Synthetic chemistry and catalysis
Our group is interested in the development of translational synthetic methods, in particular using transition-metal catalysis. Our studies range from mechanistic investigations to applications in the synthesis of complex functional molecules such as active pharmaceutical ingredients, bioactive natural products and optically active organic materials. In recent years, our research focused on the development of metal-catalyzed C-H bond functionalization methods for the formation of C-C and C-N bonds. We are also developing enantioselective versions of these reactions using different types of chiral catalysts.
Follow this link for further information
Selected Publications
Kudashev, Anton, Vergura, Stefania, Zuccarello, Marco, Bürgi, Thomas, & Angewandte Chemie International Edition, 63(1). https://doi.org/10.1002/anie.202316103
. (2023). Methylene C(sp³)−H Arylation Enables the Stereoselective Synthesis and Structure Revision of Indidene Natural Products [Journal-article].
Kudashev, Anton, Vergura, Stefania, Zuccarello, Marco, Bürgi, Thomas, & Angewandte Chemie International Edition, 63(1). https://doi.org/10.1002/anie.202316103
. (2023). Methylene C(sp³)−H Arylation Enables the Stereoselective Synthesis and Structure Revision of Indidene Natural Products [Journal-article].
Geraci, Andrea, Stojiljković, Uros, Antien, Kevin, Salameh, Nihad, & Angewandte Chemie International Edition, 62(42), e202309263. https://doi.org/10.1002/anie.202309263
. (2023). Iridium(III)-Catalyzed Intermolecular C(sp³)-H Amidation for the Synthesis of Chiral 1,2-Diamines.
Geraci, Andrea, Stojiljković, Uros, Antien, Kevin, Salameh, Nihad, & Angewandte Chemie International Edition, 62(42), e202309263. https://doi.org/10.1002/anie.202309263
. (2023). Iridium(III)-Catalyzed Intermolecular C(sp³)-H Amidation for the Synthesis of Chiral 1,2-Diamines.
Guo, Shu-Min, Huh, Soohee, Coehlo, Max, Shen, Li, Pieters, Grégory, & Nature chemistry, 15, 872–880. https://doi.org/10.1038/s41557-023-01174-5
. (2023). A C-H activation-based enantioselective synthesis of lower carbo[n]helicenes.
Guo, Shu-Min, Huh, Soohee, Coehlo, Max, Shen, Li, Pieters, Grégory, & Nature chemistry, 15, 872–880. https://doi.org/10.1038/s41557-023-01174-5
. (2023). A C-H activation-based enantioselective synthesis of lower carbo[n]helicenes.
Miyakoshi, Takeru, Niggli, Nadja E., & Angewandte Chemie International Edition, 61(17), e202116101. https://doi.org/10.1002/anie.202116101
. (2022). Remote Construction of N-Heterocycles via 1,4-Palladium Shift-Mediated Double C-H Activation.
Miyakoshi, Takeru, Niggli, Nadja E., & Angewandte Chemie International Edition, 61(17), e202116101. https://doi.org/10.1002/anie.202116101
. (2022). Remote Construction of N-Heterocycles via 1,4-Palladium Shift-Mediated Double C-H Activation.
Clemenceau, Antonin, Thesmar, Pierre, Gicquel, Maxime, Le Flohic, Alexandre, & Journal of the American Chemical Society, 142(36), 15355–15361. https://doi.org/10.1021/jacs.0c05887
. (2020). Direct Synthesis of Cyclopropanes from gem-Dialkyl Groups through Double C-H Activation.
Clemenceau, Antonin, Thesmar, Pierre, Gicquel, Maxime, Le Flohic, Alexandre, & Journal of the American Chemical Society, 142(36), 15355–15361. https://doi.org/10.1021/jacs.0c05887
. (2020). Direct Synthesis of Cyclopropanes from gem-Dialkyl Groups through Double C-H Activation.