Publications
39 found
Show per page
Borsa, M., Lechuga-Vieco, A. V., Kayvanjoo, A. H., Jenkins, E., Yazicioglu, Y., Compeer, E. B., Richter, F. C., Rapp, S., Mitchell, R., Youdale, T., Bui, H., Kuuluvainen, E., Dustin, M. L., Sinclair, L. V., Katajisto, P., & Simon, A. K. (2025). Autophagy-regulated mitochondrial inheritance controls early CD8+ T cell fate commitment [Journal-article]. Nature Cell Biology. https://doi.org/10.1038/s41556-025-01835-2
Borsa, M., Lechuga-Vieco, A. V., Kayvanjoo, A. H., Jenkins, E., Yazicioglu, Y., Compeer, E. B., Richter, F. C., Rapp, S., Mitchell, R., Youdale, T., Bui, H., Kuuluvainen, E., Dustin, M. L., Sinclair, L. V., Katajisto, P., & Simon, A. K. (2025). Autophagy-regulated mitochondrial inheritance controls early CD8+ T cell fate commitment [Journal-article]. Nature Cell Biology. https://doi.org/10.1038/s41556-025-01835-2
Piletic, K., Kayvanjoo, A. H., Richter, F. C., Borsa, M., Lechuga-Vieco, A. V., Popp, O., Grenet, S., Ko, J. K. L., Luo, L., Zec, K., Kyriazi, M., Haysom, H. K., Koneva, L., Sansom, S., Mertins, P., Powrie, F., Alsaleh, G., & Simon, A. K. (2025). Autophagy acts as a brake on obesity-related fibrosis by controlling purine nucleoside signalling. 16. https://doi.org/10.1038/s41467-025-64266-5
Piletic, K., Kayvanjoo, A. H., Richter, F. C., Borsa, M., Lechuga-Vieco, A. V., Popp, O., Grenet, S., Ko, J. K. L., Luo, L., Zec, K., Kyriazi, M., Haysom, H. K., Koneva, L., Sansom, S., Mertins, P., Powrie, F., Alsaleh, G., & Simon, A. K. (2025). Autophagy acts as a brake on obesity-related fibrosis by controlling purine nucleoside signalling. 16. https://doi.org/10.1038/s41467-025-64266-5
Kandasamy, M., Andrew, H. F., Raza, I. G., Mitchell, R., Borsa, M., Valvo, S., Ali, M., Kronsteiner, B., Attar, M., & Clarke, A. J. (2025). Glycogen synthase kinase-3 is essential for Treg development and function. 44. https://doi.org/10.1016/j.celrep.2025.116256
Kandasamy, M., Andrew, H. F., Raza, I. G., Mitchell, R., Borsa, M., Valvo, S., Ali, M., Kronsteiner, B., Attar, M., & Clarke, A. J. (2025). Glycogen synthase kinase-3 is essential for Treg development and function. 44. https://doi.org/10.1016/j.celrep.2025.116256
Luo, L., Lechuga-Vieco, A. V., Sattentau, C., Borsa, M., & Simon, A. K. (2025). Dysfunctional mitochondria in ageing T cells: a perspective on mitochondrial quality control mechanisms. 26. https://doi.org/10.1038/s44319-025-00536-z
Luo, L., Lechuga-Vieco, A. V., Sattentau, C., Borsa, M., & Simon, A. K. (2025). Dysfunctional mitochondria in ageing T cells: a perspective on mitochondrial quality control mechanisms. 26. https://doi.org/10.1038/s44319-025-00536-z
Yazicioglu, Y. F., Marin, E., Andrew, H. F., Bentkowska, K., Johnstone, J. C., Mitchell, R., Wong, Z. Y., Zec, K., Fergusson, J., Borsa, M., Raza, I. G. A., Attar, M., Ali, M., Kronsteiner, B., Furlani, I. L., MacRae, J. I., Devine, M. J., Coles, M., Buckley, C. D., et al. (2024). Asparagine availability controls germinal center B cell homeostasis. 9. https://doi.org/10.1126/sciimmunol.adl4613
Yazicioglu, Y. F., Marin, E., Andrew, H. F., Bentkowska, K., Johnstone, J. C., Mitchell, R., Wong, Z. Y., Zec, K., Fergusson, J., Borsa, M., Raza, I. G. A., Attar, M., Ali, M., Kronsteiner, B., Furlani, I. L., MacRae, J. I., Devine, M. J., Coles, M., Buckley, C. D., et al. (2024). Asparagine availability controls germinal center B cell homeostasis. 9. https://doi.org/10.1126/sciimmunol.adl4613
Piletic, K., Kayvanjoo, A. H., Richter, F. C., Borsa, M., Lechuga-Vieco, A. V., Popp, O., Grenet, S., Long Ko, J. K., Zec, K., Kyriazi, M., Koneva, L., Sansom, S., Mertins, P., Powrie, F., Alsaleh, G., & Simon, A. K. (2024). Autophagy acts as a brake on obesity-related fibrosis by controlling purine nucleoside signalling [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.17.613382
Piletic, K., Kayvanjoo, A. H., Richter, F. C., Borsa, M., Lechuga-Vieco, A. V., Popp, O., Grenet, S., Long Ko, J. K., Zec, K., Kyriazi, M., Koneva, L., Sansom, S., Mertins, P., Powrie, F., Alsaleh, G., & Simon, A. K. (2024). Autophagy acts as a brake on obesity-related fibrosis by controlling purine nucleoside signalling [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.17.613382
Borsa, M., Lechuga-Vieco, A. V., Kayvanjoo, A. H., Yazicioglu, Y., Compeer, E. B., Richter, F. C., Bui, H., Dustin, M. L., Katajisto, P., & Simon, A. K. (2024). Inheritance of old mitochondria controls early CD8 + T cell fate commitment and is regulated by autophagy [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.29.577412
Borsa, M., Lechuga-Vieco, A. V., Kayvanjoo, A. H., Yazicioglu, Y., Compeer, E. B., Richter, F. C., Bui, H., Dustin, M. L., Katajisto, P., & Simon, A. K. (2024). Inheritance of old mitochondria controls early CD8 + T cell fate commitment and is regulated by autophagy [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.29.577412
Borsa, M., Obba, S., Richter, F. C., Zhang, H., Riffelmacher, T., Carrelha, J., Alsaleh, G., Jacobsen, S. E. W., & Simon, A. K. (2024). Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism. 20. https://doi.org/10.1080/15548627.2023.2247310
Borsa, M., Obba, S., Richter, F. C., Zhang, H., Riffelmacher, T., Carrelha, J., Alsaleh, G., Jacobsen, S. E. W., & Simon, A. K. (2024). Autophagy preserves hematopoietic stem cells by restraining MTORC1-mediated cellular anabolism. 20. https://doi.org/10.1080/15548627.2023.2247310
Borsa, M., & Gerlach, C. (2023). Heterologous immunity: innate function of memory CD4+ T cells. 23. https://doi.org/10.1038/s41577-023-00923-4
Borsa, M., & Gerlach, C. (2023). Heterologous immunity: innate function of memory CD4+ T cells. 23. https://doi.org/10.1038/s41577-023-00923-4
Gräbnitz, F., Stark, D., Shlesinger, D., Petkidis, A., Borsa, M., Yermanos, A., Carr, A., Barandun, N., Wehling, A., Balaz, M., Schroeder, T., & Oxenius, A. (2023). Asymmetric cell division safeguards memory CD8 T cell development. 42. https://doi.org/10.1016/j.celrep.2023.112468
Gräbnitz, F., Stark, D., Shlesinger, D., Petkidis, A., Borsa, M., Yermanos, A., Carr, A., Barandun, N., Wehling, A., Balaz, M., Schroeder, T., & Oxenius, A. (2023). Asymmetric cell division safeguards memory CD8 T cell development. 42. https://doi.org/10.1016/j.celrep.2023.112468
Richter, F. C., Friedrich, M., Kampschulte, N., Piletic, K., Alsaleh, G., Zummach, R., Hecker, J., Pohin, M., Ilott, N., Guschina, I., Wideman, S. K., Johnson, E., Borsa, M., Hahn, P., Morriseau, C., Hammock, B. D., Schipper, H. S., Edwards, C. M., Zechner, R., et al. (2023). Adipocyte autophagy limits gut inflammation by controlling oxylipin and IL-10. 42. https://doi.org/10.15252/embj.2022112202
Richter, F. C., Friedrich, M., Kampschulte, N., Piletic, K., Alsaleh, G., Zummach, R., Hecker, J., Pohin, M., Ilott, N., Guschina, I., Wideman, S. K., Johnson, E., Borsa, M., Hahn, P., Morriseau, C., Hammock, B. D., Schipper, H. S., Edwards, C. M., Zechner, R., et al. (2023). Adipocyte autophagy limits gut inflammation by controlling oxylipin and IL-10. 42. https://doi.org/10.15252/embj.2022112202
Zhou, D., Borsa, M., Puleston, D. J., Zellner, S., Capera, J., Sanderson, S., Schifferer, M., Hester, S. S., Ge, X., Fischer, R., Jostins, L., Behrends, C., Alsaleh, G., & Simon, A. K. (2022). Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. 13. https://doi.org/10.1038/s41467-022-32718-x
Zhou, D., Borsa, M., Puleston, D. J., Zellner, S., Capera, J., Sanderson, S., Schifferer, M., Hester, S. S., Ge, X., Fischer, R., Jostins, L., Behrends, C., Alsaleh, G., & Simon, A. K. (2022). Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. 13. https://doi.org/10.1038/s41467-022-32718-x
Gräbnitz, F., Stark, D., Shlesinger, D., Petkidis, A., Borsa, M., Yermanos, A., Carr, A., Barandun, N., Wehling, A., Balaz, M., Schroeder, T., & Oxenius, A. (2022). Asymmetric cell division safeguards memory CD8 T cell development [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.08.515624
Gräbnitz, F., Stark, D., Shlesinger, D., Petkidis, A., Borsa, M., Yermanos, A., Carr, A., Barandun, N., Wehling, A., Balaz, M., Schroeder, T., & Oxenius, A. (2022). Asymmetric cell division safeguards memory CD8 T cell development [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.08.515624
Zhou, D., Borsa, M., Puleston, D. J., Zellner, S., Capera, J., Sanderson, S., Jostins, L., Behrends, C., Alsaleh, G., & Simon, A. K. (2021). Mapping of the autophagosomal degradome identifies IL-7Rα as key cargo in proliferating CD4+ T-cells [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.12.08.471825
Zhou, D., Borsa, M., Puleston, D. J., Zellner, S., Capera, J., Sanderson, S., Jostins, L., Behrends, C., Alsaleh, G., & Simon, A. K. (2021). Mapping of the autophagosomal degradome identifies IL-7Rα as key cargo in proliferating CD4+ T-cells [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.12.08.471825
Borsa, M., Barandun, N., Gräbnitz, F., Barnstorf, I., Baumann, N. S., Pallmer, K., Baumann, S., Stark, D., Balaz, M., Oetiker, N., Wagen, F., Wolfrum, C., Simon, A. K., Joller, N., Barral, Y., Spörri, R., & Oxenius, A. (2021). Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. 12. https://doi.org/10.1038/s41467-021-22954-y
Borsa, M., Barandun, N., Gräbnitz, F., Barnstorf, I., Baumann, N. S., Pallmer, K., Baumann, S., Stark, D., Balaz, M., Oetiker, N., Wagen, F., Wolfrum, C., Simon, A. K., Joller, N., Barral, Y., Spörri, R., & Oxenius, A. (2021). Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. 12. https://doi.org/10.1038/s41467-021-22954-y
Richter, F. C., Friedrich, M., Kampschulte, N., Pohin, M., Alsaleh, G., Guschina, I., Wideman, S. K., Johnson, E., Borsa, M., Piletic, K., Hahn, P., Schipper, H. S., Edwards, C. M., Zechner, R., Schebb, N. H., Powrie, F., & Simon, A. K. (2021). Adipocyte autophagy limits gut inflammation by controlling oxylipin levels [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.10.25.465200
Richter, F. C., Friedrich, M., Kampschulte, N., Pohin, M., Alsaleh, G., Guschina, I., Wideman, S. K., Johnson, E., Borsa, M., Piletic, K., Hahn, P., Schipper, H. S., Edwards, C. M., Zechner, R., Schebb, N. H., Powrie, F., & Simon, A. K. (2021). Adipocyte autophagy limits gut inflammation by controlling oxylipin levels [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.10.25.465200
Zhou, D., & Borsa, M. (2021). Sensing extracellular ATP boosts memory T cell commitment. 21. https://doi.org/10.1038/s41577-021-00586-z
Zhou, D., & Borsa, M. (2021). Sensing extracellular ATP boosts memory T cell commitment. 21. https://doi.org/10.1038/s41577-021-00586-z
Stoycheva, D., Sandu, I., Gräbnitz, F., Amorim, A., Borsa, M., Weber, S., Becher, B., & Oxenius, A. (2021). Non-neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. 51. https://doi.org/10.1002/eji.202049068
Stoycheva, D., Sandu, I., Gräbnitz, F., Amorim, A., Borsa, M., Weber, S., Becher, B., & Oxenius, A. (2021). Non-neutralizing antibodies protect against chronic LCMV infection by promoting infection of inflammatory monocytes in mice. 51. https://doi.org/10.1002/eji.202049068
Yermanos, A., Neumeier, D., Sandu, I., Borsa, M., Waindok, A. C., Merkler, D., Oxenius, A., & Reddy, S. T. (2021). Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice. 288. https://doi.org/10.1098/rspb.2020.2793
Yermanos, A., Neumeier, D., Sandu, I., Borsa, M., Waindok, A. C., Merkler, D., Oxenius, A., & Reddy, S. T. (2021). Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice. 288. https://doi.org/10.1098/rspb.2020.2793
Zhou, D., Borsa, M., & Simon, A. K. (2021). Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. 20. https://doi.org/10.1111/acel.13316
Zhou, D., Borsa, M., & Simon, A. K. (2021). Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. 20. https://doi.org/10.1111/acel.13316
Hanna, S. J., Codd, A. S., Gea-Mallorqui, E., Scourfield, D. O., Richter, F. C., Ladell, K., Borsa, M., Compeer, E. B., Moon, O. R., Galloway, S. A. E., Dimonte, S., Capitani, L., Shepherd, F. R., Wilson, J. D., Uhl, L. F. K., Ahern, D. J., Almuttaqi, H., Alonzi, D. S., Alrubayyi, A., et al. (2021). T cell phenotypes in COVID-19 - a living review [Journal-article]. Oxford Open Immunology, 2(1). https://doi.org/10.1093/oxfimm/iqaa007
Hanna, S. J., Codd, A. S., Gea-Mallorqui, E., Scourfield, D. O., Richter, F. C., Ladell, K., Borsa, M., Compeer, E. B., Moon, O. R., Galloway, S. A. E., Dimonte, S., Capitani, L., Shepherd, F. R., Wilson, J. D., Uhl, L. F. K., Ahern, D. J., Almuttaqi, H., Alonzi, D. S., Alrubayyi, A., et al. (2021). T cell phenotypes in COVID-19 - a living review [Journal-article]. Oxford Open Immunology, 2(1). https://doi.org/10.1093/oxfimm/iqaa007
Scourfield, D. O., Reed, S. G., Quastel, M., Alderson, J., Bart, V. M. T., Teijeira Crespo, A., Jones, R., Pring, E., Richter, F. C., Ahern, D. J., Almuttaqi, H., Alonzi, D. S., Alrubayyi, A., Alsaleh, G., Bart, V. M. T., Batchelor, V., Bayliss, R., Berthold, D. L., Bezbradica, J. S., et al. (2021). The role and uses of antibodies in COVID-19 infections: a living review [Journal-article]. Oxford Open Immunology, 2(1). https://doi.org/10.1093/oxfimm/iqab003
Scourfield, D. O., Reed, S. G., Quastel, M., Alderson, J., Bart, V. M. T., Teijeira Crespo, A., Jones, R., Pring, E., Richter, F. C., Ahern, D. J., Almuttaqi, H., Alonzi, D. S., Alrubayyi, A., Alsaleh, G., Bart, V. M. T., Batchelor, V., Bayliss, R., Berthold, D. L., Bezbradica, J. S., et al. (2021). The role and uses of antibodies in COVID-19 infections: a living review [Journal-article]. Oxford Open Immunology, 2(1). https://doi.org/10.1093/oxfimm/iqab003
Borsa, M., & Mazet, J. M. (2020). Attacking the defence: SARS-CoV-2 can infect immune cells. 20. https://doi.org/10.1038/s41577-020-00439-1
Borsa, M., & Mazet, J. M. (2020). Attacking the defence: SARS-CoV-2 can infect immune cells. 20. https://doi.org/10.1038/s41577-020-00439-1
Richter, F. C., & Borsa, M. (2020). Getting to the (germinal) centre of SARS-CoV-2. 20. https://doi.org/10.1038/s41577-020-00424-8
Richter, F. C., & Borsa, M. (2020). Getting to the (germinal) centre of SARS-CoV-2. 20. https://doi.org/10.1038/s41577-020-00424-8
Barnstorf, I., Welten, S. P. M., Borsa, M., Baumann, N. S., Pallmer, K., Joller, N., Spörri, R., & Oxenius, A. (2020). Chronic viral infections impinge on naive bystander CD8 T cells. 8. https://doi.org/10.1002/iid3.300
Barnstorf, I., Welten, S. P. M., Borsa, M., Baumann, N. S., Pallmer, K., Joller, N., Spörri, R., & Oxenius, A. (2020). Chronic viral infections impinge on naive bystander CD8 T cells. 8. https://doi.org/10.1002/iid3.300
Sandu, I., Cerletti, D., Oetiker, N., Borsa, M., Wagen, F., Spadafora, I., Welten, S. P. M., Stolz, U., Oxenius, A., & Claassen, M. (2020). Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV Infection. 32. https://doi.org/10.1016/j.celrep.2020.108078
Sandu, I., Cerletti, D., Oetiker, N., Borsa, M., Wagen, F., Spadafora, I., Welten, S. P. M., Stolz, U., Oxenius, A., & Claassen, M. (2020). Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV Infection. 32. https://doi.org/10.1016/j.celrep.2020.108078
Borsa, M., & Simon, A. K. (2020). Fine-tuning stemness. 369. https://doi.org/10.1126/science.abd1431
Borsa, M., & Simon, A. K. (2020). Fine-tuning stemness. 369. https://doi.org/10.1126/science.abd1431
Bösch, N. M., Borsa, M., Greczmiel, U., Morinaka, B. I., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining. 59. https://doi.org/10.1002/anie.201916321
Bösch, N. M., Borsa, M., Greczmiel, U., Morinaka, B. I., Gugger, M., Oxenius, A., Vagstad, A. L., & Piel, J. (2020). Landornamides: Antiviral Ornithine-Containing Ribosomal Peptides Discovered through Genome Mining. 59. https://doi.org/10.1002/anie.201916321
Yermanos, A., Sandu, I., Pedrioli, A., Borsa, M., Wagen, F., Oetiker, N., Welten, S. P. M., Pallmer, K., Reddy, S. T., & Oxenius, A. (2020). Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. 11. https://doi.org/10.3389/fimmu.2020.00986
Yermanos, A., Sandu, I., Pedrioli, A., Borsa, M., Wagen, F., Oetiker, N., Welten, S. P. M., Pallmer, K., Reddy, S. T., & Oxenius, A. (2020). Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. 11. https://doi.org/10.3389/fimmu.2020.00986
Yermanos, A., Neumeier, D., Sandu, I., Borsa, M., Waindok, A. C., Merkler, D., Oxenius, A., & Reddy, S. T. (2020). Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.05.04.077081
Yermanos, A., Neumeier, D., Sandu, I., Borsa, M., Waindok, A. C., Merkler, D., Oxenius, A., & Reddy, S. T. (2020). Single-cell immune repertoire and transcriptome sequencing reveals that clonally expanded and transcriptionally distinct lymphocytes populate the aged central nervous system in mice [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.05.04.077081
Greczmiel, U., Kräutler, N. J., Borsa, M., Pedrioli, A., Bartsch, I., Richter, K., Agnellini, P., Bedenikovic, G., & Oxenius, A. (2020). LCMV-specific CD4 T cell dependent polyclonal B-cell activation upon persistent viral infection is short lived and extrafollicular. 50. https://doi.org/10.1002/eji.201948286
Greczmiel, U., Kräutler, N. J., Borsa, M., Pedrioli, A., Bartsch, I., Richter, K., Agnellini, P., Bedenikovic, G., & Oxenius, A. (2020). LCMV-specific CD4 T cell dependent polyclonal B-cell activation upon persistent viral infection is short lived and extrafollicular. 50. https://doi.org/10.1002/eji.201948286
Baumann, N. S., Welten, S. P. M., Torti, N., Pallmerid, K., Borsa, M., Barnstorf, I., Oduro, J. D., Cicin-Sain, L., & Oxenius, A. (2019). Early primed KLRG1- CMV-specific t cells determine the size of the inflationary t cell pool. 15. https://doi.org/10.1371/journal.ppat.1007785
Baumann, N. S., Welten, S. P. M., Torti, N., Pallmerid, K., Borsa, M., Barnstorf, I., Oduro, J. D., Cicin-Sain, L., & Oxenius, A. (2019). Early primed KLRG1- CMV-specific t cells determine the size of the inflationary t cell pool. 15. https://doi.org/10.1371/journal.ppat.1007785
Borsa, M., Barnstorf, I., Baumann, N. S., Pallmer, K., Yermanos, A., Gräbnitz, F., Barandun, N., Hausmann, A., Sandu, I., Barral, Y., & Oxenius, A. (2019). Modulation of asymmetric cell division as a mechanism to boost CD8+ T cell memory. 4. https://doi.org/10.1126/sciimmunol.aav1730
Borsa, M., Barnstorf, I., Baumann, N. S., Pallmer, K., Yermanos, A., Gräbnitz, F., Barandun, N., Hausmann, A., Sandu, I., Barral, Y., & Oxenius, A. (2019). Modulation of asymmetric cell division as a mechanism to boost CD8+ T cell memory. 4. https://doi.org/10.1126/sciimmunol.aav1730
Barnstorf, I., Borsa, M., Baumann, N., Pallmer, K., Yermanos, A., Joller, N., Spörri, R., Welten, S. P. M., Kräutler, N. J., & Oxenius, A. (2019). Chronic virus infection compromises memory bystander T cell function in an IL-6/ STAT1-dependent manner. 216. https://doi.org/10.1084/jem.20181589
Barnstorf, I., Borsa, M., Baumann, N., Pallmer, K., Yermanos, A., Joller, N., Spörri, R., Welten, S. P. M., Kräutler, N. J., & Oxenius, A. (2019). Chronic virus infection compromises memory bystander T cell function in an IL-6/ STAT1-dependent manner. 216. https://doi.org/10.1084/jem.20181589
Pallmer, K., Barnstorf, I., Baumann, N. S., Borsa, M., Jonjic, S., & Oxenius, A. (2019). NK cells negatively regulate CD8 T cells via natural cytotoxicity receptor (NCR) 1 during LCMV infection. 15. https://doi.org/10.1371/journal.ppat.1007725
Pallmer, K., Barnstorf, I., Baumann, N. S., Borsa, M., Jonjic, S., & Oxenius, A. (2019). NK cells negatively regulate CD8 T cells via natural cytotoxicity receptor (NCR) 1 during LCMV infection. 15. https://doi.org/10.1371/journal.ppat.1007725
Baumann, N. S., Torti, N., Welten, S. P. M., Barnstorf, I., Borsa, M., Pallmer, K., Oduro, J. D., Cicin-Sain, L., Ikuta, K., Ludewig, B., & Oxenius, A. (2018). Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. 14. https://doi.org/10.1371/journal.ppat.1006993
Baumann, N. S., Torti, N., Welten, S. P. M., Barnstorf, I., Borsa, M., Pallmer, K., Oduro, J. D., Cicin-Sain, L., Ikuta, K., Ludewig, B., & Oxenius, A. (2018). Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. 14. https://doi.org/10.1371/journal.ppat.1006993
Borsa, M., Ferreira, P. L. C., Petry, A., Ferreira, L. G. E., Camargo, M. M., Bou-Habib, D. C., & Pinto, A. R. (2015). HIV infection and antiretroviral therapy lead to unfolded protein response activation Retroviruses. 12. https://doi.org/10.1186/s12985-015-0298-0
Borsa, M., Ferreira, P. L. C., Petry, A., Ferreira, L. G. E., Camargo, M. M., Bou-Habib, D. C., & Pinto, A. R. (2015). HIV infection and antiretroviral therapy lead to unfolded protein response activation Retroviruses. 12. https://doi.org/10.1186/s12985-015-0298-0
Borsa, M., Seibert, C. H., Rosa, R. D., Stoco, P. H., Cargnin-Ferreira, E., Pereira, A. M. L., Grisard, E. C., Zanetti, C. R., & Pinto, A. R. (2011). Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: Usefulness of monoclonal antibodies directed to the viral major capsid protein. 156. https://doi.org/10.1007/s00705-010-0810-1
Borsa, M., Seibert, C. H., Rosa, R. D., Stoco, P. H., Cargnin-Ferreira, E., Pereira, A. M. L., Grisard, E. C., Zanetti, C. R., & Pinto, A. R. (2011). Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: Usefulness of monoclonal antibodies directed to the viral major capsid protein. 156. https://doi.org/10.1007/s00705-010-0810-1
Seibert, C. H., Borsa, M., Rosa, R. D., Cargnin-Ferreira, E., Pereira, A. M. L., Grisard, E. C., Zanetti, C. R., & Pinto, A. R. (2010). Detection of major capsid protein of infectious myonecrosis virus in shrimps using monoclonal antibodies. 169. https://doi.org/10.1016/j.jviromet.2010.07.020
Seibert, C. H., Borsa, M., Rosa, R. D., Cargnin-Ferreira, E., Pereira, A. M. L., Grisard, E. C., Zanetti, C. R., & Pinto, A. R. (2010). Detection of major capsid protein of infectious myonecrosis virus in shrimps using monoclonal antibodies. 169. https://doi.org/10.1016/j.jviromet.2010.07.020