![Project cover](/assets/images/default-page-bg-images/collection-1/3.jpg)
Fronts in branching random walk in random environment
Research Project | 01.09.2019
|
01.09.2019
Collaborations & Cooperations
2022 - Participation or Organization of Collaborations on an international level
Drewitz, Alexander, Prof., Universität zu Köln, Research cooperation
Publications
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION’, Annals of Applied Probability, 33(3), pp. 2342–2373. Available at: https://doi.org/10.1214/22-AAP1869.
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION’, Annals of Applied Probability, 33(3), pp. 2342–2373. Available at: https://doi.org/10.1214/22-AAP1869.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, ArXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2212.12390.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, ArXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2212.12390.