Publications
80 found
Show per page
de Souza, G. R., Grote, M. J., Pezzuto, S., & Krause, R. (2024). EXPLICIT STABILIZED MULTIRATE METHODS FOR THE MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY. ESAIM: Mathematical Modelling and Numerical Analysis, 58(6), 2225–2254. https://doi.org/10.1051/m2an/2024030
de Souza, G. R., Grote, M. J., Pezzuto, S., & Krause, R. (2024). EXPLICIT STABILIZED MULTIRATE METHODS FOR THE MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY. ESAIM: Mathematical Modelling and Numerical Analysis, 58(6), 2225–2254. https://doi.org/10.1051/m2an/2024030
Gleichmann, Yannik G, & Inverse Problems, 39(12), 125007. https://doi.org/10.1088/1361-6420/ad01d4
. (2023). Adaptive Spectral Inversion for inverse medium problems [Journal-article].
Gleichmann, Yannik G, & Inverse Problems, 39(12), 125007. https://doi.org/10.1088/1361-6420/ad01d4
. (2023). Adaptive Spectral Inversion for inverse medium problems [Journal-article].
Abdulle, Assyr, Mathematics of Computation, 91(338), 2681–2714. https://doi.org/10.1090/mcom/3753
, & Rosilho de Souza, Giacomo. (2022). Explicit stabilized multirate method for stiff differential equations.
Abdulle, Assyr, Mathematics of Computation, 91(338), 2681–2714. https://doi.org/10.1090/mcom/3753
, & Rosilho de Souza, Giacomo. (2022). Explicit stabilized multirate method for stiff differential equations.
Baffet, Daniel, Gleichmann, Yannik, & Journal of Scientific Computing, 93(3), 68. https://doi.org/10.1007/s10915-022-02004-5
(2022). Error estimates for adaptive spectral decompositions.
Baffet, Daniel, Gleichmann, Yannik, & Journal of Scientific Computing, 93(3), 68. https://doi.org/10.1007/s10915-022-02004-5
(2022). Error estimates for adaptive spectral decompositions.
Chaumont-Frelet, Théophile, SIAM Journal on Scientific Computing, 44(6), A3700–A3727. https://doi.org/10.1137/21m1424445
, Lantéri, Stéphane, & Tang, Jet-Hoe. (2022). A controllability method for Maxwell’s Equations.
Chaumont-Frelet, Théophile, SIAM Journal on Scientific Computing, 44(6), A3700–A3727. https://doi.org/10.1137/21m1424445
, Lantéri, Stéphane, & Tang, Jet-Hoe. (2022). A controllability method for Maxwell’s Equations.
SIAM/ASA Journal on Uncertainty Quantification, 10(4), 1601–1628. https://doi.org/10.1137/21m1429047
, Michel, Simon, & Nobile, Fabio. (2022). Uncertainty quantification by multilevel Monte Carlo and local time-stepping.
SIAM/ASA Journal on Uncertainty Quantification, 10(4), 1601–1628. https://doi.org/10.1137/21m1429047
, Michel, Simon, & Nobile, Fabio. (2022). Uncertainty quantification by multilevel Monte Carlo and local time-stepping.
Baffet, Daniel, Inverse Problems, 37(2). https://doi.org/10.1088/1361-6420/abc2ff
, & Tang, Jet Hoe. (2021). Adaptive Spectral Decompositions for Inverse Medium Problems.
Baffet, Daniel, Inverse Problems, 37(2). https://doi.org/10.1088/1361-6420/abc2ff
, & Tang, Jet Hoe. (2021). Adaptive Spectral Decompositions for Inverse Medium Problems.
Mathematics of Computation, 90(332), 2603–2643. https://doi.org/10.1090/mcom/3650
, Michel, Simon R. J., & Sauter, Stefan. (2021). Stabilized Leapfrog Based Local Time-Stepping Method for the Wave Equation.
Mathematics of Computation, 90(332), 2603–2643. https://doi.org/10.1090/mcom/3650
, Michel, Simon R. J., & Sauter, Stefan. (2021). Stabilized Leapfrog Based Local Time-Stepping Method for the Wave Equation.
Computer Methods in Applied Mechanics and Engineering, 362, 112846. https://doi.org/10.1016/j.cma.2020.112846
, Nataf, Frédéric, Tang, Jet Hoe, & Tournier, Piere-Henri. (2020). Parallel Controllability Methods for the Helmholtz Equation.
Computer Methods in Applied Mechanics and Engineering, 362, 112846. https://doi.org/10.1016/j.cma.2020.112846
, Nataf, Frédéric, Tang, Jet Hoe, & Tournier, Piere-Henri. (2020). Parallel Controllability Methods for the Helmholtz Equation.
Baffet, Daniel, & Journal of Computational Physics, 387, 589–596. https://doi.org/10.1016/j.jcp.2019.03.004
(2019). On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions.
Baffet, Daniel, & Journal of Computational Physics, 387, 589–596. https://doi.org/10.1016/j.jcp.2019.03.004
(2019). On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions.
Baffet, Daniel, & One-Way Operators for Time Dependent Wave Splitting and Echo Removal. https://doi.org/10.34726/waves2019
(2019, January 1).
Baffet, Daniel, & One-Way Operators for Time Dependent Wave Splitting and Echo Removal. https://doi.org/10.34726/waves2019
(2019, January 1).
Baffet, Daniel, Adaptive Eigenspace Regularization for Inverse Scattering Problems. https://doi.org/10.34726/waves2019
, & Tang, Jet Hoe. (2019, January 1).
Baffet, Daniel, Adaptive Eigenspace Regularization for Inverse Scattering Problems. https://doi.org/10.34726/waves2019
, & Tang, Jet Hoe. (2019, January 1).
Baffet, Daniel H., Journal of Scientific Computing, 81(3), 2237–2270. https://doi.org/10.1007/s10915-019-01089-9
, Imperiale, Sébastien, & Kachanovska, Maryna. (2019). Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation.
Baffet, Daniel H., Journal of Scientific Computing, 81(3), 2237–2270. https://doi.org/10.1007/s10915-019-01089-9
, Imperiale, Sébastien, & Kachanovska, Maryna. (2019). Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation.
Graff, Marie, Inverse Problems, 35(10), 104001. https://doi.org/10.1088/1361-6420/ab2d5f
, Nataf, Frédéric, & Assous, Franck. (2019). How To Solve Inverse Scattering Problems Without Knowing the Source Term: A Three-step Strategy.
Graff, Marie, Inverse Problems, 35(10), 104001. https://doi.org/10.1088/1361-6420/ab2d5f
, Nataf, Frédéric, & Assous, Franck. (2019). How To Solve Inverse Scattering Problems Without Knowing the Source Term: A Three-step Strategy.
Graff, Marie, How to solve inverse scattering problems without knowing the source term. 35. https://doi.org/10.34726/waves2019
, Nataf, Frédéric, & Assous, Franck. (2019).
Graff, Marie, How to solve inverse scattering problems without knowing the source term. 35. https://doi.org/10.34726/waves2019
, Nataf, Frédéric, & Assous, Franck. (2019).
Efficient Uncertainty Quantification for Wave Propagation in Complex Geometry. https://doi.org/10.34726/waves2019
, & Michel, Simon. (2019, January 1).
Efficient Uncertainty Quantification for Wave Propagation in Complex Geometry. https://doi.org/10.34726/waves2019
, & Michel, Simon. (2019, January 1).
Computers & Mathematics with Applications, 77(12), 3264–3280. https://doi.org/10.1016/j.camwa.2019.02.005
, & Nahum, Uri. (2019). Adaptive Eigenspace for Multi-Parameter Inverse Scattering Problems.
Computers & Mathematics with Applications, 77(12), 3264–3280. https://doi.org/10.1016/j.camwa.2019.02.005
, & Nahum, Uri. (2019). Adaptive Eigenspace for Multi-Parameter Inverse Scattering Problems.
Scalable Parallel Methods for the Helmholtz Equation via Exact Controllability. https://doi.org/10.34726/waves2019
, Nataf, Frédéric, Tang, Jet Hoe, & Tournier, Pierre-Henri. (2019, January 1).
Scalable Parallel Methods for the Helmholtz Equation via Exact Controllability. https://doi.org/10.34726/waves2019
, Nataf, Frédéric, Tang, Jet Hoe, & Tournier, Pierre-Henri. (2019, January 1).
Journal of Computational and Applied Mathematics, 358, 306–326. https://doi.org/10.1016/j.cam.2019.03.016
, & Tang, Jet Hoe. (2019). On Controllability Methods for the Helmholtz Equation.
Journal of Computational and Applied Mathematics, 358, 306–326. https://doi.org/10.1016/j.cam.2019.03.016
, & Tang, Jet Hoe. (2019). On Controllability Methods for the Helmholtz Equation.
Abdulle, Assyr, Computer Methods in Applied Mechanics and Engineering, 335(335), 1–23. https://doi.org/10.1016/j.cma.2018.01.038
, & Jecker, Orane. (2018). Finite element heterogeneous multiscale method for elastic waves in heterogeneous media.
Abdulle, Assyr, Computer Methods in Applied Mechanics and Engineering, 335(335), 1–23. https://doi.org/10.1016/j.cma.2018.01.038
, & Jecker, Orane. (2018). Finite element heterogeneous multiscale method for elastic waves in heterogeneous media.
SIAM Journal on Numerical Analysis, 56(2), 994–1021. https://doi.org/10.1137/17m1121925
, Mehlin, Michaela, & Sauter, Stefan A. (2018). Convergence Analysis of Energy Conserving.
SIAM Journal on Numerical Analysis, 56(2), 994–1021. https://doi.org/10.1137/17m1121925
, Mehlin, Michaela, & Sauter, Stefan A. (2018). Convergence Analysis of Energy Conserving.
Inverse Problems, 33(2), 25006. https://doi.org/10.1088/1361-6420/aa5250
, Kray, Marie, & Nahum, Uri. (2017). Adaptive eigenspace method for inverse scattering problems in the frequency domain.
Inverse Problems, 33(2), 25006. https://doi.org/10.1088/1361-6420/aa5250
, Kray, Marie, & Nahum, Uri. (2017). Adaptive eigenspace method for inverse scattering problems in the frequency domain.
Journal of Computational Physics, 330, 981–996. https://doi.org/10.1016/j.jcp.2016.10.021
, Kray, Marie, Nataf, Frédéric, & Assous, Franck. (2017). Time-dependent wave splitting and source separation.
Journal of Computational Physics, 330, 981–996. https://doi.org/10.1016/j.jcp.2016.10.021
, Kray, Marie, Nataf, Frédéric, & Assous, Franck. (2017). Time-dependent wave splitting and source separation.
Rietmann, Max, Journal of Computational Physics, 334, 308–326. https://doi.org/10.1016/j.jcp.2016.11.012
, Peter, Daniel, & Schenk, Olaf. (2017). Newmark local time stepping on high-performance computing architectures.
Rietmann, Max, Journal of Computational Physics, 334, 308–326. https://doi.org/10.1016/j.jcp.2016.11.012
, Peter, Daniel, & Schenk, Olaf. (2017). Newmark local time stepping on high-performance computing architectures.
Almquist, Martin, Multi-Level Runge-Kutta based Explicit Local Time-Stepping for Wave Propagation.
, & Mehlin, Michaela. (2015, January 1).
Almquist, Martin, Multi-Level Runge-Kutta based Explicit Local Time-Stepping for Wave Propagation.
, & Mehlin, Michaela. (2015, January 1).
Diaz, Julien, & Computer Methods in Applied Mechanics and Engineering, 291, 240–265. https://doi.org/10.1016/j.cma.2015.03.027
(2015). Multi-level Explicit Local Time-stepping For Second-order Wave Equations.
Diaz, Julien, & Computer Methods in Applied Mechanics and Engineering, 291, 240–265. https://doi.org/10.1016/j.cma.2015.03.027
(2015). Multi-level Explicit Local Time-stepping For Second-order Wave Equations.
Gaudio, Loredana, Convergence Analysis of Leap-Frog Based Local Time-Stepping for the Wave Equation.
, & Mehlin, Michaela. (2015, January 1).
Gaudio, Loredana, Convergence Analysis of Leap-Frog Based Local Time-Stepping for the Wave Equation.
, & Mehlin, Michaela. (2015, January 1).
Comptes Rendus Mathematique, 353(6), 523–527. https://doi.org/10.1016/j.crma.2015.03.008
, Kray, Marie, Nataf, Frédéric, & Assous, Franck. (2015). Wave splitting for time-dependent scattered field separation.
Comptes Rendus Mathematique, 353(6), 523–527. https://doi.org/10.1016/j.crma.2015.03.008
, Kray, Marie, Nataf, Frédéric, & Assous, Franck. (2015). Wave splitting for time-dependent scattered field separation.
SIAM Journal on Scientific Computing, 37(2), A747–A775. https://doi.org/10.1137/140958293
, Mehlin, Michaela, & Mitkova, Teodora. (2015). Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation.
SIAM Journal on Scientific Computing, 37(2), A747–A775. https://doi.org/10.1137/140958293
, Mehlin, Michaela, & Mitkova, Teodora. (2015). Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation.
Wave-Splitting for Time-Dependent Scattered Field Separation. 353. https://doi.org/10.1016/j.crma.2015.03.008
, Kray, Marie, Nataf, Frederic, & Assous, Frank. (2015).
Wave-Splitting for Time-Dependent Scattered Field Separation. 353. https://doi.org/10.1016/j.crma.2015.03.008
, Kray, Marie, Nataf, Frederic, & Assous, Frank. (2015).
Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics.
, & Mehlin, Michaela. (2015, January 1).
Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics.
, & Mehlin, Michaela. (2015, January 1).
Adaptive Eigenspace Inversion for the Helmholtz Equation.
, & Nahum, Uri. (2015, January 1).
Adaptive Eigenspace Inversion for the Helmholtz Equation.
, & Nahum, Uri. (2015, January 1).
Rietmann, Max, Load-Balanced Local Time Stepping for Large-Scale Wave Propagation. https://doi.org/10.1109/ipdps.2015.10
, Daniel , Peter, Schenk, Olaf, & Ucar, Bora. (2015, January 1).
Rietmann, Max, Load-Balanced Local Time Stepping for Large-Scale Wave Propagation. https://doi.org/10.1109/ipdps.2015.10
, Daniel , Peter, Schenk, Olaf, & Ucar, Bora. (2015, January 1).
Abdulle, Assyr, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 12(3), 1230–1257. https://doi.org/10.1137/13094195x
, & Stohrer, Christian. (2014). Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects.
Abdulle, Assyr, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 12(3), 1230–1257. https://doi.org/10.1137/13094195x
, & Stohrer, Christian. (2014). Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects.
SIAM Journal on Scientific Computing, 36(3), A1251–A1276. https://doi.org/10.1137/130921283
, Huber, Johannes, Kourounis, Drosos, & Schenk, Olaf. (2014). Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization.
SIAM Journal on Scientific Computing, 36(3), A1251–A1276. https://doi.org/10.1137/130921283
, Huber, Johannes, Kourounis, Drosos, & Schenk, Olaf. (2014). Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization.
Grote, M. J., & Mitkova, T. (2013). High-order explicit local time-stepping methods for damped wave equations. Journal of Computational and Applied Mathematics, 239(1), 270–289. https://doi.org/10.1016/j.cam.2012.09.046
Grote, M. J., & Mitkova, T. (2013). High-order explicit local time-stepping methods for damped wave equations. Journal of Computational and Applied Mathematics, 239(1), 270–289. https://doi.org/10.1016/j.cam.2012.09.046
Abdulle, Assyr, Comptes Rendus Mathematique, 351(11-12), 495–499. https://doi.org/10.1016/j.crma.2013.06.002
, & Stohrer, Christian. (2013). FE Heterogeneous Multiscale Method for Long Time Wave Propagation.
Abdulle, Assyr, Comptes Rendus Mathematique, 351(11-12), 495–499. https://doi.org/10.1016/j.crma.2013.06.002
, & Stohrer, Christian. (2013). FE Heterogeneous Multiscale Method for Long Time Wave Propagation.
Abdulle, Assyr, Finite element heterogeneous multiscale method for the wave equation: long-time effects. https://doi.org/10.4171/owr/2013/03
, & Stohrer, Christian. (2013, January 1).
Abdulle, Assyr, Finite element heterogeneous multiscale method for the wave equation: long-time effects. https://doi.org/10.4171/owr/2013/03
, & Stohrer, Christian. (2013, January 1).
Assous, Frank, Time-reversed absorbing conditions (TRAC): discrimination between one and two nearby inclusions in the partial aperture case.
, Kray, Marie, & Nataf, Frederic. (2013, January 1).
Assous, Frank, Time-reversed absorbing conditions (TRAC): discrimination between one and two nearby inclusions in the partial aperture case.
, Kray, Marie, & Nataf, Frederic. (2013, January 1).
Gaudio, Loredana, Interior point method for time-dependent inverse problems.
, & Schenk, Olaf. (2013, January 1).
Gaudio, Loredana, Interior point method for time-dependent inverse problems.
, & Schenk, Olaf. (2013, January 1).
Runge-Kutta type explicit local time-stepping methods.
, Mehlin, Michaela, & Mitkova, Teodora. (2013, January 1).
Runge-Kutta type explicit local time-stepping methods.
, Mehlin, Michaela, & Mitkova, Teodora. (2013, January 1).
Direct and Inverse Problems in Wave Propagation and Applications (p. S. 187–218). De Gruyter. https://doi.org/10.1515/9783110282283.187
, & Mitkova, Teodora. (2013). Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation. In Graham, I.; Langer, U.; Melenk, J.; Sini, M. (Ed.),
Direct and Inverse Problems in Wave Propagation and Applications (p. S. 187–218). De Gruyter. https://doi.org/10.1515/9783110282283.187
, & Mitkova, Teodora. (2013). Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation. In Graham, I.; Langer, U.; Melenk, J.; Sini, M. (Ed.),
Theory and Applications of Discontinuous Galerkin Methods. 9. https://doi.org/10.4171/owr/2012/10
, Mehlin, Michaela, & Mitkova, Teodora. (2012).
Theory and Applications of Discontinuous Galerkin Methods. 9. https://doi.org/10.4171/owr/2012/10
, Mehlin, Michaela, & Mitkova, Teodora. (2012).
High-Order Local Time-Stepping with Explicit Runge-Kutta Methods.
, Mehlin, Michaela, & Mitkova, Teodora. (2012, January 1).
High-Order Local Time-Stepping with Explicit Runge-Kutta Methods.
, Mehlin, Michaela, & Mitkova, Teodora. (2012, January 1).
Abdulle, Assyr, & Multiscale Modeling & Simulation, 9(2), 766–792. https://doi.org/10.1137/100800488
(2011). Finite Element Heterogeneous Multiscale Method for the Wave Equation.
Abdulle, Assyr, & Multiscale Modeling & Simulation, 9(2), 766–792. https://doi.org/10.1137/100800488
(2011). Finite Element Heterogeneous Multiscale Method for the Wave Equation.
Abdulle Assyr, Finite element heterogeneous multiscale method for transient wave propagation. http://www.sfu.ca/WAVES/proceedings/
, & Stohrer, Christian. (2011, January 1).
Abdulle Assyr, Finite element heterogeneous multiscale method for transient wave propagation. http://www.sfu.ca/WAVES/proceedings/
, & Stohrer, Christian. (2011, January 1).
Journal of Mathematical Biology, 63(4), 757–777. https://doi.org/10.1007/s00285-010-0390-4
, Palumberi, Viviana, Wagner, Barbara, Barbero, Andrea, & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures.
Journal of Mathematical Biology, 63(4), 757–777. https://doi.org/10.1007/s00285-010-0390-4
, Palumberi, Viviana, Wagner, Barbara, Barbero, Andrea, & Martin, Ivan. (2011). Dynamic formation of oriented patches in chondrocyte cell cultures.
Journal of Computational Physics, 230(8), 3135–3154. https://doi.org/10.1016/j.jcp.2011.01.017
, & Sim, Imbo. (2011). Local nonreflecting boundary condition for time-dependent multiple scattering.
Journal of Computational Physics, 230(8), 3135–3154. https://doi.org/10.1016/j.jcp.2011.01.017
, & Sim, Imbo. (2011). Local nonreflecting boundary condition for time-dependent multiple scattering.
Interior point methods for the inverse medium problem on massively parallel architectures (Sato, M; Matsuoka, S; Sloot, PMA; VanAlbada, GD; Dongarra, J, Ed.; Vol. 4). Elsevier. https://doi.org/10.1016/j.procs.2011.04.159
, Huber, J., & Schenk, O. (2011).
Interior point methods for the inverse medium problem on massively parallel architectures (Sato, M; Matsuoka, S; Sloot, PMA; VanAlbada, GD; Dongarra, J, Ed.; Vol. 4). Elsevier. https://doi.org/10.1016/j.procs.2011.04.159
, Huber, J., & Schenk, O. (2011).
Journal of Computational and Applied Mathematics, 234(12), 3283–3302. https://doi.org/10.1016/j.cam.2010.04.028
, & Mitkova, Teodora. (2010). Explicit local time-stepping for Maxwell’s equations.
Journal of Computational and Applied Mathematics, 234(12), 3283–3302. https://doi.org/10.1016/j.cam.2010.04.028
, & Mitkova, Teodora. (2010). Explicit local time-stepping for Maxwell’s equations.
Discontinuous galerkin methods and local time stepping for wave propagation: Vol. AIP Conference Proceedings Volume 1281 (Psihoyios, G; Tsitouras, C, Ed.). American Institute of Physics (AIP). https://doi.org/10.1063/1.3498464
, & Mitkova, Teodora. (2010).
Discontinuous galerkin methods and local time stepping for wave propagation: Vol. AIP Conference Proceedings Volume 1281 (Psihoyios, G; Tsitouras, C, Ed.). American Institute of Physics (AIP). https://doi.org/10.1063/1.3498464
, & Mitkova, Teodora. (2010).
Bollhoefer, Matthias, SIAM Journal on Scientific Computing, 31(5), 3781–3805. https://doi.org/10.1137/080725702
, & Schenk, Olaf. (2009). Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media.
Bollhoefer, Matthias, SIAM Journal on Scientific Computing, 31(5), 3781–3805. https://doi.org/10.1137/080725702
, & Schenk, Olaf. (2009). Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media.
Diaz, Julien, & SIAM Journal on Scientific Computing, 31(3), 1985–2014. https://doi.org/10.1137/070709414
(2009). Energy conserving explicit local time-stepping for second-order wave equations.
Diaz, Julien, & SIAM Journal on Scientific Computing, 31(3), 1985–2014. https://doi.org/10.1137/070709414
(2009). Energy conserving explicit local time-stepping for second-order wave equations.
Journal of Scientific Computing, 40(1-3), 257–272. https://doi.org/10.1007/s10915-008-9247-z
, & Schoetzau, Dominik. (2009). Optimal error estimates for the fully discrete interior penalty DG method for the wave equation.
Journal of Scientific Computing, 40(1-3), 257–272. https://doi.org/10.1007/s10915-008-9247-z
, & Schoetzau, Dominik. (2009). Optimal error estimates for the fully discrete interior penalty DG method for the wave equation.
Chinese Annals of Mathematics. Ser. B, 30(5), 589–606. https://doi.org/10.1007/s11401-009-0203-5
, & Sim, Imbo. (2009). On local nonreflecting boundary conditions for time-dependent wave propagation.
Chinese Annals of Mathematics. Ser. B, 30(5), 589–606. https://doi.org/10.1007/s11401-009-0203-5
, & Sim, Imbo. (2009). On local nonreflecting boundary conditions for time-dependent wave propagation.
Explicit local time-stepping for transient electromagnetic waves (Barucq, H.; Bonnet-Bendhia, A.-S.; Cohen, G.; Diaz, J.; Ezziani, A.; Joly, P., Ed.). INRIA.
, & Mitkova, T. (2009).
Explicit local time-stepping for transient electromagnetic waves (Barucq, H.; Bonnet-Bendhia, A.-S.; Cohen, G.; Diaz, J.; Ezziani, A.; Joly, P., Ed.). INRIA.
, & Mitkova, T. (2009).
IMA Journal of Numerical Analysis, 28(3), 440–468. https://doi.org/10.1093/imanum/drm038
, Schneebeli, Anna, & Schötzau, Dominik. (2008). Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal L2-norm error estimates.
IMA Journal of Numerical Analysis, 28(3), 440–468. https://doi.org/10.1093/imanum/drm038
, Schneebeli, Anna, & Schötzau, Dominik. (2008). Interior penalty discontinuous Galerkin method for Maxwell’s equations: Optimal L2-norm error estimates.
Local and nonlocal nonreflecting boundary conditions for electromagnetic scattering. 59, 105–127. https://doi.org/10.1007/978-3-540-73778-0_4
(2008).
Local and nonlocal nonreflecting boundary conditions for electromagnetic scattering. 59, 105–127. https://doi.org/10.1007/978-3-540-73778-0_4
(2008).
Journal of Computational and Applied Mathematics, 204(2), 375–386. https://doi.org/10.1016/j.cam.2006.01.044
, Schneebeli, Anna, & Schötzau, Dominik. (2007). Interior penalty discontinuous Galerkin method for Maxwell’s equations: Energy norm error estimates.
Journal of Computational and Applied Mathematics, 204(2), 375–386. https://doi.org/10.1016/j.cam.2006.01.044
, Schneebeli, Anna, & Schötzau, Dominik. (2007). Interior penalty discontinuous Galerkin method for Maxwell’s equations: Energy norm error estimates.
Grote, M. J., & Kirsch, C. (2007). Nonreflecting boundary condition for time-dependent multiple scattering. Journal of Computational Physics, 221(1), 41–62. https://doi.org/10.1016/j.jcp.2006.06.007
Grote, M. J., & Kirsch, C. (2007). Nonreflecting boundary condition for time-dependent multiple scattering. Journal of Computational Physics, 221(1), 41–62. https://doi.org/10.1016/j.jcp.2006.06.007
Grote, M. J., Schneebeli, A., & Schötzau, D. (2006). Discontinuous Galerkin finite element method for the wave equation. SIAM Journal on Numerical Analysis, 44(6), 2408–2431. https://doi.org/10.1137/05063194X
Grote, M. J., Schneebeli, A., & Schötzau, D. (2006). Discontinuous Galerkin finite element method for the wave equation. SIAM Journal on Numerical Analysis, 44(6), 2408–2431. https://doi.org/10.1137/05063194X
Grote, M. J. (2006). Local nonreflecting boundary condition for Maxwell’s equations. Computer Methods in Applied Mechanics and Engineering, 195(29-32), 3691–3708. https://doi.org/10.1016/j.cma.2005.02.029
Grote, M. J. (2006). Local nonreflecting boundary condition for Maxwell’s equations. Computer Methods in Applied Mechanics and Engineering, 195(29-32), 3691–3708. https://doi.org/10.1016/j.cma.2005.02.029
Majda, A., Abramov, R., & Grote, M. (2005). Information Theory and Stochastics for Multiscale Nonlinear Systems [Monograph]. American Mathematical
Society. https://doi.org/10.1090/crmm/025
Majda, A., Abramov, R., & Grote, M. (2005). Information Theory and Stochastics for Multiscale Nonlinear Systems [Monograph]. American Mathematical
Society. https://doi.org/10.1090/crmm/025
Grote, M. J., & Kirsch, C. (2004). Dirichlet-to-Neumann boundary conditions for multiple scattering problems. Journal of Computational Physics, 201(2), 630–650. https://doi.org/10.1016/j.jcp.2004.06.012
Grote, M. J., & Kirsch, C. (2004). Dirichlet-to-Neumann boundary conditions for multiple scattering problems. Journal of Computational Physics, 201(2), 630–650. https://doi.org/10.1016/j.jcp.2004.06.012
Bangerth, W., Grote, M., & Hohenegger, C. (2004). Finite element method for time dependent scattering: Nonreflecting boundary condition, adaptivity, and energy decay. Computer Methods in Applied Mechanics and Engineering, 193(23-26), 2453–2482. https://doi.org/10.1016/j.cma.2004.01.021
Bangerth, W., Grote, M., & Hohenegger, C. (2004). Finite element method for time dependent scattering: Nonreflecting boundary condition, adaptivity, and energy decay. Computer Methods in Applied Mechanics and Engineering, 193(23-26), 2453–2482. https://doi.org/10.1016/j.cma.2004.01.021
Grote, M. J. (2004). Nonreflecting Boundary Conditions for Time Dependent Waves. In A Celebration of Mathematical Modeling (pp. 73–92). Springer Netherlands. https://doi.org/10.1007/978-94-017-0427-4_5
Grote, M. J. (2004). Nonreflecting Boundary Conditions for Time Dependent Waves. In A Celebration of Mathematical Modeling (pp. 73–92). Springer Netherlands. https://doi.org/10.1007/978-94-017-0427-4_5
Grote, M. J., Kirsch, C., & Meury, P. (2004). Nonreflecting Boundary Conditions for Multiple Domain Wave Scattering in Unbounded Media. In Numerical Mathematics and Advanced Applications (pp. 391–399). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18775-9_36
Grote, M. J., Kirsch, C., & Meury, P. (2004). Nonreflecting Boundary Conditions for Multiple Domain Wave Scattering in Unbounded Media. In Numerical Mathematics and Advanced Applications (pp. 391–399). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18775-9_36
Gächter, G. k., & Grote, M. J. (2003). Dirichlet-to-Neumann map for three-dimensional elastic waves. Wave Motion, 37(3), 293–311. https://doi.org/10.1016/S0165-2125(02)00091-4
Gächter, G. k., & Grote, M. J. (2003). Dirichlet-to-Neumann map for three-dimensional elastic waves. Wave Motion, 37(3), 293–311. https://doi.org/10.1016/S0165-2125(02)00091-4
Grote, M. J., & Kirsch, C. (2003). Dirichlet-to-Neumann Boundary Condition for Multiple Scattering Problems. In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 (pp. 263–267). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55856-6_42
Grote, M. J., & Kirsch, C. (2003). Dirichlet-to-Neumann Boundary Condition for Multiple Scattering Problems. In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 (pp. 263–267). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55856-6_42
Hyperbolic Problems: Theory, Numerics, Applications (pp. 195–204). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_17
, & Kirsch, C. (2003). Far-field Evaluation via Nonreflecting Boundary Conditions. In
Hyperbolic Problems: Theory, Numerics, Applications (pp. 195–204). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-55711-8_17
, & Kirsch, C. (2003). Far-field Evaluation via Nonreflecting Boundary Conditions. In
Bröker, O., & Grote, M. J. (2002). Sparse approximate inverse smoothers for geometric and algebraic multigrid. 41, 61–80. https://doi.org/10.1016/S0168-9274(01)00110-6
Bröker, O., & Grote, M. J. (2002). Sparse approximate inverse smoothers for geometric and algebraic multigrid. 41, 61–80. https://doi.org/10.1016/S0168-9274(01)00110-6
Bröker, O., Grote, M. J., Mayer, C., & Reusken, A. (2002). Robust parallel smoothing for multigrid via sparse approximate inverses. SIAM Journal on Scientific Computing, 23(4), 1396–1417. https://doi.org/10.1137/S1064827500380623
Bröker, O., Grote, M. J., Mayer, C., & Reusken, A. (2002). Robust parallel smoothing for multigrid via sparse approximate inverses. SIAM Journal on Scientific Computing, 23(4), 1396–1417. https://doi.org/10.1137/S1064827500380623
Grote, M. J. (2000). Nonreflecting Boundary Conditions for Elastodynamic Scattering. Journal of Computational Physics, 161(1), 331–353. https://doi.org/10.1006/jcph.2000.6509
Grote, M. J. (2000). Nonreflecting Boundary Conditions for Elastodynamic Scattering. Journal of Computational Physics, 161(1), 331–353. https://doi.org/10.1006/jcph.2000.6509
Grote, M. J., & Keller, J. B. (2000). Exact nonreflecting boundary condition for elastic waves. SIAM Journal on Applied Mathematics, 60(3), 803–819. https://doi.org/10.1137/s0036139998344222
Grote, M. J., & Keller, J. B. (2000). Exact nonreflecting boundary condition for elastic waves. SIAM Journal on Applied Mathematics, 60(3), 803–819. https://doi.org/10.1137/s0036139998344222
Grote, M. J., & Keller, J. B. (1998). Nonreflecting Boundary Conditions for Maxwell’s Equations. Journal of Computational Physics, 139(2), 327–342. https://doi.org/10.1006/jcph.1997.5881
Grote, M. J., & Keller, J. B. (1998). Nonreflecting Boundary Conditions for Maxwell’s Equations. Journal of Computational Physics, 139(2), 327–342. https://doi.org/10.1006/jcph.1997.5881
Grote, M. J., & Huckle, T. (1997). Parallel preconditioning with sparse approximate inverses. SIAM Journal on Scientific Computing, 18(3), 838–853. https://doi.org/10.1137/S1064827594276552
Grote, M. J., & Huckle, T. (1997). Parallel preconditioning with sparse approximate inverses. SIAM Journal on Scientific Computing, 18(3), 838–853. https://doi.org/10.1137/S1064827594276552
Deshpande, V., Grote, M. J., Messmer, P., & Sawyer, W. (1996). Parallel implementation of a sparse approximate inverse preconditioner. 1117, 63–74. https://doi.org/10.1007/bfb0030097
Deshpande, V., Grote, M. J., Messmer, P., & Sawyer, W. (1996). Parallel implementation of a sparse approximate inverse preconditioner. 1117, 63–74. https://doi.org/10.1007/bfb0030097
Grote, M. J., & Keller, J. B. (1996). Nonreflecting boundary conditions for time-dependent scattering. Journal of Computational Physics, 127(1), 52–65. https://doi.org/10.1006/jcph.1996.0157
Grote, M. J., & Keller, J. B. (1996). Nonreflecting boundary conditions for time-dependent scattering. Journal of Computational Physics, 127(1), 52–65. https://doi.org/10.1006/jcph.1996.0157
SIAM Journal on Applied Mathematics, 55(2), 280–297. https://doi.org/10.1137/S0036139993269266
, & Keller, Joseph B. (1995). Exact nonreflecting boundary conditions for the time dependent wave equation.
SIAM Journal on Applied Mathematics, 55(2), 280–297. https://doi.org/10.1137/S0036139993269266
, & Keller, Joseph B. (1995). Exact nonreflecting boundary conditions for the time dependent wave equation.
Grote, M. J., & Keller, J. B. (1995). On nonreflecting boundary conditions. Journal of Computational Physics, 122(2), 231–243. https://doi.org/10.1006/jcph.1995.1210
Grote, M. J., & Keller, J. B. (1995). On nonreflecting boundary conditions. Journal of Computational Physics, 122(2), 231–243. https://doi.org/10.1006/jcph.1995.1210