[FG] Schlaeger Regina
Publications
74 found
Show per page
Wendebourg, Maria Janina et al. (2024) ‘Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis’, European Journal of Neurology, 31(6). Available at: https://doi.org/10.1111/ene.16268.
Wendebourg, Maria Janina et al. (2024) ‘Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis’, European Journal of Neurology, 31(6). Available at: https://doi.org/10.1111/ene.16268.
Steiner, Leonie et al. (2024) ‘Chronic Pain in Patients with Spinal Muscular Atrophy in Switzerland: A Query to the Spinal Muscular Atrophy Registry’, Journal of Clinical Medicine, 13(10), p. 2798. Available at: https://doi.org/10.3390/jcm13102798.
Steiner, Leonie et al. (2024) ‘Chronic Pain in Patients with Spinal Muscular Atrophy in Switzerland: A Query to the Spinal Muscular Atrophy Registry’, Journal of Clinical Medicine, 13(10), p. 2798. Available at: https://doi.org/10.3390/jcm13102798.
Tsagkas, Charidimos et al. (2023) ‘Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis’, Multiple Sclerosis Journal, 29(6), pp. 702–718. Available at: https://doi.org/10.1177/13524585221139152.
Tsagkas, Charidimos et al. (2023) ‘Anterior horn atrophy in the cervical spinal cord: A new biomarker in progressive multiple sclerosis’, Multiple Sclerosis Journal, 29(6), pp. 702–718. Available at: https://doi.org/10.1177/13524585221139152.
Tsagkas C et al. (2023) ‘Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis’, Multiple Sclerosis and Related Disorders, 71, p. 104545. Available at: https://doi.org/10.1016/j.msard.2023.104545.
Tsagkas C et al. (2023) ‘Longitudinal assessment of cervical spinal cord compartments in multiple sclerosis’, Multiple Sclerosis and Related Disorders, 71, p. 104545. Available at: https://doi.org/10.1016/j.msard.2023.104545.
Müller J et al. (2022) ‘Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder: A Retrospective, Cross-sectional Analysis.’, Neurology(R) neuroimmunology & neuroinflammation, 9(3). Available at: https://doi.org/10.1212/nxi.0000000000001147.
Müller J et al. (2022) ‘Choroid Plexus Volume in Multiple Sclerosis vs Neuromyelitis Optica Spectrum Disorder: A Retrospective, Cross-sectional Analysis.’, Neurology(R) neuroimmunology & neuroinflammation, 9(3). Available at: https://doi.org/10.1212/nxi.0000000000001147.
Wendebourg MJ et al. (2022) ‘Spinal cord gray matter atrophy is associated with functional decline in post-polio syndrome’, European Journal of Neurology, 29(5), pp. 1435–1445. Available at: https://doi.org/10.1111/ene.15261.
Wendebourg MJ et al. (2022) ‘Spinal cord gray matter atrophy is associated with functional decline in post-polio syndrome’, European Journal of Neurology, 29(5), pp. 1435–1445. Available at: https://doi.org/10.1111/ene.15261.
Kesenheimer EM, Wendebourg MJ and Schlaeger R. (2022) ‘Gangstörungen bei Amyotropher Lateralskerose. ’, Schweizer Zeitschrift für Neurologie und Psychiatrie., (1/2022), pp. 36–40.
Kesenheimer EM, Wendebourg MJ and Schlaeger R. (2022) ‘Gangstörungen bei Amyotropher Lateralskerose. ’, Schweizer Zeitschrift für Neurologie und Psychiatrie., (1/2022), pp. 36–40.
Hardmeier, M. et al. (2022) ‘Prognostic biomarkers in primary progressive multiple sclerosis: validating and scrutinizing multimodal evoked potentials’, Clinical neurophysiology, 137, pp. 152–158. Available at: https://doi.org/10.1016/j.clinph.2022.02.019.
Hardmeier, M. et al. (2022) ‘Prognostic biomarkers in primary progressive multiple sclerosis: validating and scrutinizing multimodal evoked potentials’, Clinical neurophysiology, 137, pp. 152–158. Available at: https://doi.org/10.1016/j.clinph.2022.02.019.
Chici A et al. (2022) ‘ALS-Update mit Fokus auf aktuelle Therapieoptionen.’, BrainMAG [Preprint].
Chici A et al. (2022) ‘ALS-Update mit Fokus auf aktuelle Therapieoptionen.’, BrainMAG [Preprint].
Eva Maria Kesenheimer et al. (2022) ‘Cervical Spinal Cord Gray Matter Atrophy as an emerging biomarker in
Amyotrophic Lateral Sclerosis’, in ENCALS. Edinburgh (ENCALS), p. 73.
Eva Maria Kesenheimer et al. (2022) ‘Cervical Spinal Cord Gray Matter Atrophy as an emerging biomarker in
Amyotrophic Lateral Sclerosis’, in ENCALS. Edinburgh (ENCALS), p. 73.
Eva Maria Kesenheimer et al. (2022) ‘Atrophy of the Cervical Spinal Cord Gray Matter: a new surrogate marker in Amyotrophic Lateral Sclerosis’, in SFCNS. Basel (SFCNS), p. P007.
Eva Maria Kesenheimer et al. (2022) ‘Atrophy of the Cervical Spinal Cord Gray Matter: a new surrogate marker in Amyotrophic Lateral Sclerosis’, in SFCNS. Basel (SFCNS), p. P007.
J. Müller et al. (2022) ‘On the association between the choroid plexus volume and disease characteristics in multiple sclerosis’, in Sage Publications (ed.) ECTRIMS. Amsterdam (ECTRIMS). Available at: https://doi.org/https://doi.org/10.1177/13524585221123687.
J. Müller et al. (2022) ‘On the association between the choroid plexus volume and disease characteristics in multiple sclerosis’, in Sage Publications (ed.) ECTRIMS. Amsterdam (ECTRIMS). Available at: https://doi.org/https://doi.org/10.1177/13524585221123687.
Maria Janina Wendebourg et al. (2022) ‘The Spinal Cord Lateral Tract Sign in Amyotrophic Lateral Sclerosis:
an rAMIRA based MRI sign for Upper Motor Neuron Involvement in a Clinical Setting’, in ENCALS. Edinburgh (ENCALS), p. 72.
Maria Janina Wendebourg et al. (2022) ‘The Spinal Cord Lateral Tract Sign in Amyotrophic Lateral Sclerosis:
an rAMIRA based MRI sign for Upper Motor Neuron Involvement in a Clinical Setting’, in ENCALS. Edinburgh (ENCALS), p. 72.
Maria Janina Wendebourg et al. (2022) ‘Spinal cord gray matter atrophy is associated with functional decline in post-polio syndrome’, in SFCNS. Basel (SFCNS).
Maria Janina Wendebourg et al. (2022) ‘Spinal cord gray matter atrophy is associated with functional decline in post-polio syndrome’, in SFCNS. Basel (SFCNS).
Meyer A et al. (2022) ‘Patients with amyotrophic lateral sclerosis
and cognitive deficits are impaired in recognizing negative facial emotions.
’, in ENCALS. Edinburgh (ENCALS), p. 11.
Meyer A et al. (2022) ‘Patients with amyotrophic lateral sclerosis
and cognitive deficits are impaired in recognizing negative facial emotions.
’, in ENCALS. Edinburgh (ENCALS), p. 11.
Wendebourg MJ et al. (2022) ‘The Spinal Cord Lateral Tract Sign as an rAMIRA-based MRI sign for Upper Motor Neuron Involvement in Amyotrophic Lateral Sclerosis in a Clinical Setting’, in SFCNS . Basel (SFCNS ), p. P006.
Wendebourg MJ et al. (2022) ‘The Spinal Cord Lateral Tract Sign as an rAMIRA-based MRI sign for Upper Motor Neuron Involvement in Amyotrophic Lateral Sclerosis in a Clinical Setting’, in SFCNS . Basel (SFCNS ), p. P006.
Siegel, P.M. et al. (2021) ‘P2Y12 receptor blockers are anti-inflammatory drugs inhibiting both circulating monocytes and macrophages including THP-1 cells’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-95710-3.
Siegel, P.M. et al. (2021) ‘P2Y12 receptor blockers are anti-inflammatory drugs inhibiting both circulating monocytes and macrophages including THP-1 cells’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-95710-3.
Kesenheimer EM et al. (2021) ‘Normalization of Spinal Cord Total Cross-Sectional and Gray Matter Areas as Quantified With Radially Sampled Averaged Magnetization Inversion Recovery Acquisitions’, Frontiers in Neurology, 12, p. 637198. Available at: https://doi.org/10.3389/fneur.2021.637198.
Kesenheimer EM et al. (2021) ‘Normalization of Spinal Cord Total Cross-Sectional and Gray Matter Areas as Quantified With Radially Sampled Averaged Magnetization Inversion Recovery Acquisitions’, Frontiers in Neurology, 12, p. 637198. Available at: https://doi.org/10.3389/fneur.2021.637198.
C. Tsagkas et al. (2021) ‘Spinal cord anterior horn atrophy: a new biomarker in progressive multiple sclerosis’, in SAGE Publications (ed.) ECTRIMS. virtual (ECTRIMS), p. P414. Available at: https://doi.org/https://doi.org/10.1177/13524585211044667.
C. Tsagkas et al. (2021) ‘Spinal cord anterior horn atrophy: a new biomarker in progressive multiple sclerosis’, in SAGE Publications (ed.) ECTRIMS. virtual (ECTRIMS), p. P414. Available at: https://doi.org/https://doi.org/10.1177/13524585211044667.
M. Hardmeier et al. (2021) ‘Prognostication of confirmed disease progression in patients with primary progressive MS (PPMS) by serum neurofilament light chain levels and multimodal evoked potentials’, in SAGE Publications (ed.) ECTRIMS. virtual (ECTRIMS), p. P568.
M. Hardmeier et al. (2021) ‘Prognostication of confirmed disease progression in patients with primary progressive MS (PPMS) by serum neurofilament light chain levels and multimodal evoked potentials’, in SAGE Publications (ed.) ECTRIMS. virtual (ECTRIMS), p. P568.
Sander L et al. (2021) ‘Medulla Oblongata Atrophy as a
possible biomarker for neurodegeneration in early relapsing multiple sclerosis.
’, in ECTRIMS. virtual (ECTRIMS). Available at: https://doi.org/https://doi.org/10.1177/13524585211047106.
Sander L et al. (2021) ‘Medulla Oblongata Atrophy as a
possible biomarker for neurodegeneration in early relapsing multiple sclerosis.
’, in ECTRIMS. virtual (ECTRIMS). Available at: https://doi.org/https://doi.org/10.1177/13524585211047106.
Wendebourg MJ, Schlaeger R and Schweikert K. (2021) ‘Revisiting the diagnosis of an ALS patient
after gender reassignment – a case report.
’, in ENCALS. (ENCALS), p. Poster 175.
Wendebourg MJ, Schlaeger R and Schweikert K. (2021) ‘Revisiting the diagnosis of an ALS patient
after gender reassignment – a case report.
’, in ENCALS. (ENCALS), p. Poster 175.
Wendebourg MJ et al. (2021) ‘Spinal Cord Cervical and Thoracic Gray Matter Atrophy - an emerging
imaging surrogate for Amyotrophic Lateral Sclerosis
’, Neurology. 13.04.2021, 15(96), p. 4099.
Wendebourg MJ et al. (2021) ‘Spinal Cord Cervical and Thoracic Gray Matter Atrophy - an emerging
imaging surrogate for Amyotrophic Lateral Sclerosis
’, Neurology. 13.04.2021, 15(96), p. 4099.
Sander L et al. (2020) ‘Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies’, Frontiers in Neuroscience, 14, p. 609422. Available at: https://doi.org/10.3389/fnins.2020.609422.
Sander L et al. (2020) ‘Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies’, Frontiers in Neuroscience, 14, p. 609422. Available at: https://doi.org/10.3389/fnins.2020.609422.
Weigel M et al. (2020) ‘Imaging of the thoracic spinal cord using radially sampled averaged magnetization inversion recovery acquisitions’, Journal of Neuroscience Methods, 343, p. 108825. Available at: https://doi.org/10.1016/j.jneumeth.2020.108825.
Weigel M et al. (2020) ‘Imaging of the thoracic spinal cord using radially sampled averaged magnetization inversion recovery acquisitions’, Journal of Neuroscience Methods, 343, p. 108825. Available at: https://doi.org/10.1016/j.jneumeth.2020.108825.
Wendebourg MJ et al. (2020) ‘Magnetic resonance imaging in immune-mediated myelopathies’, Journal of Neurology, 267(5), pp. 1233–1244. Available at: https://doi.org/10.1007/s00415-019-09206-2.
Wendebourg MJ et al. (2020) ‘Magnetic resonance imaging in immune-mediated myelopathies’, Journal of Neurology, 267(5), pp. 1233–1244. Available at: https://doi.org/10.1007/s00415-019-09206-2.
Müller J et al. (2020) ‘Brain Choroid Plexus is larger in
Multiple Sclerosis compared with Neuromyelitis Optica Spectrum Disease. ’, in ECTRIMS. (ECTRIMS), p. P0945. Available at: https://doi.org/https://doi.org/10.1177/1352458520974937.
Müller J et al. (2020) ‘Brain Choroid Plexus is larger in
Multiple Sclerosis compared with Neuromyelitis Optica Spectrum Disease. ’, in ECTRIMS. (ECTRIMS), p. P0945. Available at: https://doi.org/https://doi.org/10.1177/1352458520974937.
Sander L et al. (2020) ‘Medulla oblongata atrophy in Early Stage Multiple Sclerosis. ’, in AAN. Orlando (AAN).
Sander L et al. (2020) ‘Medulla oblongata atrophy in Early Stage Multiple Sclerosis. ’, in AAN. Orlando (AAN).
Sander L et al. (2019) ‘Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases’, Human Brain Mapping, 40(14), pp. 4091–4104. Available at: https://doi.org/10.1002/hbm.24687.
Sander L et al. (2019) ‘Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases’, Human Brain Mapping, 40(14), pp. 4091–4104. Available at: https://doi.org/10.1002/hbm.24687.
Ciccarelli, Olga et al. (2019) ‘Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders’, The Lancet Neurology, 18(2), pp. 185–197. Available at: https://doi.org/10.1016/s1474-4422(18)30460-5.
Ciccarelli, Olga et al. (2019) ‘Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders’, The Lancet Neurology, 18(2), pp. 185–197. Available at: https://doi.org/10.1016/s1474-4422(18)30460-5.
M. Hardmeier et al. (2019) ‘Disease course in primary progressive multiple sclerosis: validation of a prediction model using multimodal evoked potentials’, Multiple Sclerosis Journal. 10.9.2019, 25, 2. Available at: https://doi.org/https://doi.org/10.1177/135245851986807.
M. Hardmeier et al. (2019) ‘Disease course in primary progressive multiple sclerosis: validation of a prediction model using multimodal evoked potentials’, Multiple Sclerosis Journal. 10.9.2019, 25, 2. Available at: https://doi.org/https://doi.org/10.1177/135245851986807.
Sander, L. et al. (2018) ‘Rapid and reliable, fully-automated brainstem segmentation for application in multiple sclerosis’. SAGE PUBLICATIONS LTD, 24.
Sander, L. et al. (2018) ‘Rapid and reliable, fully-automated brainstem segmentation for application in multiple sclerosis’. SAGE PUBLICATIONS LTD, 24.
Sander, L. et al. (2018) ‘Brainstem atrophy in multiple sclerosis correlates with disability’. SAGE PUBLICATIONS LTD, 24.
Sander, L. et al. (2018) ‘Brainstem atrophy in multiple sclerosis correlates with disability’. SAGE PUBLICATIONS LTD, 24.
Richter, L. et al. (2018) ‘Cervical Spinal Cord Gray Matter Atrophy in Post-Polio Syndrome’. WILEY, 25.
Richter, L. et al. (2018) ‘Cervical Spinal Cord Gray Matter Atrophy in Post-Polio Syndrome’. WILEY, 25.
Sinnecker T et al. (2018) ‘Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS.’, Current treatment options in neurology, 20(6), p. 17. Available at: https://doi.org/10.1007/s11940-018-0504-7.
Sinnecker T et al. (2018) ‘Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS.’, Current treatment options in neurology, 20(6), p. 17. Available at: https://doi.org/10.1007/s11940-018-0504-7.
Schlaeger R, Cordano C, Papinutto N, Caverzasi E, Kirkish G, Baker N, Bevan C, Bischof A, Bove R, Datta E, Devereux M, Gelfand JM, Graves JS, Jordan KM, Keshavan A, Stern W, Wilson M, Waubant E, Zhu A, Goodin DS, Cree BAC, Hauser SL, Green AJ, Henry RG. (2018) ‘Retinal ganglion cell layer and cervical spinal cord gray matter atrophy are present and unterlie pathway specific disability in very early stage multiple sclerosis. ’, in Multiple Sclerosis Journal (ed.) ECTRIMS. Berlin: Mult Scler Journal (ECTRIMS).
Schlaeger R, Cordano C, Papinutto N, Caverzasi E, Kirkish G, Baker N, Bevan C, Bischof A, Bove R, Datta E, Devereux M, Gelfand JM, Graves JS, Jordan KM, Keshavan A, Stern W, Wilson M, Waubant E, Zhu A, Goodin DS, Cree BAC, Hauser SL, Green AJ, Henry RG. (2018) ‘Retinal ganglion cell layer and cervical spinal cord gray matter atrophy are present and unterlie pathway specific disability in very early stage multiple sclerosis. ’, in Multiple Sclerosis Journal (ed.) ECTRIMS. Berlin: Mult Scler Journal (ECTRIMS).
Wendebourg MJ et al. (2018) ‘Cervical Spinal Cord Gray and White Matter Atrophy in Patients with Post-Polio Syndrome.’, in SNG. Montreux (SNG).
Wendebourg MJ et al. (2018) ‘Cervical Spinal Cord Gray and White Matter Atrophy in Patients with Post-Polio Syndrome.’, in SNG. Montreux (SNG).
Prados F et al. (2017) ‘Spinal cord grey matter segmentation challenge.’, NeuroImage. 07.03.2017, 152, pp. 312–329. Available at: https://doi.org/10.1016/j.neuroimage.2017.03.010.
Prados F et al. (2017) ‘Spinal cord grey matter segmentation challenge.’, NeuroImage. 07.03.2017, 152, pp. 312–329. Available at: https://doi.org/10.1016/j.neuroimage.2017.03.010.
Datta E et al. (2017) ‘Gray matter segmentation of the spinal cord with active contours in MR images.’, NeuroImage. 02.08.2016, 147, pp. 788–799. Available at: https://doi.org/10.1016/j.neuroimage.2016.07.062.
Datta E et al. (2017) ‘Gray matter segmentation of the spinal cord with active contours in MR images.’, NeuroImage. 02.08.2016, 147, pp. 788–799. Available at: https://doi.org/10.1016/j.neuroimage.2016.07.062.
Schlaeger R et al. (2017) ‘Spinal cord gray matter atrophy is detectable at an early stage of Multiple Sclerosis. ’, in AAN . Boston (AAN ), p. S 2003.
Schlaeger R et al. (2017) ‘Spinal cord gray matter atrophy is detectable at an early stage of Multiple Sclerosis. ’, in AAN . Boston (AAN ), p. S 2003.
Schlaeger R et al. (2017) ‘Spinal cord gray matter atrophy is detectable at an early stage of Multiple Sclerosis. Cutting edge developments in MS Research. ’, in ACTRIMS. Orlando (ACTRIMS).
Schlaeger R et al. (2017) ‘Spinal cord gray matter atrophy is detectable at an early stage of Multiple Sclerosis. Cutting edge developments in MS Research. ’, in ACTRIMS. Orlando (ACTRIMS).
Isobe, Noriko et al. (2016) ‘Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis’, JAMA NEUROLOGY. WOS.SCI, 73, pp. 795–802. Available at: https://doi.org/10.1001/jamaneurol.2016.0980.
Isobe, Noriko et al. (2016) ‘Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis’, JAMA NEUROLOGY. WOS.SCI, 73, pp. 795–802. Available at: https://doi.org/10.1001/jamaneurol.2016.0980.
Keshavan A et al. (2016) ‘Power estimation for non-standardized multisite studies.’, NeuroImage, 134, pp. 281–294. Available at: https://doi.org/10.1016/j.neuroimage.2016.03.051.
Keshavan A et al. (2016) ‘Power estimation for non-standardized multisite studies.’, NeuroImage, 134, pp. 281–294. Available at: https://doi.org/10.1016/j.neuroimage.2016.03.051.
Schlaeger, Regina et al. (2016) ‘Monitoring multiple sclerosis by multimodal evoked potentials : numerically versus ordinally scaled scoring systems’, Clinical neurophysiology, 127(3), pp. 1864–71. Available at: https://doi.org/10.1016/j.clinph.2015.11.041.
Schlaeger, Regina et al. (2016) ‘Monitoring multiple sclerosis by multimodal evoked potentials : numerically versus ordinally scaled scoring systems’, Clinical neurophysiology, 127(3), pp. 1864–71. Available at: https://doi.org/10.1016/j.clinph.2015.11.041.
Papinutto N et al. (2015) ‘2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.’, Journal of magnetic resonance imaging : JMRI. 08.12.2014, 42(3), pp. 698–708. Available at: https://doi.org/10.1002/jmri.24819.
Papinutto N et al. (2015) ‘2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times.’, Journal of magnetic resonance imaging : JMRI. 08.12.2014, 42(3), pp. 698–708. Available at: https://doi.org/10.1002/jmri.24819.
Schlaeger R et al. (2015) ‘Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis.’, JAMA neurology, 72(8), pp. 897–904. Available at: https://doi.org/10.1001/jamaneurol.2015.0993.
Schlaeger R et al. (2015) ‘Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis.’, JAMA neurology, 72(8), pp. 897–904. Available at: https://doi.org/10.1001/jamaneurol.2015.0993.
Papinutto N et al. (2015) ‘Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study.’, PloS one. 17.03.2015, 10(3), p. e0118576. Available at: https://doi.org/10.1371/journal.pone.0118576.
Papinutto N et al. (2015) ‘Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D phase sensitive inversion recovery imaging study.’, PloS one. 17.03.2015, 10(3), p. e0118576. Available at: https://doi.org/10.1371/journal.pone.0118576.
Schlaeger R et al. (2014) ‘[Postoperative spine].’, Der Radiologe, 54(11), pp. 1093–102. Available at: https://doi.org/10.1007/s00117-014-2727-2.
Schlaeger R et al. (2014) ‘[Postoperative spine].’, Der Radiologe, 54(11), pp. 1093–102. Available at: https://doi.org/10.1007/s00117-014-2727-2.
Schlaeger R et al. (2014) ‘Spinal cord gray matter atrophy correlates with multiple sclerosis disability.’, Annals of neurology. 21.08.2014, 76(4), pp. 568–80. Available at: https://doi.org/10.1002/ana.24241.
Schlaeger R et al. (2014) ‘Spinal cord gray matter atrophy correlates with multiple sclerosis disability.’, Annals of neurology. 21.08.2014, 76(4), pp. 568–80. Available at: https://doi.org/10.1002/ana.24241.
Mueller, U. et al. (2014) ‘Pediatric intraspinal Neoplasms’. SPRINGER, 54. Available at: https://doi.org/10.1007/s00117-014-2744-1.
Mueller, U. et al. (2014) ‘Pediatric intraspinal Neoplasms’. SPRINGER, 54. Available at: https://doi.org/10.1007/s00117-014-2744-1.
Müller U et al. (2014) ‘[Pediatric intraspinal neoplasms].’, Der Radiologe, 54(8), pp. 792–9. Available at: https://doi.org/10.1007/s00117-014-2669-8.
Müller U et al. (2014) ‘[Pediatric intraspinal neoplasms].’, Der Radiologe, 54(8), pp. 792–9. Available at: https://doi.org/10.1007/s00117-014-2669-8.
Schlaeger, R et al. (2014) ‘Prediction of MS disability by multimodal evoked potentials : investigation during relapse or in the relapse-free interval?’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 125(9), pp. 1889–92. Available at: https://doi.org/10.1016/j.clinph.2013.12.117.
Schlaeger, R et al. (2014) ‘Prediction of MS disability by multimodal evoked potentials : investigation during relapse or in the relapse-free interval?’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 125(9), pp. 1889–92. Available at: https://doi.org/10.1016/j.clinph.2013.12.117.
Schlaeger, Regina et al. (2014) ‘Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis’, Multiple Sclerosis Journal, 20(1), pp. 51–6. Available at: https://doi.org/10.1177/1352458513490543.
Schlaeger, Regina et al. (2014) ‘Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis’, Multiple Sclerosis Journal, 20(1), pp. 51–6. Available at: https://doi.org/10.1177/1352458513490543.
Schlaeger, Regina et al. (2014) ‘Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years’, Multiple Sclerosis Journal, 20(10), pp. 1348–54. Available at: https://doi.org/10.1177/1352458514525867.
Schlaeger, Regina et al. (2014) ‘Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years’, Multiple Sclerosis Journal, 20(10), pp. 1348–54. Available at: https://doi.org/10.1177/1352458514525867.
Ban,W et al. (2014) ‘Exploring Phase Contrast Mechanisms of Multiple Sclerosis Lesions: Initial Evidence from MR Spectroscopic Image at 7T.’, pp. 45–46.
Ban,W et al. (2014) ‘Exploring Phase Contrast Mechanisms of Multiple Sclerosis Lesions: Initial Evidence from MR Spectroscopic Image at 7T.’, pp. 45–46.
Bevan,C et al. (2014) ‘EDSS and MSFC Incompletely Capture Patient Reported Disability in a Longitudinal Cohort of Patients with Multiple Sclerosis.’, Neurology, 82(1), p. P5.014.
Bevan,C et al. (2014) ‘EDSS and MSFC Incompletely Capture Patient Reported Disability in a Longitudinal Cohort of Patients with Multiple Sclerosis.’, Neurology, 82(1), p. P5.014.
Henry,R et al. (2014) ‘Predicting Disability in the Modern MS Cohort.’, Neurology, 82(1), p. P4.184.
Henry,R et al. (2014) ‘Predicting Disability in the Modern MS Cohort.’, Neurology, 82(1), p. P4.184.
Schlaeger,R and Fuhr,P (2014) ‘Evozierte Potentiale in der Diagnostik und Prognostik der Multiplen Sklerose’, in Uni-med Science. (Uni-med Science), pp. 000–000.
Schlaeger,R and Fuhr,P (2014) ‘Evozierte Potentiale in der Diagnostik und Prognostik der Multiplen Sklerose’, in Uni-med Science. (Uni-med Science), pp. 000–000.
Schlaeger,R et al. (2014) ‘Postoperative Wirbelsaeule’, Radiologe, 54(10), pp. 1093–1102.
Schlaeger,R et al. (2014) ‘Postoperative Wirbelsaeule’, Radiologe, 54(10), pp. 1093–1102.
Schlaeger,R and Mehling,M (2014) ‘Diagnose und Differentialdiagnose’, in Uni-med Science. (Uni-med Science), pp. 000–000.
Schlaeger,R and Mehling,M (2014) ‘Diagnose und Differentialdiagnose’, in Uni-med Science. (Uni-med Science), pp. 000–000.
Schlaeger R, Hardmeier M and Fuhr P (2013) ‘Superficial brain stimulation in multiple sclerosis.’, Handbook of clinical neurology, 116, pp. 577–84. Available at: https://doi.org/10.1016/b978-0-444-53497-2.00046-2.
Schlaeger R, Hardmeier M and Fuhr P (2013) ‘Superficial brain stimulation in multiple sclerosis.’, Handbook of clinical neurology, 116, pp. 577–84. Available at: https://doi.org/10.1016/b978-0-444-53497-2.00046-2.
Schlaeger, R. et al. (2012) ‘Prediction of long-term disability in multiple sclerosis’, Multiple Sclerosis Journal, 18(1), pp. 31–8. Available at: https://doi.org/10.1177/1352458511416836.
Schlaeger, R. et al. (2012) ‘Prediction of long-term disability in multiple sclerosis’, Multiple Sclerosis Journal, 18(1), pp. 31–8. Available at: https://doi.org/10.1177/1352458511416836.
Schlaeger, Regina et al. (2012) ‘Combined evoked potentials as markers and predictors of disability in early multiple sclerosis’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 123(2), pp. 406–10. Available at: https://doi.org/10.1016/j.clinph.2011.06.021.
Schlaeger, Regina et al. (2012) ‘Combined evoked potentials as markers and predictors of disability in early multiple sclerosis’, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 123(2), pp. 406–10. Available at: https://doi.org/10.1016/j.clinph.2011.06.021.
Schlaeger R and Sollberger M (2010) ‘An unusual cause of isolated vomiting.’, Neurology, 75(14), p. 1303. Available at: https://doi.org/10.1212/wnl.0b013e3181f61354.
Schlaeger R and Sollberger M (2010) ‘An unusual cause of isolated vomiting.’, Neurology, 75(14), p. 1303. Available at: https://doi.org/10.1212/wnl.0b013e3181f61354.
Schlaeger, Regina et al. (2010) ‘Acute vertigo with double vision - brainstem stroke or stroke mimic?’, Cerebrovascular Diseases, 30(6), pp. 626–7. Available at: https://doi.org/10.1159/000320256.
Schlaeger, Regina et al. (2010) ‘Acute vertigo with double vision - brainstem stroke or stroke mimic?’, Cerebrovascular Diseases, 30(6), pp. 626–7. Available at: https://doi.org/10.1159/000320256.
Schlaeger, Regina M. M. et al. (2009) ‘Prospective Study on Combined Visual, Motor and Somatosensory Evoked Potentials as Markers of the Disease Course over Two Years in Patients with Early Multiple Sclerosis’. LIPPINCOTT WILLIAMS & WILKINS, 72.
Schlaeger, Regina M. M. et al. (2009) ‘Prospective Study on Combined Visual, Motor and Somatosensory Evoked Potentials as Markers of the Disease Course over Two Years in Patients with Early Multiple Sclerosis’. LIPPINCOTT WILLIAMS & WILKINS, 72.
Schlaeger,R and Fuhr,P (2009) ‘Symptomatische medikamentöse Therapie der Fatigue.’, pp. 145–151.
Schlaeger,R and Fuhr,P (2009) ‘Symptomatische medikamentöse Therapie der Fatigue.’, pp. 145–151.
Schlaeger, R. et al. (2008) ‘Visual- and motor-evoked potentials as predictors of long-term clinical disability in multiple sclerosis’. SPRINGER HEIDELBERG, 255.
Schlaeger, R. et al. (2008) ‘Visual- and motor-evoked potentials as predictors of long-term clinical disability in multiple sclerosis’. SPRINGER HEIDELBERG, 255.
Schlaeger,R et al. (2008) ‘Liquordiagnostik der Multiplen Sklerose - Diagnose und Differentialdiagnose.’, Psychoneuro, 34(13), pp. 293–306.
Schlaeger,R et al. (2008) ‘Liquordiagnostik der Multiplen Sklerose - Diagnose und Differentialdiagnose.’, Psychoneuro, 34(13), pp. 293–306.
Schlaeger, Regina M. M. et al. (2007) ‘Prediction of the clinical course of early multiple sclerosis by multimodal visual, motor and somatosensory evoked potentials - A prospective study’. LIPPINCOTT WILLIAMS & WILKINS, 68.
Schlaeger, Regina M. M. et al. (2007) ‘Prediction of the clinical course of early multiple sclerosis by multimodal visual, motor and somatosensory evoked potentials - A prospective study’. LIPPINCOTT WILLIAMS & WILKINS, 68.
Schlaeger,R et al. (2007) ‘Electrophysiological surrogate markers for primary progressive multiple sclerosis - cross-sectional analysis of 23 patients.’, Swiss Archives of Neurology and Psychiatry, 158(1), p. 189.
Schlaeger,R et al. (2007) ‘Electrophysiological surrogate markers for primary progressive multiple sclerosis - cross-sectional analysis of 23 patients.’, Swiss Archives of Neurology and Psychiatry, 158(1), p. 189.
Penner,IK and Schlaeger,R (2006) ‘Fatigue - better understanding, better therapy?’, Swiss Archives of Neurology and Psychiatry, 157(8), pp. 46–53.
Penner,IK and Schlaeger,R (2006) ‘Fatigue - better understanding, better therapy?’, Swiss Archives of Neurology and Psychiatry, 157(8), pp. 46–53.
Schlaeger,R et al. (2006) ‘Multimodal visual, motor and somatosensory evoked potentials as markers of clinical disability in primary progressive multiple sclerosis.’, 117(1), p. 261.
Schlaeger,R et al. (2006) ‘Multimodal visual, motor and somatosensory evoked potentials as markers of clinical disability in primary progressive multiple sclerosis.’, 117(1), p. 261.
Schlaeger,R et al. (2005) ‘Multimodal (visual, motor and somatosensory) evoked potentials as markers of clinical disabilty in relapsing-remitting and secondary progressive multiple sclerosis.’, p. II/13, O35.
Schlaeger,R et al. (2005) ‘Multimodal (visual, motor and somatosensory) evoked potentials as markers of clinical disabilty in relapsing-remitting and secondary progressive multiple sclerosis.’, p. II/13, O35.