Publications
85 found
Show per page
Künstle, Noëmi, Gorlanova, Olga, Marten, Andrea, Müller, Loretta, Sharma, Pawan, Röösli, Martin, Sinues, Pablo, Pediatric Research. https://doi.org/10.1038/s41390-024-03273-6
, Schürmann, David, Rüttimann, Céline, Da Silva Sena, Carla Rebeca, Nahum, Uri, Usemann, Jakob, Steinberg, Ruth, Yammine, Sophie, Schulzke, Sven, Latzin, Philipp, Frey, Urs, & , on behalf of the BILD study group. (2024). Differences in autophagy marker levels at birth in preterm vs. term infants [Journal-article].
Künstle, Noëmi, Gorlanova, Olga, Marten, Andrea, Müller, Loretta, Sharma, Pawan, Röösli, Martin, Sinues, Pablo, Pediatric Research. https://doi.org/10.1038/s41390-024-03273-6
, Schürmann, David, Rüttimann, Céline, Da Silva Sena, Carla Rebeca, Nahum, Uri, Usemann, Jakob, Steinberg, Ruth, Yammine, Sophie, Schulzke, Sven, Latzin, Philipp, Frey, Urs, & , on behalf of the BILD study group. (2024). Differences in autophagy marker levels at birth in preterm vs. term infants [Journal-article].
Schwarz, Simon D., Xu, Jianming, Gunasekera, Kapila, Schürmann, David, Vågbø, Cathrine B., Ferrari, Elena, Slupphaug, Geir, Hottiger, Michael O., Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-44209-8
, & Steinacher, Roland. (2024). Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation [Journal-article].
Schwarz, Simon D., Xu, Jianming, Gunasekera, Kapila, Schürmann, David, Vågbø, Cathrine B., Ferrari, Elena, Slupphaug, Geir, Hottiger, Michael O., Nature Communications, 15(1). https://doi.org/10.1038/s41467-023-44209-8
, & Steinacher, Roland. (2024). Covalent PARylation of DNA base excision repair proteins regulates DNA demethylation [Journal-article].
Krawczyk, C., Bentele, M., Latypov, V., Woolcock, K., Noreen, F., Fritsch, O., & Schär, P. (2023, March 7). Uracil Repair - A Source of DNA Glycosylase Dependent Genome Instability [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.03.07.530818
Krawczyk, C., Bentele, M., Latypov, V., Woolcock, K., Noreen, F., Fritsch, O., & Schär, P. (2023, March 7). Uracil Repair - A Source of DNA Glycosylase Dependent Genome Instability [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.03.07.530818
Fischer, V., Kretschmer, M., Germain, P.-L., Kaur, J., Mompart-Barrenechea, S., Pelczar, P., Schürmann, D., Schär, P., & Gapp, K. (2023). Sperm chromatin accessibility’s involvement in the intergenerational effects of stress hormone receptor activation. Translational Psychiatry, 13. https://doi.org/10.1038/s41398-023-02684-z
Fischer, V., Kretschmer, M., Germain, P.-L., Kaur, J., Mompart-Barrenechea, S., Pelczar, P., Schürmann, D., Schär, P., & Gapp, K. (2023). Sperm chromatin accessibility’s involvement in the intergenerational effects of stress hormone receptor activation. Translational Psychiatry, 13. https://doi.org/10.1038/s41398-023-02684-z
Kim, Jihee, Nath, Kirti, Schmidlin, Kurt, Schaufelberger, Helen, Quattropani, Christiana, Vannini, Simone., Mossi, Sandro, Thumshirn, Miriam, Manz, Michael, Litichevskiy, Lev, Fan, Jiaxin, Dmitrieva-Posocco, Oxana, Li, Mingyao, Levy, Maayan, Journal of Gastroenterology, 58, 856–867. https://doi.org/10.1007/s00535-023-02004-8
, Zwahlen, Marcel, Thaiss, Christoph A., & Truninger, Kaspar. (2023). Hierarchical contribution of individual lifestyle factors and their interactions on adenomatous and serrated polyp risk.
Kim, Jihee, Nath, Kirti, Schmidlin, Kurt, Schaufelberger, Helen, Quattropani, Christiana, Vannini, Simone., Mossi, Sandro, Thumshirn, Miriam, Manz, Michael, Litichevskiy, Lev, Fan, Jiaxin, Dmitrieva-Posocco, Oxana, Li, Mingyao, Levy, Maayan, Journal of Gastroenterology, 58, 856–867. https://doi.org/10.1007/s00535-023-02004-8
, Zwahlen, Marcel, Thaiss, Christoph A., & Truninger, Kaspar. (2023). Hierarchical contribution of individual lifestyle factors and their interactions on adenomatous and serrated polyp risk.
Noreen F, Chaber-Ciopinska A, Regula J, Clinical Epigenetics, 12(1), 164. https://doi.org/10.1186/s13148-020-00956-9
, & Truninger K. (2020). Longitudinal analysis of healthy colon establishes aspirin as a suppressor of cancer-related epigenetic aging.
Noreen F, Chaber-Ciopinska A, Regula J, Clinical Epigenetics, 12(1), 164. https://doi.org/10.1186/s13148-020-00956-9
, & Truninger K. (2020). Longitudinal analysis of healthy colon establishes aspirin as a suppressor of cancer-related epigenetic aging.
Schwarz, Simon D., Grundbacher, Eliane, Hrovat, Alexandra M., Xu, Jianming, Kuśnierczyk, Anna, Vågbø, Cathrine B., F1000Research (Vol. 9). https://doi.org/10.12688/f1000research.25637.1
, & Schuermann, David. (2020). Inducible TDG knockout models to study epigenetic regulation [Journal-article]. In
Schwarz, Simon D., Grundbacher, Eliane, Hrovat, Alexandra M., Xu, Jianming, Kuśnierczyk, Anna, Vågbø, Cathrine B., F1000Research (Vol. 9). https://doi.org/10.12688/f1000research.25637.1
, & Schuermann, David. (2020). Inducible TDG knockout models to study epigenetic regulation [Journal-article]. In
Schuermann, David, Ziemann, Christina, Barekati, Zeinab, Capstick, Myles, Oertel, Antje, Focke, Frauke, Murbach, Manuel, Kuster, Niels, Dasenbrock, Clemens, & Schär, Primo. (2020). Assessment of genotoxicity in human cells exposed to modulated electromagnetic fields of wireless communication devices. Genes, 11(4). https://doi.org/10.3390/genes11040347
Schuermann, David, Ziemann, Christina, Barekati, Zeinab, Capstick, Myles, Oertel, Antje, Focke, Frauke, Murbach, Manuel, Kuster, Niels, Dasenbrock, Clemens, & Schär, Primo. (2020). Assessment of genotoxicity in human cells exposed to modulated electromagnetic fields of wireless communication devices. Genes, 11(4). https://doi.org/10.3390/genes11040347
Schwarz Simon D., Grundbacher Elieane, Hrovat Alexandra M., Xu Jianming, Kuśnierczyk Anna, Vågbø Cathrine B, F1000Research, 9, 1112. https://doi.org/10.12688/f1000research.25637.2
, & Schuermann David. (2020). Inducible TDG knockout models to study epigenetic regulation.
Schwarz Simon D., Grundbacher Elieane, Hrovat Alexandra M., Xu Jianming, Kuśnierczyk Anna, Vågbø Cathrine B, F1000Research, 9, 1112. https://doi.org/10.12688/f1000research.25637.2
, & Schuermann David. (2020). Inducible TDG knockout models to study epigenetic regulation.
Noreen F, Küng T, Tornillo L, Parker H, Silva M, Weis S, Marra G, Rad R, Truninger K, & Clinical Epigenetics, 11(1), 196. https://doi.org/10.1186/s13148-019-0791-1
. (2019). DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways.
Noreen F, Küng T, Tornillo L, Parker H, Silva M, Weis S, Marra G, Rad R, Truninger K, & Clinical Epigenetics, 11(1), 196. https://doi.org/10.1186/s13148-019-0791-1
. (2019). DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways.
Bachmann C, Noreen F, Voermans NC, Human Mutation, 40(7), 962–974. https://doi.org/10.1002/humu.23745
, Vissing J, Fock JM, Bulk S, Kusters B, Moore SA, Beggs AH, Mathews KD, Meyer M, Genetti CA, Meola G, Cardani R, Mathews E, Jungbluth H, Muntoni F, Zorzato F, & Treves S. (2019). Aberrant regulation of epigenetic modifiers contributes to the pathogenesis in patients with selenoprotein N-related myopathies.
Bachmann C, Noreen F, Voermans NC, Human Mutation, 40(7), 962–974. https://doi.org/10.1002/humu.23745
, Vissing J, Fock JM, Bulk S, Kusters B, Moore SA, Beggs AH, Mathews KD, Meyer M, Genetti CA, Meola G, Cardani R, Mathews E, Jungbluth H, Muntoni F, Zorzato F, & Treves S. (2019). Aberrant regulation of epigenetic modifiers contributes to the pathogenesis in patients with selenoprotein N-related myopathies.
Tièche CC, Gao Y, Bührer ED, Hobi N, Berezowska SA, Wyler K, Froment L, Weis S, Peng RW, Bruggmann R, Neoplasia (United States), 21(2), 185–196. https://doi.org/10.1016/j.neo.2018.09.008
, Amrein MA, Hall SRR, Dorn P, Kocher G, Riether C, Ochsenbein A, Schmid RA, & Marti TM. (2019). Tumor Initiation Capacity and Therapy Resistance Are Differential Features of EMT-Related Subpopulations in the NSCLC Cell Line A549.
Tièche CC, Gao Y, Bührer ED, Hobi N, Berezowska SA, Wyler K, Froment L, Weis S, Peng RW, Bruggmann R, Neoplasia (United States), 21(2), 185–196. https://doi.org/10.1016/j.neo.2018.09.008
, Amrein MA, Hall SRR, Dorn P, Kocher G, Riether C, Ochsenbein A, Schmid RA, & Marti TM. (2019). Tumor Initiation Capacity and Therapy Resistance Are Differential Features of EMT-Related Subpopulations in the NSCLC Cell Line A549.
Steinacher, Roland, Barekati, Zeinab, Botev, Petar, Kuśnierczyk, Anna, Slupphaug, Geir, & EMBO Journal, 38(1). https://doi.org/10.15252/embj.201899242
. (2019). SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation.
Steinacher, Roland, Barekati, Zeinab, Botev, Petar, Kuśnierczyk, Anna, Slupphaug, Geir, & EMBO Journal, 38(1). https://doi.org/10.15252/embj.201899242
. (2019). SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation.
Manser, Melissa, Sater, Mohamad R. Abdul, Schmid, Christoph D., Noreen, Faiza, Murbach, Manuel, Kuster, Niels, Schuermann, David, & Scientific Reports, 7, 43345. https://doi.org/10.1038/srep43345
. (2017). ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis.
Manser, Melissa, Sater, Mohamad R. Abdul, Schmid, Christoph D., Noreen, Faiza, Murbach, Manuel, Kuster, Niels, Schuermann, David, & Scientific Reports, 7, 43345. https://doi.org/10.1038/srep43345
. (2017). ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis.
Weber, Alain R, The Base Excision Repair Pathway (pp. 391–419). World Scientific. https://doi.org/10.1142/9789814719735_0011
, & Schuermann, David. (2017). Base Excision Repair and Epigenetic Regulation. In David M Wilson III (ed.),
Weber, Alain R, The Base Excision Repair Pathway (pp. 391–419). World Scientific. https://doi.org/10.1142/9789814719735_0011
, & Schuermann, David. (2017). Base Excision Repair and Epigenetic Regulation. In David M Wilson III (ed.),
Weber A.R., Base excision repair and epigenetic regulation (pp. 391–419). Taylor and Francis Inc.
, & Schuermann D. (2016).
Weber A.R., Base excision repair and epigenetic regulation (pp. 391–419). Taylor and Francis Inc.
, & Schuermann D. (2016).
Liu, Y., Duong, W., Krawczyk, C., Bretschneider, N., Borbely, G., Varshney, M., Zinser, C., Epigenetics Chromatin, 9, 7. https://doi.org/10.1186/s13072-016-0055-7
, & Ruegg, J. (2016). Oestrogen receptor beta regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase.
Liu, Y., Duong, W., Krawczyk, C., Bretschneider, N., Borbely, G., Varshney, M., Zinser, C., Epigenetics Chromatin, 9, 7. https://doi.org/10.1186/s13072-016-0055-7
, & Ruegg, J. (2016). Oestrogen receptor beta regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase.
Liu Y, Duong W, Krawczyk C, Bretschneider N, Borbély G, Varshney M, Zinser C, Epigenetics & chromatin, 9, 7. https://doi.org/10.1186/s13072-016-0055-7
, & Rüegg J. (2016). Oestrogen receptor β regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase.
Liu Y, Duong W, Krawczyk C, Bretschneider N, Borbély G, Varshney M, Zinser C, Epigenetics & chromatin, 9, 7. https://doi.org/10.1186/s13072-016-0055-7
, & Rüegg J. (2016). Oestrogen receptor β regulates epigenetic patterns at specific genomic loci through interaction with thymine DNA glycosylase.
Schuermann, David., Weber, Alain R., & DNA Repair, 44, 92–102. https://doi.org/10.1016/j.dnarep.2016.05.013
. (2016). Active DNA demethylation by DNA repair: Facts and uncertainties.
Schuermann, David., Weber, Alain R., & DNA Repair, 44, 92–102. https://doi.org/10.1016/j.dnarep.2016.05.013
. (2016). Active DNA demethylation by DNA repair: Facts and uncertainties.
Schuermann, D., Scheidegger, S. P., Weber, A. R., Bjoras, M., Leumann, C. J., & Nucleic Acids Res, 44(5), 2187–2198. https://doi.org/10.1093/nar/gkv1520
(2016). 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair.
Schuermann, D., Scheidegger, S. P., Weber, A. R., Bjoras, M., Leumann, C. J., & Nucleic Acids Res, 44(5), 2187–2198. https://doi.org/10.1093/nar/gkv1520
(2016). 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair.
Schüz, J., Dasenbrock, C., Ravazzani, P., Röösli, M., Bioelectromagnetics, 37(3), 183–189. https://doi.org/10.1002/bem.21963
, Bounds, P. L., Erdmann, F., Borkhardt, A., Cobaleda, C., Fedrowitz, M., Hamnerius, Y., Sanchez-Garcia, I., Seger, R., Schmiegelow, K., Ziegelberger, G., Capstick, M., Manser, M., Müller, M., SChmid, C. D., et al. (2016). Extremely low-frequency magnetic fields and risk of childhood leukemia : a risk assessment by the ARIMMORA consortium.
Schüz, J., Dasenbrock, C., Ravazzani, P., Röösli, M., Bioelectromagnetics, 37(3), 183–189. https://doi.org/10.1002/bem.21963
, Bounds, P. L., Erdmann, F., Borkhardt, A., Cobaleda, C., Fedrowitz, M., Hamnerius, Y., Sanchez-Garcia, I., Seger, R., Schmiegelow, K., Ziegelberger, G., Capstick, M., Manser, M., Müller, M., SChmid, C. D., et al. (2016). Extremely low-frequency magnetic fields and risk of childhood leukemia : a risk assessment by the ARIMMORA consortium.
Weber, A. R., Krawczyk, C., Robertson, A. B., Kusnierczyk, A., Vagbo, C. B., Schuermann, D., Klungland, A., & Nat Commun, 7, 10806. https://doi.org/10.1038/ncomms10806
(2016). Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism.
Weber, A. R., Krawczyk, C., Robertson, A. B., Kusnierczyk, A., Vagbo, C. B., Schuermann, D., Klungland, A., & Nat Commun, 7, 10806. https://doi.org/10.1038/ncomms10806
(2016). Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism.
Li, Zheng, Gu, Tian-Peng, Weber, Alain R., Shen, Jia-Zhen, Li, Bin-Zhong, Xie, Zhi-Guo, Yin, Ruichuan, Guo, Fan, Liu, Xiaomeng, Tang, Fuchou, Wang, Hailin, Nucleic Acids Research, 43(8), 3986–3997. https://doi.org/10.1093/nar/gkv283
, & Xu, Guo-Liang. (2015). Gadd45a promotes DNA demethylation through TDG.
Li, Zheng, Gu, Tian-Peng, Weber, Alain R., Shen, Jia-Zhen, Li, Bin-Zhong, Xie, Zhi-Guo, Yin, Ruichuan, Guo, Fan, Liu, Xiaomeng, Tang, Fuchou, Wang, Hailin, Nucleic Acids Research, 43(8), 3986–3997. https://doi.org/10.1093/nar/gkv283
, & Xu, Guo-Liang. (2015). Gadd45a promotes DNA demethylation through TDG.
Krawczyk, C., Dion, V., Nucleic Acids Research, 42(8), 4985–4995. https://doi.org/10.1093/nar/gku148
, & Fritsch, O. (2014). Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability.
Krawczyk, C., Dion, V., Nucleic Acids Research, 42(8), 4985–4995. https://doi.org/10.1093/nar/gku148
, & Fritsch, O. (2014). Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability.
Noreen, Faiza, Röösli, Martin, Gaj, Pawel, Pietrzak, Jakub, Weis, Stefan, Urfer, Patric, Regula, Jaroslaw, Journal of the National Cancer Institute, 106(7), dju161. https://doi.org/10.1093/jnci/dju161
, & Truninger, Kaspar. (2014). Modulation of age- and cancer-associated DNA methylation change in the healthy colon by aspirin and lifestyle.
Noreen, Faiza, Röösli, Martin, Gaj, Pawel, Pietrzak, Jakub, Weis, Stefan, Urfer, Patric, Regula, Jaroslaw, Journal of the National Cancer Institute, 106(7), dju161. https://doi.org/10.1093/jnci/dju161
, & Truninger, Kaspar. (2014). Modulation of age- and cancer-associated DNA methylation change in the healthy colon by aspirin and lifestyle.
Pfaffeneder, Toni, Spada, Fabio, Wagner, Mirko, Brandmayr, Caterina, Laube, Silvia K, Eisen, David, Truss, Matthias, Steinbacher, Jessica, Hackner, Benjamin, Kotljarova, Olga, Schuermann, David, Michalakis, Stylianos, Kosmatchev, Olesea, Schiesser, Stefan, Steigenberger, Barbara, Raddaoui, Nada, Kashiwazaki, Gengo, Müller, Udo, Spruijt, Cornelia G, et al. (2014). Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 10(7), 574–581. https://doi.org/10.1038/nchembio.1532
Pfaffeneder, Toni, Spada, Fabio, Wagner, Mirko, Brandmayr, Caterina, Laube, Silvia K, Eisen, David, Truss, Matthias, Steinbacher, Jessica, Hackner, Benjamin, Kotljarova, Olga, Schuermann, David, Michalakis, Stylianos, Kosmatchev, Olesea, Schiesser, Stefan, Steigenberger, Barbara, Raddaoui, Nada, Kashiwazaki, Gengo, Müller, Udo, Spruijt, Cornelia G, et al. (2014). Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nature Chemical Biology, 10(7), 574–581. https://doi.org/10.1038/nchembio.1532
Weber, A. R., Schuermann, D., & PLoS ONE, 9(7), e102157. https://doi.org/10.1371/journal.pone.0102157
(2014). Versatile recombinant SUMOylation system for the production of SUMO-modified protein.
Weber, A. R., Schuermann, D., & PLoS ONE, 9(7), e102157. https://doi.org/10.1371/journal.pone.0102157
(2014). Versatile recombinant SUMOylation system for the production of SUMO-modified protein.
Capstick, Myles, Bioelectromagnetics, 34(3), 231–239. https://doi.org/10.1002/bem.21751
, Schuermann, David, Romann, Albert, & Kuster, Niels. (2013). ELF exposure system for live cell imaging.
Capstick, Myles, Bioelectromagnetics, 34(3), 231–239. https://doi.org/10.1002/bem.21751
, Schuermann, David, Romann, Albert, & Kuster, Niels. (2013). ELF exposure system for live cell imaging.
Talhaoui, Ibtissam, Couve, Sophie, Ishchenko, Alexander A., Kunz, Christophe, Nucleic Acids Research, 41(2), 912–923. https://doi.org/10.1093/nar/gks1149
, & Saparbaev, Murat. (2013). 7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases.
Talhaoui, Ibtissam, Couve, Sophie, Ishchenko, Alexander A., Kunz, Christophe, Nucleic Acids Research, 41(2), 912–923. https://doi.org/10.1093/nar/gks1149
, & Saparbaev, Murat. (2013). 7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases.
Jacobs, Angelika L, & Chromosoma, 121(1), 1–20. https://doi.org/10.1007/s00412-011-0347-4
. (2012). DNA glycosylases: in DNA repair and beyond.
Jacobs, Angelika L, & Chromosoma, 121(1), 1–20. https://doi.org/10.1007/s00412-011-0347-4
. (2012). DNA glycosylases: in DNA repair and beyond.
Wilson, Gareth A, Dhami, Pawandeep, Feber, Andrew, Cortázar, Daniel, Suzuki, Yuka, Schulz, Reiner, GigaScience, 1(1), 3. https://doi.org/10.1186/2047-217x-1-3
, & Beck, Stephan. (2012). Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers.
Wilson, Gareth A, Dhami, Pawandeep, Feber, Andrew, Cortázar, Daniel, Suzuki, Yuka, Schulz, Reiner, GigaScience, 1(1), 3. https://doi.org/10.1186/2047-217x-1-3
, & Beck, Stephan. (2012). Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers.
Cortázar, Daniel, Kunz, Christophe, Selfridge, Jim, Lettieri, Teresa, Saito, Yusuke, MacDougall, Eilidh, Wirz, Annika, Schuermann, David, Jacobs, Angelika L, Siegrist, Fredy, Steinacher, Roland, Jiricny, Josef, Bird, Adrian, & Nature, 470(7334), 419–423. https://doi.org/10.1038/nature09672
. (2011). Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
Cortázar, Daniel, Kunz, Christophe, Selfridge, Jim, Lettieri, Teresa, Saito, Yusuke, MacDougall, Eilidh, Wirz, Annika, Schuermann, David, Jacobs, Angelika L, Siegrist, Fredy, Steinacher, Roland, Jiricny, Josef, Bird, Adrian, & Nature, 470(7334), 419–423. https://doi.org/10.1038/nature09672
. (2011). Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability.
Progress in Drug Research, 67, 51–68. https://doi.org/10.1007/978-3-7643-8989-5_3
, & Fritsch, Olivier. (2011). DNA repair and the control of DNA methylation.
Progress in Drug Research, 67, 51–68. https://doi.org/10.1007/978-3-7643-8989-5_3
, & Fritsch, Olivier. (2011). DNA repair and the control of DNA methylation.
Schär, P. (2010). Reply to the Letter to the Editor. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 692(1-2), 63–64. https://doi.org/10.1016/j.mrfmmm.2010.08.002
Schär, P. (2010). Reply to the Letter to the Editor. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 692(1-2), 63–64. https://doi.org/10.1016/j.mrfmmm.2010.08.002
Focke, Frauke, Schuermann, David, Kuster, Niels, & Mutation Research, 683(1-2), 74–83. https://doi.org/10.1016/j.mrfmmm.2009.10.012
. (2010). DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure.
Focke, Frauke, Schuermann, David, Kuster, Niels, & Mutation Research, 683(1-2), 74–83. https://doi.org/10.1016/j.mrfmmm.2009.10.012
. (2010). DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure.
Fritsch, Olivier, Burkhalter, Martin D, Kais, Sanja, Sogo, José M, & DNA Repair, 9(8), 879–888. https://doi.org/10.1016/j.dnarep.2010.05.003
. (2010). DNA ligase 4 stabilizes the ribosomal DNA array upon fork collapse at the replication fork barrier.
Fritsch, Olivier, Burkhalter, Martin D, Kais, Sanja, Sogo, José M, & DNA Repair, 9(8), 879–888. https://doi.org/10.1016/j.dnarep.2010.05.003
. (2010). DNA ligase 4 stabilizes the ribosomal DNA array upon fork collapse at the replication fork barrier.
Kunz, Christophe, Focke, Frauke, Saito, Yusuke, Schuermann, David, Lettieri, Teresa, Selfridge, Jim, & PLoS Biology, 7(4). https://doi.org/10.1371/journal.pbio.1000091
. (2009). Base excision by thymine DNA glycosylase mediates DNA-directed cytotoxicity of 5-fluorouracil.
Kunz, Christophe, Focke, Frauke, Saito, Yusuke, Schuermann, David, Lettieri, Teresa, Selfridge, Jim, & PLoS Biology, 7(4). https://doi.org/10.1371/journal.pbio.1000091
. (2009). Base excision by thymine DNA glycosylase mediates DNA-directed cytotoxicity of 5-fluorouracil.
Kunz, C, Saito, Y, & DNA Repair in mammalian cells: mismatched repair : variations on a theme]. Cellular and Molecular Life Sciences, 66, Article 6. https://doi.org/10.1007/s00018-009-8739-9
. (2009). DNA Repair in mammalian cells: mismatched repair : variations on a theme [Review of
Kunz, C, Saito, Y, & DNA Repair in mammalian cells: mismatched repair : variations on a theme]. Cellular and Molecular Life Sciences, 66, Article 6. https://doi.org/10.1007/s00018-009-8739-9
. (2009). DNA Repair in mammalian cells: mismatched repair : variations on a theme [Review of
Menigatti, M, Truninger, K, Gebbers, J-O, Marbet, U, Marra, G, & Oncogene, 28(6), 899–909. https://doi.org/10.1038/onc.2008.444
. (2009). Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters.
Menigatti, M, Truninger, K, Gebbers, J-O, Marbet, U, Marra, G, & Oncogene, 28(6), 899–909. https://doi.org/10.1038/onc.2008.444
. (2009). Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters.
Messner, Simon, Schuermann, David, Altmeyer, Matthias, Kassner, Ingrid, Schmidt, Darja, The FASEB Journal, 23(11), 3978–3989. https://doi.org/10.1096/fj.09-137695
, Müller, Stefan, & Hottiger, Michael O. (2009). Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.
Messner, Simon, Schuermann, David, Altmeyer, Matthias, Kassner, Ingrid, Schmidt, Darja, The FASEB Journal, 23(11), 3978–3989. https://doi.org/10.1096/fj.09-137695
, Müller, Stefan, & Hottiger, Michael O. (2009). Sumoylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function.
Menigatti M, Pedroni M, Verrone AM, Borghi F, Scarselli A, Benatti P, Losi L, Di Gregorio C, Oncology reports, 17(6), 1421–1427.
, Marra G, Ponz de Leon M, & Roncucci L. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
Menigatti M, Pedroni M, Verrone AM, Borghi F, Scarselli A, Benatti P, Losi L, Di Gregorio C, Oncology reports, 17(6), 1421–1427.
, Marra G, Ponz de Leon M, & Roncucci L. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
Cortázar, Daniel, Kunz, Christophe, Saito, Yusuke, Steinacher, Roland, & DNA Repair, 6(4), 489–504. https://doi.org/10.1016/j.dnarep.2006.10.013
. (2007). The enigmatic thymine DNA glycosylase.
Cortázar, Daniel, Kunz, Christophe, Saito, Yusuke, Steinacher, Roland, & DNA Repair, 6(4), 489–504. https://doi.org/10.1016/j.dnarep.2006.10.013
. (2007). The enigmatic thymine DNA glycosylase.
Hardeland, Ulrike, Kunz, Christophe, Focke, Frauke, Szadkowski, Marta, & Nucleic Acids Research, 35(11), 3859–3867. https://doi.org/10.1093/nar/gkm337
. (2007). Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2.
Hardeland, Ulrike, Kunz, Christophe, Focke, Frauke, Szadkowski, Marta, & Nucleic Acids Research, 35(11), 3859–3867. https://doi.org/10.1093/nar/gkm337
. (2007). Cell cycle regulation as a mechanism for functional separation of the apparently redundant uracil DNA glycosylases TDG and UNG2.
Herrmann, Gernot, Kais, Sanja, Hoffbauer, Jan, Shah-Hosseini, Kijwasch, Brüggenolte, Nicole, Schober, Heiko, Fäsi, Margaret, & Nucleic Acids Research, 35(7), 2321–2332. https://doi.org/10.1093/nar/gkm127
. (2007). Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism.
Herrmann, Gernot, Kais, Sanja, Hoffbauer, Jan, Shah-Hosseini, Kijwasch, Brüggenolte, Nicole, Schober, Heiko, Fäsi, Margaret, & Nucleic Acids Research, 35(7), 2321–2332. https://doi.org/10.1093/nar/gkm127
. (2007). Conserved interactions of the splicing factor Ntr1/Spp382 with proteins involved in DNA double-strand break repair and telomere metabolism.
Menigatti, Mirco, Pedroni, Monica, Verrone, Anna Maria, Borghi, Francesca, Scarselli, Alessandra, Benatti, Piero, Losi, Lorena, Di Gregorio, Carmela, Oncology Reports, 17(6), 1421–1427. https://doi.org/10.3892/or.17.6.1421
, Marra, Giancarlo, Ponz de Leon, Maurizio, & Roncucci, Luca. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
Menigatti, Mirco, Pedroni, Monica, Verrone, Anna Maria, Borghi, Francesca, Scarselli, Alessandra, Benatti, Piero, Losi, Lorena, Di Gregorio, Carmela, Oncology Reports, 17(6), 1421–1427. https://doi.org/10.3892/or.17.6.1421
, Marra, Giancarlo, Ponz de Leon, Maurizio, & Roncucci, Luca. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
Menigatti M., Pedroni M., Verrone A.M., Borghi F., Scarselli A., Benatti P., Losi L., Di Gregorio C., Oncology Reports, 17(6), 1421–1427. https://doi.org/10.3892/or.17.6.1421
, Marra G., Ponz De Leon M., & Roncucci L. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
Menigatti M., Pedroni M., Verrone A.M., Borghi F., Scarselli A., Benatti P., Losi L., Di Gregorio C., Oncology Reports, 17(6), 1421–1427. https://doi.org/10.3892/or.17.6.1421
, Marra G., Ponz De Leon M., & Roncucci L. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis.
El-Andaloussi, Nazim, Valovka, Taras, Toueille, Magali, Steinacher, Roland, Focke, Frauke, Gehrig, Peter, Covic, Marcela, Hassa, Paul O, Molecular Cell, 22(1), 51–62. https://doi.org/10.1016/j.molcel.2006.02.013
, Hübscher, Ulrich, & Hottiger, Michael O. (2006). Arginine methylation regulates DNA polymerase beta.
El-Andaloussi, Nazim, Valovka, Taras, Toueille, Magali, Steinacher, Roland, Focke, Frauke, Gehrig, Peter, Covic, Marcela, Hassa, Paul O, Molecular Cell, 22(1), 51–62. https://doi.org/10.1016/j.molcel.2006.02.013
, Hübscher, Ulrich, & Hottiger, Michael O. (2006). Arginine methylation regulates DNA polymerase beta.
Borys-Brzywczy E, Arczewska KD, Saparbaev M, Hardeland U, Acta biochimica Polonica, 52(1), 149–165. https://doi.org/055201149
, & Kuśmierek JT. (2005). Mismatch dependent uracil/thymine-DNA glycosylases excise exocyclic hydroxyethano and hydroxypropano cytosine adducts.
Borys-Brzywczy E, Arczewska KD, Saparbaev M, Hardeland U, Acta biochimica Polonica, 52(1), 149–165. https://doi.org/055201149
, & Kuśmierek JT. (2005). Mismatch dependent uracil/thymine-DNA glycosylases excise exocyclic hydroxyethano and hydroxypropano cytosine adducts.
Cejka, Petr, Mojas, Nina, Gillet, Ludovic, Current Biology, 15(15), 1395–1400. https://doi.org/10.1016/j.cub.2005.07.032
, & Jiricny, Josef. (2005). Homologous recombination rescues mismatch-repair-dependent cytotoxicity of S(N)1-type methylating agents in S. cerevisiae.
Cejka, Petr, Mojas, Nina, Gillet, Ludovic, Current Biology, 15(15), 1395–1400. https://doi.org/10.1016/j.cub.2005.07.032
, & Jiricny, Josef. (2005). Homologous recombination rescues mismatch-repair-dependent cytotoxicity of S(N)1-type methylating agents in S. cerevisiae.
Lucey, Marie J., Chen, Dongsheng, Lopez-Garcia, Jorge, Hart, Stephen M., Phoenix, Fladia, Al-Jehani, Rajai, Alao, John P., White, Roger, Kindle, Karin B., Losson, Régine, Chambon, Pierre, Parker, Malcolm G., Nucleic Acids Research, 33(19), 6393–6404. https://doi.org/10.1093/nar/gki940
, Heery, David M., Buluwela, Lakjaya, & Ali, Simak. (2005). T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif.
Lucey, Marie J., Chen, Dongsheng, Lopez-Garcia, Jorge, Hart, Stephen M., Phoenix, Fladia, Al-Jehani, Rajai, Alao, John P., White, Roger, Kindle, Karin B., Losson, Régine, Chambon, Pierre, Parker, Malcolm G., Nucleic Acids Research, 33(19), 6393–6404. https://doi.org/10.1093/nar/gki940
, Heery, David M., Buluwela, Lakjaya, & Ali, Simak. (2005). T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif.
Steinacher, Roland, & Current Biology, 15(7), 616–623. https://doi.org/10.1016/j.cub.2005.02.054
. (2005). Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
Steinacher, Roland, & Current Biology, 15(7), 616–623. https://doi.org/10.1016/j.cub.2005.02.054
. (2005). Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation.
Truninger, Kaspar, Menigatti, Mirco, Luz, Judith, Russell, Anna, Haider, Ritva, Gebbers, Jan-Olaf, Bannwart, Fridolin, Yurtsever, Hueseyin, Neuweiler, Joerg, Riehle, Hans-Martin, Cattaruzza, Maria Sofia, Heinimann, Karl, Gastroenterology, 128(5), 1160–1171. https://doi.org/10.1053/j.gastro.2005.01.056
, Jiricny, Josef, & Marra, Giancarlo. (2005). Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer.
Truninger, Kaspar, Menigatti, Mirco, Luz, Judith, Russell, Anna, Haider, Ritva, Gebbers, Jan-Olaf, Bannwart, Fridolin, Yurtsever, Hueseyin, Neuweiler, Joerg, Riehle, Hans-Martin, Cattaruzza, Maria Sofia, Heinimann, Karl, Gastroenterology, 128(5), 1160–1171. https://doi.org/10.1053/j.gastro.2005.01.056
, Jiricny, Josef, & Marra, Giancarlo. (2005). Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer.
Fleck, Oliver, & Current Biology, 14(10), R389–91. https://doi.org/10.1016/j.cub.2004.05.014
. (2004). Translesion DNA synthesis : little fingers teach tolerance.
Fleck, Oliver, & Current Biology, 14(10), R389–91. https://doi.org/10.1016/j.cub.2004.05.014
. (2004). Translesion DNA synthesis : little fingers teach tolerance.
Kunz, Christophe, & Current Biology, 14(22), R962–4. https://doi.org/10.1016/j.cub.2004.10.043
. (2004). Meiotic recombination: sealing the partnership at the junction.
Kunz, Christophe, & Current Biology, 14(22), R962–4. https://doi.org/10.1016/j.cub.2004.10.043
. (2004). Meiotic recombination: sealing the partnership at the junction.
Nucleic Acids Research, 32(13), 3921–3929. https://doi.org/10.1093/nar/gkh716
, Fäsi, Margaret, & Jessberger, Rolf. (2004). SMC1 coordinates DNA double-strand break repair pathways.
Nucleic Acids Research, 32(13), 3921–3929. https://doi.org/10.1093/nar/gkh716
, Fäsi, Margaret, & Jessberger, Rolf. (2004). SMC1 coordinates DNA double-strand break repair pathways.
Springer, Burkhard, Sander, Peter, Sedlacek, Ludwig, Hardt, Wolf-Dietrich, Mizrahi, Valerie, Molecular Microbiology, 53(6), 1601–1609. https://doi.org/10.1111/j.1365-2958.2004.04231.x
, & Böttger, Erik C. (2004). Lack of mismatch correction facilitates genome evolution in mycobacteria.
Springer, Burkhard, Sander, Peter, Sedlacek, Ludwig, Hardt, Wolf-Dietrich, Mizrahi, Valerie, Molecular Microbiology, 53(6), 1601–1609. https://doi.org/10.1111/j.1365-2958.2004.04231.x
, & Böttger, Erik C. (2004). Lack of mismatch correction facilitates genome evolution in mycobacteria.
Chen, Dongsheng, Lucey, Marie J, Phoenix, Fladia, Lopez-Garcia, Jorge, Hart, Stephen M, Losson, Régine, Buluwela, Lakjaya, Coombes, R Charles, Chambon, Pierre, Journal of Biological Chemistry, 278(40), 38586–38592. https://doi.org/10.1074/jbc.m304286200
, & Ali, Simak. (2003). T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha.
Chen, Dongsheng, Lucey, Marie J, Phoenix, Fladia, Lopez-Garcia, Jorge, Hart, Stephen M, Losson, Régine, Buluwela, Lakjaya, Coombes, R Charles, Chambon, Pierre, Journal of Biological Chemistry, 278(40), 38586–38592. https://doi.org/10.1074/jbc.m304286200
, & Ali, Simak. (2003). T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha.
Hardeland, Ulrike, Bentele, Marc, Jiricny, Josef, & Nucleic Acids Research, 31(9), 2261–2271. https://doi.org/10.1093/nar/gkg344
. (2003). The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.
Hardeland, Ulrike, Bentele, Marc, Jiricny, Josef, & Nucleic Acids Research, 31(9), 2261–2271. https://doi.org/10.1093/nar/gkg344
. (2003). The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.
Wellinger, Ralf Erik, Molecular and Cellular Biology, 23(18), 6363–6372. https://doi.org/10.1128/mcb.23.18.6363-6372.2003
, & Sogo, Jose M. (2003). Rad52-independent accumulation of joint circular minichromosomes during S phase in Saccharomyces cerevisiae.
Wellinger, Ralf Erik, Molecular and Cellular Biology, 23(18), 6363–6372. https://doi.org/10.1128/mcb.23.18.6363-6372.2003
, & Sogo, Jose M. (2003). Rad52-independent accumulation of joint circular minichromosomes during S phase in Saccharomyces cerevisiae.
Hardeland, Ulrike, Steinacher, Roland, Jiricny, Josef, & The EMBO Journal, 21(6), 1456–1464. https://doi.org/10.1093/emboj/21.6.1456
. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
Hardeland, Ulrike, Steinacher, Roland, Jiricny, Josef, & The EMBO Journal, 21(6), 1456–1464. https://doi.org/10.1093/emboj/21.6.1456
. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover.
Hasan, Sameez, El-Andaloussi, Nazim, Hardeland, Ulrike, Hassa, Paul O, Bürki, Christine, Imhof, Ralph, Molecular Cell, 10(5), 1213–1222. https://doi.org/10.1016/s1097-2765(02)00745-1
, & Hottiger, Michael O. (2002). Acetylation regulates the DNA end-trimming activity of DNA polymerase beta.
Hasan, Sameez, El-Andaloussi, Nazim, Hardeland, Ulrike, Hassa, Paul O, Bürki, Christine, Imhof, Ralph, Molecular Cell, 10(5), 1213–1222. https://doi.org/10.1016/s1097-2765(02)00745-1
, & Hottiger, Michael O. (2002). Acetylation regulates the DNA end-trimming activity of DNA polymerase beta.
CELL, 104, 329–332.
. (2001). Spontaneous DNA damage, genome instability, and cancer - When DNA replication escapes control.
CELL, 104, 329–332.
. (2001). Spontaneous DNA damage, genome instability, and cancer - When DNA replication escapes control.
Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, & Progress in nucleic acid research and molecular biology, 68, 235–253. https://doi.org/10.1016/s0079-6603(01)68103-0
. (2001). Thymine DNA glycosylase.
Hardeland U, Bentele M, Lettieri T, Steinacher R, Jiricny J, & Progress in nucleic acid research and molecular biology, 68, 235–253. https://doi.org/10.1016/s0079-6603(01)68103-0
. (2001). Thymine DNA glycosylase.
Hardeland, U, Bentele, M, Lettieri, T, Steinacher, R, Jiricny, J, & Progress in Nucleic Acid Research and Molecular Biology, 68, 235–253. https://doi.org/10.1016/s0079-6603(01)68103-0
. (2001). Thymine DNA glycosylase.
Hardeland, U, Bentele, M, Lettieri, T, Steinacher, R, Jiricny, J, & Progress in Nucleic Acid Research and Molecular Biology, 68, 235–253. https://doi.org/10.1016/s0079-6603(01)68103-0
. (2001). Thymine DNA glycosylase.
Sartori, A A, Journal of Biological Chemistry, 276(32), 29979–29986. https://doi.org/10.1074/jbc.m102985200
, Fitz-Gibbon, S, Miller, J H, & Jiricny, J. (2001). Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum.
Sartori, A A, Journal of Biological Chemistry, 276(32), 29979–29986. https://doi.org/10.1074/jbc.m102985200
, Fitz-Gibbon, S, Miller, J H, & Jiricny, J. (2001). Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum.
Spontaneous DNA damage, genome instability, and cancer - when DNA replication escapes control]. Cell, 104, Article 3. https://doi.org/10.1016/s0092-8674(01)00220-3
. (2001). Spontaneous DNA damage, genome instability, and cancer - when DNA replication escapes control [Review of
Spontaneous DNA damage, genome instability, and cancer - when DNA replication escapes control]. Cell, 104, Article 3. https://doi.org/10.1016/s0092-8674(01)00220-3
. (2001). Spontaneous DNA damage, genome instability, and cancer - when DNA replication escapes control [Review of
Valencia, M, Bentele, M, Vaze, M B, Herrmann, G, Kraus, E, Lee, S E, Nature, 414(6864), 666–669. https://doi.org/10.1038/414666a
, & Haber, J E. (2001). NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae.
Valencia, M, Bentele, M, Vaze, M B, Herrmann, G, Kraus, E, Lee, S E, Nature, 414(6864), 666–669. https://doi.org/10.1038/414666a
, & Haber, J E. (2001). NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae.
Hardeland, U, Bentele, M, Jiricny, J, & Journal of Biological Chemistry, 275(43), 33449–33456. https://doi.org/10.1074/jbc.m005095200
. (2000). Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis.
Hardeland, U, Bentele, M, Jiricny, J, & Journal of Biological Chemistry, 275(43), 33449–33456. https://doi.org/10.1074/jbc.m005095200
. (2000). Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis.
Marra G, & The Biochemical journal, 338 ( Pt 1)(Pt 1), 1–13.
. (1999). Recognition of DNA alterations by the mismatch repair system.
Marra G, & The Biochemical journal, 338 ( Pt 1)(Pt 1), 1–13.
. (1999). Recognition of DNA alterations by the mismatch repair system.
Fleck, O, Lehmann, E, Nature Genetics, 21(3), 314–317. https://doi.org/10.1038/6838
, & Kohli, J. (1999). Involvement of nucleotide-excision repair in msh2 pms1-independent mismatch repair.
Fleck, O, Lehmann, E, Nature Genetics, 21(3), 314–317. https://doi.org/10.1038/6838
, & Kohli, J. (1999). Involvement of nucleotide-excision repair in msh2 pms1-independent mismatch repair.
Marra, G, & The Biochemical Journal, 338 ( Pt 1), 1–13.
. (1999). Recognition of DNA alterations by the mismatch repair system.
Marra, G, & The Biochemical Journal, 338 ( Pt 1), 1–13.
. (1999). Recognition of DNA alterations by the mismatch repair system.
Räschle, M, Marra, G, Nyström-Lahti, M, Journal of Biological Chemistry, 274(45), 32368–32375. https://doi.org/10.1074/jbc.274.45.32368
, & Jiricny, J. (1999). Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1.
Räschle, M, Marra, G, Nyström-Lahti, M, Journal of Biological Chemistry, 274(45), 32368–32375. https://doi.org/10.1074/jbc.274.45.32368
, & Jiricny, J. (1999). Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1.
Herrmann G, Lindahl T, & The EMBO journal, 17(14), 4188–4198. https://doi.org/10.1093/emboj/17.14.4188
. (1998). Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4.
Herrmann G, Lindahl T, & The EMBO journal, 17(14), 4188–4198. https://doi.org/10.1093/emboj/17.14.4188
. (1998). Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4.
Genetics, 146(4), 1275–1286. https://doi.org/10.1093/genetics/146.4.1275
, Baur M, Schneider C, & Kohli J. (1997). Mismatch repair in Schizosaccharomyces pombe requires the mutL homologous gene pms1: molecular cloning and functional analysis.
Genetics, 146(4), 1275–1286. https://doi.org/10.1093/genetics/146.4.1275
, Baur M, Schneider C, & Kohli J. (1997). Mismatch repair in Schizosaccharomyces pombe requires the mutL homologous gene pms1: molecular cloning and functional analysis.
Genes & development, 11(15), 1912–1924. https://doi.org/10.1101/gad.11.15.1912
, Herrmann G, Daly G, & Lindahl T. (1997). A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks.
Genes & development, 11(15), 1912–1924. https://doi.org/10.1101/gad.11.15.1912
, Herrmann G, Daly G, & Lindahl T. (1997). A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks.
Jessberger R, Nucleic acids research, 25(2), 289–296. https://doi.org/10.1093/nar/25.2.289
, Robins P, Ferrari E, Riwar B, & Hübscher U. (1997). Regulation of DNA metabolic enzymes upon induction of preB cell development and V(D)J recombination: up-regulation of DNA polymerase delta.
Jessberger R, Nucleic acids research, 25(2), 289–296. https://doi.org/10.1093/nar/25.2.289
, Robins P, Ferrari E, Riwar B, & Hübscher U. (1997). Regulation of DNA metabolic enzymes upon induction of preB cell development and V(D)J recombination: up-regulation of DNA polymerase delta.
Lindahl T, Barnes DE, Klungland A, Mackenney VJ, & Ciba Foundation symposium, 211, 198–205; discussion 205–8. https://doi.org/10.1002/9780470515433.ch13
. (1997). Repair and processing events at DNA ends.
Lindahl T, Barnes DE, Klungland A, Mackenney VJ, & Ciba Foundation symposium, 211, 198–205; discussion 205–8. https://doi.org/10.1002/9780470515433.ch13
. (1997). Repair and processing events at DNA ends.
Kubota Y, Nash RA, Klungland A, The EMBO journal, 15(23), 6662–6670.
, Barnes DE, & Lindahl T. (1996). Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.
Kubota Y, Nash RA, Klungland A, The EMBO journal, 15(23), 6662–6670.
, Barnes DE, & Lindahl T. (1996). Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein.
Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, & Molecular and cellular biology, 15(6), 3206–3216. https://doi.org/10.1128/mcb.15.6.3206
. (1995). Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination.
Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, & Molecular and cellular biology, 15(6), 3206–3216. https://doi.org/10.1128/mcb.15.6.3206
. (1995). Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination.
Fleck O, Nucleic acids research, 22(24), 5289–5295. https://doi.org/10.1093/nar/22.24.5289
, & Kohli J. (1994). Identification of two mismatch-binding activities in protein extracts of Schizosaccharomyces pombe.
Fleck O, Nucleic acids research, 22(24), 5289–5295. https://doi.org/10.1093/nar/22.24.5289
, & Kohli J. (1994). Identification of two mismatch-binding activities in protein extracts of Schizosaccharomyces pombe.
Fleck O, Rudolph C, Albrecht A, Lorentz A, Genetics, 138(3), 621–632. https://doi.org/10.1093/genetics/138.3.621
, & Schmidt H. (1994). The mutator gene swi8 effects specific mutations in the mating-type region of Schizosaccharomyces pombe.
Fleck O, Rudolph C, Albrecht A, Lorentz A, Genetics, 138(3), 621–632. https://doi.org/10.1093/genetics/138.3.621
, & Schmidt H. (1994). The mutator gene swi8 effects specific mutations in the mating-type region of Schizosaccharomyces pombe.
The EMBO journal, 13(21), 5212–5219. https://doi.org/10.1002/j.1460-2075.1994.tb06852.x
, & Kohli J. (1994). Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe.
The EMBO journal, 13(21), 5212–5219. https://doi.org/10.1002/j.1460-2075.1994.tb06852.x
, & Kohli J. (1994). Preferential strand transfer and hybrid DNA formation at the recombination hotspot ade6-M26 of Schizosaccharomyces pombe.
Genetics, 133(4), 825–835. https://doi.org/10.1093/genetics/133.4.825
, & Kohli, J. (1993). Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe.
Genetics, 133(4), 825–835. https://doi.org/10.1093/genetics/133.4.825
, & Kohli, J. (1993). Marker effects of G to C transversions on intragenic recombination and mismatch repair in Schizosaccharomyces pombe.
Genetics, 133(4), 815–824. https://doi.org/10.1093/genetics/133.4.815
, Munz, P., & Kohli, J. (1993). Meiotic mismatch repair quantified on the basis of segregation patterns in Schizosaccharomyces pombe.
Genetics, 133(4), 815–824. https://doi.org/10.1093/genetics/133.4.815
, Munz, P., & Kohli, J. (1993). Meiotic mismatch repair quantified on the basis of segregation patterns in Schizosaccharomyces pombe.
Grimm, C., Molecular and cellular biology, 11(1), 289–298. https://doi.org/10.1128/mcb.11.1.289-298.1991
, Munz, P., & Kohli, J. (1991). The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe.
Grimm, C., Molecular and cellular biology, 11(1), 289–298. https://doi.org/10.1128/mcb.11.1.289-298.1991
, Munz, P., & Kohli, J. (1991). The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe.