturation on well capture zones.

Project cover

InnoGeoPot - Innovative exploration methods for geothermal potential assessment and energy storage

Research Project  | 5 Project Members

InnoGeoPot - Innovative exploration methods for geothermal potential assessment and energy storage

With the steady increase in the number of installed geothermal energy systems (GES) in Europe, a more frequent use of thermal energy in geological layers of different depth has been recognized.

In particular, the use of shallow and medium-depth geothermal potential can be extended to the application of systems for borehole thermal energy storage (BTES), as well as the possibility of rehabilitating abandoned deep boreholes with closed-loop borehole heat exchangers (BHE).

The development of multi-scale geological-hydrogeological-thermal models in combination with decision support systems (DSS) provide a better understanding of geothermal potential through the application of different GES.

Content and aim of the research project

The research work will aim to develop geological-hydrogeological-thermal models at different scales using data collected from deep boreholes in selected areas and to monitor real operation data from geothermal wells to determine heat rejection/extraction rates.

The research area includes the wider area of the city of Zagreb in Croatia, the city of Ljubljana in Slovenia and the cross-border area between north-eastern Slovenia and south-eastern Croatia.

In the selected urban and rural pilot areas, the exploration of geothermal potential at shallow and medium-depth between 200 and 500 m is being explored through the application of BHE for BTES. The geothermal potential from the rehabilitation of abandoned boreholes is also being evaluated.

Scientific and social context of the research project

The trilateral research cooperation between Croatia, Switzerland and Slovenia will lead to the establishment of an international research group dealing with the characterization of the subsurface and technology development in the field of geothermal energy.

For the selected pilot areas, an up-to-date DSS for the use of shallow and medium-depth geothermal energy will provide a valuable tool to ensure a more efficient and sustainable use of geothermal energy.

Project cover

Slow Water

Research Project  | 4 Project Members

Mountainous countries like Switzerland are overproportionally affected by climate change, with temperature rise and increasing weather extremes such as heat waves, droughts, and torrential rainfalls already being more pronounced than elsewhere. Under these circumstances, water supply is becoming a major challenge for agriculture, be it for crop production or animal husbandry. In addition, water in mountain communities becomes increasingly scarce during summer months. This is where the Swiss Federal Office of Agriculture FOAG-funded "Slow Water" project comes in: In 3 hydrologically and geographically distinct pilot regions of Switzerland, farm-specific, catchment-related water retention strategies are developed and implemented based on a catalogue of 15+ different nature-based water retention measures, through a co-creation process involving municipalities, farmers, authorities and scientists. The integral impacts of the nature-based water retention measures on increasing water availability and decreasing streamflow extremes are assessed through a combination of hydrological monitoring, drone-based assessments and numerical modelling. The Slow Water project consortium consists of the Hydrogeology and the Global and Regional Land-Use Change groups of University of Basel/Eawag, the regional authorities of the Cantons of Basel-Landschaft and Luzern, municipalities, farming associations and the private sector.

Project cover

Sustainable nitrogen fertilization for agricultural crops developed based on open lab and field experiments with integrated hydrological modelling in near-real-time

Research Project  | 3 Project Members

Humanity has reached a point where the capacity to live without irreversibly compromising Earth’s resources is questioned. Since the 1980s, both Earth’s population and global food production have been constantly increasing. To face the challenges of increasing food and water demand, agricultural production efficiency must be improved. Initiatives like the UN Sustainable Development Goals (SDGs) describe major challenges for clean water and food production. Accordingly, food production and access to clean water must be a priority in the context of sustainable development. To tackle these important challenges to sustainable development, the present project will build on a combination of agricultural field and integrated hydrological modelling experiments. The knowledge obtained in the field and modelling experiments will be ultimately combined to enable the creation of a prototype near-real time decision support tool for sustainable and resilient management of nitrogen fertilization.


In Poland, cereal production is a major component of the national economy. Even though fertilizer use has been restricted since 2017, in 2020 the Polish government still reported a significant trend of increasing nitrogen concentrations in water bodies. Climate change makes agricultural production even more vulnerable and challenging, pushing farmers to overfertilization. Given the fact that 30% of Polish agricultural soils consist of soils highly prone to fertilizer leaching, it comes as no surprise that excessive nutrient loadings are still widely observed. Due to its high mobility, the most applied agricultural fertilizer Nitrogen (N) is the most prone to leaching, and as a result, N (primarily in the form of nitrate) is by far the most widely observed agricultural contaminant in water bodies worldwide, including in Poland and Switzerland.


To tackle these important challenges to sustainable development, the project will build on a combination of field and modelling experiments. The Swiss project partner will focus on the integrated simulation of hydrological fluxes, crop dynamics and nitrogen-cycling. The Polish project partner will focus its research on field experiments in agricultural fields and in the university's outdoor agricultural laboratory. The knowledge obtained in the field and modelling experiments will be ultimately combined to enable the creation of a prototype near-real time decision support tool for sustainable and resilient management of nitrogen fertilization.

Project cover

Advancing the characterization of cryosphere-groundwater interactions in Alpine spaces for resilient water management: A study combining dissolved gases, water isotopes, eDNA and trace elements analyses with fully-integrated modelling

Research Project  | 6 Project Members

In this project, the dynamics and climate change-related hydrological impacts on Cryosphere-Groundwater interactions in Alpine spaces will be investigated through a combination of multi-tracer-analyses and integrated surface-subsurface hydrological modelling. The project is specifically aimed at the development of a decision support tool for the Upper Engadine region. Tracer analyses will include a combination of citizen-science supported classical hydrological measurements (i.e., hydrochemistry, water temperature, stable water isotopes), state-of-the-art tracer analyses (online dissolved gas and microbial monitoring plus noble gas radioisotope analyses) and fully coupled 3-D surface-subsurface hydrological modeling. The project arose from a collaboration with the Swiss supra community Region Maloja of in the canton Grisons, for which O. Schilling acted as an external expert in the regional water management planning effort "Wassermanagement Region Maloja 2024+". During this multi-year planning effort, which launched in November 2023 with a large stakeholder meeting and co-creation process, it became apparent that there are many unresolved questions about the interactions between glacial melt, snowmelt, rain, lakes, streams, springs, shallow groundwater and deep groundwater in the region, especially with respect to the origins of the spring water, which supports 80% of the region's drinking water. Due to the fact that the Upper Engadine valley is one of Switzerland's two inner-Alpine dry valleys and thus one of the regions most strongly affected by climate change in Switzerland, research into the cryosphere-groundwater dynamics of the region and the development of a hydrological decision support tool based on state-of-the-art models is a top priority. Moreover, the special hydrogeological setting of the Upper Engadine, which is characterized by multiple, arsenic enriched lakes, a quaternary aquifer exceptionally large for Alpine regions, many pristine freshwater springs and widespread upwelling of acidic, CO2-rich thermal groundwater all along the valley bottom, provides for a unique opportunity to develop new tracer and hydrogeological modelling methods. The research project started with the setup of a long-term continuous tracer monitoring station at Europe's oldest captured spring in St. Moritz (https://www.kempinski.com/en/grand-hotel-des-bains/alpine-spa/pools-water/the-mauritius-spring), as this spring has been known for millennia to provide a unique mix of a CO2-enriched and old deep groundwater and a shallow, younger and likely predominantly meltwater-derived groundwater component.

Project cover

Review Arbeit Umsetzungshilfen zur Bemessung der Zuströmbereiche

Research Project  | 2 Project Members

Im Auftrag der Plattform Grundwasserschutz hat die AUG einen Review der aktualisierten und überarbeiteten Umsetzungshilfen zur Bemessung der Zuströmbereiche Zu vorgenommen. Der Review wurde aus wissenschaftlicher Sicht durchgeführt und konzentriert sich auf allgemeine und spezifische Kritikpunkte sowie eigenen Erfahrungen.

Grösstes Hindernis einer breiteren Anwendung stellt gemäss verschiedenen Kantonen der zu grosse Auf-wand bei der Ausscheidung von Zu dar. Unserer Erfahrung nach ist dies allerdings primär eine Frage der Qualität und Quantität der bereits zur Verfügung stehenden Grundlagendaten. Einige Kantone wünschen sich zudem mehr methodische Grundlagen und entsprechend klarere Vorgaben. Bei zu strikten Vorgaben für die Umsetzung der Ausscheidung von Zu sehen wir allerdings das Problem, dass besonderen Rahmen-bedingungen und Settings, welche differenzierte Lösungen für eine verlässliche Ausscheidung von Zu benötigen würden, nicht mehr vernünftig berücksichtigt werden können.

Generell entsprechen sowohl der wissenschaftliche Grundlagenbericht als auch die daraus synthetisierte Praxishilfe dem Stand der Technik bzgl. Herangehensweise und Methodenwahl für die Ausscheidung von Zuströmbereichen (Zu). Dennoch haben wir Defizite in den aktuellen Umsetzungshilfen identifizieren können und empfehlen zu deren Behebung folgende Anpassungen: (1) Ergänzung der momentan eher räumlichen Anwendungsansätzen zur Ausscheidung von Zu um Methoden zur Bestimmung von Aufenthaltszeiten und Mischungsverhältnissen; (2) mehr Hilfestellung bei der Wahl der Bemessungsgrundsätze und der relevanten hydrologischen und betrieblichen Randbedingungen; (3) Berücksichtigung räumlicher und zeitlicher Instationarität hydrologischer und betrieblicher Randbedingungen, einschliesslich der Instationarität der Ausdehnung unterirdischer Einzugsgebiete; (4) vermehrte Berücksichtigung der Relevanz der Stauertopographie von Hangeinzugsgebieten, beispielsweise durch 3D-Betrachtung; und (5) bessere Differenzierung unterschiedlicher Grundwasserneubildungskomponenten.

Wir denken, im Rahmen einer Aktualisierung von Umsetzungshilfen, sollten auch: (1) quantitative und qualitative Auswirkungen von Klimaänderungen diskutiert werden; (2) eine weitergehende Differenzierung unterschiedlicher Bereiche von Zu sowie (3) unterschiedlicher Schadstoffgruppen vorgenommen werden. Ausserdem empfehlen wir eine generelle Hinterfragung der Zweckmässigkeit der 90%-Regel.

Project cover

Studie Definition und Methodik natürliche Grundwassertemperatur und Tiefengrundwasser

Research Project  | 3 Project Members

Ziel eines Auftrages des Bundesamtes für Umwelt (BAFU) war es, (1) eine praxistaugliche Definition für eine Grundwassertemperatur zu finden, welche als Referenztemperatur für die Festlegung der erlaubten Temperaturveränderungen bei thermischen Nutzungen des Grundwassers dienen kann, (2) eine praxistaugliche Abgrenzung zwischen oberflächennaher und tiefer Grundwasservorkommen zu erarbeiten, (3) sowie zu eruieren, unter welchen Gegebenheiten ein Tiefengrundwasser ein für Trinkwasserzwecke nicht nutzbares Grundwasservorkommen darstellt.

Basierend auf einer neuen Kompilation an Untergrundtemperaturdaten («Swiss Geotemperature Compilation» - SGC), die im Rahmen dieser Studie erarbeitet wurde, zeigte sich, dass für oberflächennahe Grundwasserressourcen (bis ca. 25 m Tiefe) in anthropogen wenig bzw. unbeeinflussten Grundwasserleitern jährliche Mittelwerte der bodennahen Lufttemperatur die «natürliche» Grundwassertemperatur darstellen und als Referenztemperatur herangezogen werden können. Für anthropogen wenig bzw. unbeeinflusstes, mitteltiefes Grundwasser (25-2’ooo m Tiefe) überlagert sich der Einfluss vom basalen Wärmestrom mit einem, durch advektive Grundwasserströme in die Tiefe transportierten, oberflächlichen Temperatursignal, wodurch ein Abschätzen von Referenztemperaturen grundsätzlich zusätzlicher standortspezifischer Daten zu Grundwasserneubildung, -alter und -mischungsprozessen bedarf. Für die generell anthropogen unbeeinflussten, sehr tiefen (> 2’ooo m Tiefe) Grundwasservorkommen kann als erste Näherung für unbeeinflusste Grundwassertemperaturen eine Kombination aus regionalen geothermischen Tiefengradienten und des Wärmestroms als Grundlage zur Definition der Referenztemperatur dienen.

In urbanen Gebieten werden aufgrund der starken anthropogenen Nutzung und anderweitigen Beeinflussung des Grundwassers in oberflächennahen Grundwasserleitern bereits heute, in Vergleich zu einem natürlichen Zustand, erhöhte Grundwassertemperaturen beobachtet. Dasselbe ist der Fall für bodennahe Lufttemperaturen, welche aufgrund der Siedlungsdichte, Versiegelung der Oberfläche, Wärmestrahlung der Gebäude und anderweitigen Nutzungen gegenüber bodennahen Lufttemperaturen in ländlichen Regionen signifikant erhöht sind. Eine Definition von Referenztemperaturen basierend auf der in-situ gemessenen mittleren bodennahen Lufttemperaturen in urbanen Regionen wird deshalb der Definition von «natürlichen» Grundwassertemperaturen nicht gerecht. Für urbane Räume muss daher, zur Ermittlung einer potentiellen «natürlichen» Grundwassertemperatur, die bodennahe Lufttemperatur einer ländlichen Station in der Nähe der urbanen Region als Referenz herangezogen werden. 

Aufgrund der komplexen und vielseitigen Nutzung des Untergrunds ist in urbanen Gebieten zudem zu berücksichtigen, dass es nach thermischen Eingriffen in den Untergrund eine gewisse Zeit dauert (Retardationseffekt) bis sich ein neuer thermischer Gleichgewichtszustand (Memory, bzw. Memory-Effekt) einstellt. Für ein nachhaltiges Wärmemanagement urbaner Grundwasserleiter, welches diese Retardations- und Memory-Effekte angemessen berücksichtigt, werden hochauflösende Temperaturmessnetze und thermo-hydraulische Modelle (THM) benötigt.

Differenzierte Betrachtungsweisen bedarf es auch in der Nähe von Fliessgewässern (Berücksichtigung von Fluss-Grundwasserinteraktionen), bei Karst- und Kluftgrundwasserleitern (Quantifizierung von heterogenen, schnellen und langsamen Fliesskomponenten und regionalen Grundwasserzirkulationssystemen) sowie wenn Grundwasser für die Trinkwassergewinnung künstlich angereichert wird (Differenzierung Grundwasserneubildungsprozesse).

Der Klimawandel wird aufgrund der erwarteten weiteren Erhöhung bodennaher Lufttemperaturen dazu führen, dass sich auch die Grundwassertemperaturen generell erhöhen werden. Daneben wird der Klimawandel aber auch die Grundwasserneubildung beeinflussen. Da beide Effekte für die verschiedenen Regionen der Schweiz sehr unterschiedlich ausfallen können, ist in Bezug auf den Effekt des Klimawandels eine differenzierte Betrachtungsweise nötig.

Im Hinblick auf eine Evaluation der Nutzbarkeit von Tiefengrundwasser (GSchV Anh. 4 Ziff. 111: Trinkwasserqualität und ausreichende Menge) stellen wir, basierend auf einer Literatur und Gesetzestextanalyse sowie unter Berücksichtigung geltender Schutzbestimmungen, ein erstes mögliches Evaluationskonzept vor. Das Konzept fusst auf Nutzbarkeitsparametern (Ergiebigkeit, Temperaturen und hydrochemische Hintergrundwerte [v.a. Mineralisation]) und erlaubt eine erste Unterscheidung zwischen nutzbarem und nicht nutzbarem Tiefengrundwasser für unterschiedliche Nutzungsarten (Trink-, Mineral-, Thermal-, Badewasser bis hin zu nicht nutzbar).

Wegen der begrenzten und unvollständigen Datenlage müssen bei der Nutzung von Tiefengrundwasser, sowohl für bestehende als auch zukünftige Anwendungen, vor der Wärmenutzung immer die in-situ-Grundwassertemperaturen als Referenz gemessen werden. Zusätzlich sind Tracer- und Geoindikatoruntersuchungen erforderlich.

Project cover

Development of a membrane inlet system for in-situ and continuous monitoring of noble and greenhouse gas fluxes in snowpacks & soils with a portable mass spectrometer system

Research Project  | 2 Project Members

A crucial element in better understanding climate change and its impact on hydrological, biogeochemical and ecosystem dynamics lies in the accurate monitoring of hydrological and biogeochemical processes. Most available analytical techniques for the measurement of (greenhouse) gases in the environment, however, are either laboratory based or based on instrumentation that is built for in-field applications in warm and temperate climates. In (sub)polar and high-altitude regions, existing analytical techniques face significant challenges related to the very cold and typically harsh weather. Currently, there is no existing system to measure the (greenhouse) gas concentrations and fluxes all the way from the subsurface, through soils, water bodies and snowpacks, to the atmosphere in very cold environments. With this SPI Technogrant, we will develop a new membrane system for continuous and automated measurements of the gas composition of interstitial air in snowpacks and soils as well as in surface waters and groundwaters in sub-arctic to arctic environments. The new system will extend a recently developed portable gas equilibrium-membrane inlet mass spectrometer (GE-MIMS), a breakthrough technology for the on-site and near real-time, continuous measurement of 4 He, 40 Ar, 84 Kr, N 2 , O 2 , CO 2 , CH 4 and H 2 in air and dissolved in water [1]. Our new extended gas monitoring system will, for the first time, enable continuous and autonomous on-site monitoring of greenhouse gas fluxes, sources and sinks in and through soils, snowpacks, surface water and groundwater in subarctic to arctic regions, thus providing a critical missing piece in the global greenhouse gas puzzle. The new system will be assembled and systematically tested at the University of Basel, and subsequently implemented in collaboration with Oulu University and the Finnish Meteorological Institute for continuous and automated in-situ monitoring of noble and greenhouse gases in snowpack, soils, groundwater, and surface water at the largest atmosphere watch site of the circumpolar region, the Pallas atmosphere-ecosystem super site [2]. References [1] Brennwald et al. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol., 50, 13455-12463. https://doi.org/10.1021/acs.est.6b03669 [2] Marttila et al. (2021). Subarctic catchment water storage and carbon cycling - Leading the way for future studies using integrated datasets at Pallas, Finland. Hydrol. Process., 35, e14350. https://doi.org/10.1002/hyp.14350 Coordinates of the implementation location: Pallas atmosphere-ecosystem super site, 67°59'50.2"N 24°12'33.8"E

Project cover

Characterizing managed aquifer recharge systems with state-of-the-art tritium and noble gas measurement techniques and integrated surface-subsurface hydrological modelling

Research Project  | 3 Project Members

The broad focus of this research project is the improvement of the conceptual and quantitative understanding of surface water-groundwater interactions via state-of-the-art tritium measurement techniques and integrated surface-subsurface hydrological modelling. The specific goal is the development of a dissolved gases and water stable and tritium isotopes based method for the continuous monitoring of managed aquifer recharge (MAR) systems, which are considered the most important mitigation measures against the negative impacts of climate change on water availability. The field site is Switzerland's largest managed aquifer recharge (MAR) site Hardwald in Muttenz, Basel. Continuous analysis of the spatial and temporal distribution of tritium in the river Rhine and in the groundwater wellfield is achieved with the deployment of portable mass spectrometers for dissolved gas analyses and automated sampling devices for the sampling for water for isotopic analyses. In addition, within the framework of the project a new state-of-the-art tritium enrichment line is being built within Eawag's environmental tracer laboratory. The new enrichment line is combining recent methodological developments of IAEA's isotope hydrology laboratory and of Eawag's environmental isotope tracer group. The measurement of low-level tritium concentrations will thus be made possible via an improved electrolytic enrichment method for tritium in small volume water samples, followed by low level liquid scintillation counting. The efficient measurement system for natural to ultra low level tritium concentrations, the online monitoring of dissolved gases and the integrated modelling method will provide a new toolbox for the near real-time quantification of the flow and mixing of different groundwater sources in MAR systems. The numerical modelling is based on a high resolution 3-D geological model incorporated into an integrated surface-subsurface hydrological model (ISSHM). The modelling software HydroGeoSphere, the inverse modelling software PEST++ and the data assimilation software PDAF will be used for model construction, model calibration and real time modelling.