UNIverse - Public Research Portal
Profile Photo

PD Dr. Jannis Epting

Department of Environmental Sciences
Profiles & Affiliations

Applied geology and hydrogeology - Providing solutions to tackle climate change and the energy transition

I am group leader of the Applied and Environmental Geology (AUG), Hydrogeology, Department of Environmental Sciences, Basel University, Switzerland. Our research focuses on 3D-geological and hydrogeological modeling of subsurface systems. The tools we develop are an important basis for the discussions on sustainable subsurface planning including the thermal management of subsurface resources also in the context of questions concerning the debate on climate change and energy transition.

Selected Publications

Råman Vinnå, L., Bigler, V., Schilling, O. S., & Epting, J. (2025). Multi-fidelity model assessment of climate change impacts on river water temperatures, thermal extremes and potential effects on cold water fish in Switzerland [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-2024-3957

URLs
URLs

Epting, Jannis, Raman Vinna, Carl Love, Affolter, Annette, Scheidler, Stefan, & Schilling, Oliver S. (2023). Climate change adaptation and mitigation measures for alluvial aquifers - Solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR). Water Research, 238, 119988. https://doi.org/10.1016/j.watres.2023.119988

URLs
URLs

Epting, Jannis, Baralis, Matteo, Künze, Rouven, Müller, Matthias Heidulf, Insana, Alessandra, Barla, Marco, & Huggenberger, Peter. (2021). Thermal activation of tunnel infrastructures: city-scale solutions for Basel, Switzerland. In Barla, M.; Di Donna, A.; Sterpi, D. (Ed.), Lecture Notes in Civil Engineering (Vol. 126). Springer. https://doi.org/10.1007/978-3-030-64518-2_118

URLs
URLs

Epting, Jannis, Michel, Adrien, Affolter, Annette, & Huggenberger, Peter. (2021). Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. Journal of Hydrology X, 11, 100071. https://doi.org/10.1016/j.hydroa.2020.100071

URLs
URLs

Huggenberger, Peter, & Epting, Jannis. (2011). Urban geology : process-oriented concepts for adaptive and integrated resource management. Springer. https://doi.org/10.1007/978-3-0348-0185-0

URLs
URLs

Selected Projects & Collaborations

Project cover

InnoGeoPot - Innovative exploration methods for geothermal potential assessment and energy storage

Research Project  | 5 Project Members

InnoGeoPot - Innovative exploration methods for geothermal potential assessment and energy storage

With the steady increase in the number of installed geothermal energy systems (GES) in Europe, a more frequent use of thermal energy in geological layers of different depth has been recognized.

In particular, the use of shallow and medium-depth geothermal potential can be extended to the application of systems for borehole thermal energy storage (BTES), as well as the possibility of rehabilitating abandoned deep boreholes with closed-loop borehole heat exchangers (BHE).

The development of multi-scale geological-hydrogeological-thermal models in combination with decision support systems (DSS) provide a better understanding of geothermal potential through the application of different GES.

Content and aim of the research project

The research work will aim to develop geological-hydrogeological-thermal models at different scales using data collected from deep boreholes in selected areas and to monitor real operation data from geothermal wells to determine heat rejection/extraction rates.

The research area includes the wider area of the city of Zagreb in Croatia, the city of Ljubljana in Slovenia and the cross-border area between north-eastern Slovenia and south-eastern Croatia.

In the selected urban and rural pilot areas, the exploration of geothermal potential at shallow and medium-depth between 200 and 500 m is being explored through the application of BHE for BTES. The geothermal potential from the rehabilitation of abandoned boreholes is also being evaluated.

Scientific and social context of the research project

The trilateral research cooperation between Croatia, Switzerland and Slovenia will lead to the establishment of an international research group dealing with the characterization of the subsurface and technology development in the field of geothermal energy.

For the selected pilot areas, an up-to-date DSS for the use of shallow and medium-depth geothermal energy will provide a valuable tool to ensure a more efficient and sustainable use of geothermal energy.

Project cover

«Swiss-wide future river temperature under climate change, Swiss- FuRiTe: Vulnerable river sections and refugia»

Research Project  | 2 Project Members

The effects of climate change on Swiss water bodies, including the impact on river temperatures and discharge, can already be observed today. As part of the research project "Future river temperatures in Switzerland under climate change - SwissFuRiTe", nationwide projections of future river temperatures were simulated for all 82 river monitoring stations of the Federal Office for the Environment (FOEN).

For this purpose, we chose a novel modeling approach that combines air temperatures from 22 general circulation and regional climate models (GCM-RCM) and runoff projections from 4 hydrological models as input for 2 semi-empirical surface temperature models. With these models, future projections of river water temperatures could be simulated for the 3 climate emission scenarios (RCP2.6, RCP4.6 & RCP8.5).

The river monitoring stations were grouped and the results analyzed according to thermal regimes (lake, Central Plateau/Jura, Alpine, regulated and springs), which are influenced by different thermal processes upstream.

The surface temperature models air2stream (rivers) and air2water (lakes) were used to determine which of the two models is better suited to the settings of the respective river monitoring stations. While air2stream was used at all sites, the air2water model was used at sites where the influence of lake water upstream dominated the temperature signal in the rivers.

The study showed that the most important factor for the level of temperature increase by the end of the 21st century is the climate emission scenarios. For the RCP2.6 scenario, the mean change in river water temperature from the reference period (1990 to 2019) to the near (2030 to 2059) and distant future (2070 to 2099) is 0.8 and 0.9 °C respectively. The largest temperature increase can be observed for the RCP8.5 scenario, in which the mean river water temperature rises by 1.2 and 3.1 °C for all stations in the near and distant future. The rate of warming differs for each station depending on the upstream processes. In addition, the seasonal trends in air temperature and discharge amplify the warming of watercourses in summer as a result of higher air temperatures and lower discharge volumes. While the increase in runoff and the lower warming of the atmosphere in winter also lead to a lower warming of the watercourses.

An analysis of thermal threshold and extreme values shows that heatwaves in Switzerland are likely to increase in the future. On the basis of our study, we were able to identify particularly vulnerable river sections, both those that are already at risk today and those that will be at risk in the future.

Future studies should focus on counteracting the local negative effects of climate change. The results of our study can be used to identify river sections with increased vulnerability and to designate targeted refugia for aquatic organisms.

Project cover

ThePoTun - Machbarkeitsstudie: Thermisches Potential urbaner Tunnelinfrastruktur in Lockergesteinsgrundwasservorkommen

Research Project  | 2 Project Members

BFE finanzierte Machbarkeitsstudie "ThePoTun"

Im Rahmen von «ThePoTun» wurden von der AUG Konzepte für eine koordinierte effiziente thermische Nutzung von Tunnelbauwerken zur Gewinnung von erneuerbarer Wärmeenergie im Stadtgebiet von Basel evaluiert. Ein weiterer Schwerpunkt lag auch auf der Evaluation von verschiedenen Strategien zur Kombination mit ATES-Systemen (Aquifer Thermal Energy Storage) zur saisonalen thermischen Energiespeicherung im Festgestein.

Die Ergebnisse zeigen, dass die thermische Aktivierung von Tunnel Absorbersystemen (TAS) in Abschnitten des geplanten S-Bahntunnels «Herzstück» dort am effizientesten ist, in welchen dieser in den Grundwasser-gesättigten Lockergesteinen verläuft. Die thermische Nutzung von Wasser, welches in Dükersystemen zirkuliert, erwies sich nur im Heizbetrieb und für Abschnitte als vorteilhaft, in welchen der Autobahntunnel senkrecht zur regionalen Grundwasserströmung verläuft und vergleichsweise hohe Grundwassertemperaturen existieren. Die «Tunnel- und auch Grundwasserklimatisierung» können eine Lösung für lokale umweltrelevante Ersatzmassnahmen von Grossbauprojekten darstellen. So zeigte sich, dass vor dem Hintergrund der Klimaänderungen, der Betrieb von TAS eine mögliche Anpassungsstrategie darstellt, um der Temperaturentwicklung urbaner Grundwasserressourcen zu begegnen.

Ein wichtiges Ergebnis der Machbarkeitsstudie ist auch, dass das Potenzial der thermischen Nutzung von Tunnelinfrastrukturen im aktuellen kantonalen Teilrichtplan Energie für den Kanton Basel-Stadt Berücksichtigung fand und, dass für den sich in der Planung befindenden „Rheintunnel“ Aspekte der thermischen Beeinflussung und Nutzung abgeklärt werden. 

Auch die im Rahmen von ThePoTun durchgeführten Messungen der Tunnelinnenlufttemperatur des Nordtangentenbauwerkes dienen gegenwärtig als Referenz für eine Abschätzung der thermischen Beeinflussung der geplanten Autobahn «Rheintunnel». Dies zeigt auch nochmals die Bedeutung entsprechender Datengrundlagen und Kenntnisse der thermischen Beeinflussung von Untergrundstrukturen. Vor allem auch vor dem Hintergrund, dass in der Schweiz Infrastrukturbauten vermehrt im Untergrund realisiert werden, welche sowohl quantitativ (Grundwasserdurchfluss) als auch qualitativ (Grundwassertemperaturen) Untergrundressourcen beeinträchtigen.