Publications
92 found
Show per page
Muller, Alissa, Sullivan, Jack, Schwarzer, Wibke, Wang, Mantian, Park-Windhol, Cindy, Hasler, Pascal W., Janeschitz-Kriegl, Lucas, Duman, Mert, Klingler, Beryll, Matsell, Jane, Hostettler, Simon Manuel, Galliker, Patricia, Hou, Yanyan, Balmer, Pierre, Virág, Tamás, Barrera, Luis Alberto, Young, Lauren, Xu, Quan, Magda, Dániel Péter, et al. (2025). High-efficiency base editing in the retina in primates and human tissues. Nature Medicine, 31(2), 490–501. https://doi.org/10.1038/s41591-024-03422-8
Muller, Alissa, Sullivan, Jack, Schwarzer, Wibke, Wang, Mantian, Park-Windhol, Cindy, Hasler, Pascal W., Janeschitz-Kriegl, Lucas, Duman, Mert, Klingler, Beryll, Matsell, Jane, Hostettler, Simon Manuel, Galliker, Patricia, Hou, Yanyan, Balmer, Pierre, Virág, Tamás, Barrera, Luis Alberto, Young, Lauren, Xu, Quan, Magda, Dániel Péter, et al. (2025). High-efficiency base editing in the retina in primates and human tissues. Nature Medicine, 31(2), 490–501. https://doi.org/10.1038/s41591-024-03422-8
Morikawa, Rei, Rodrigues, Tiago M., Schreyer, Helene Marianne, Cowan, Cameron S., Nadeau, Sarah, Graff-Meyer, Alexandra, Patino-Alvarez, Claudia P., Khani, Mohammad Hossein, Jüttner, Josephine, & . (2024). The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision [Journal-article]. Neuron, 112(22), 3715–3733. https://doi.org/10.1016/j.neuron.2024.08.015
Morikawa, Rei, Rodrigues, Tiago M., Schreyer, Helene Marianne, Cowan, Cameron S., Nadeau, Sarah, Graff-Meyer, Alexandra, Patino-Alvarez, Claudia P., Khani, Mohammad Hossein, Jüttner, Josephine, & . (2024). The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision [Journal-article]. Neuron, 112(22), 3715–3733. https://doi.org/10.1016/j.neuron.2024.08.015
Müllner, Fiona E., & . (2024). Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features. Neuron, 112(16), 2765–2782. https://doi.org/10.1016/j.neuron.2024.06.001
Müllner, Fiona E., & . (2024). Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features. Neuron, 112(16), 2765–2782. https://doi.org/10.1016/j.neuron.2024.06.001
Wahle, Philipp, Brancati, Giovanna, Harmel, Christoph, He, Zhisong, Gut, Gabriele, del Castillo, Jacobo Sarabia, Xavier da Silveira dos Santos, Aline, Yu, Qianhui, Noser, Pascal, Fleck, Jonas Simon, Gjeta, Bruno, Pavlinić, Dinko, Picelli, Simone, Hess, Max, Schmidt, Gregor W., Lummen, Tom T. A., Hou, Yanyan, Galliker, Patricia, Goldblum, David, et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology, 41(12), 1765–1775. https://doi.org/10.1038/s41587-023-01747-2
Wahle, Philipp, Brancati, Giovanna, Harmel, Christoph, He, Zhisong, Gut, Gabriele, del Castillo, Jacobo Sarabia, Xavier da Silveira dos Santos, Aline, Yu, Qianhui, Noser, Pascal, Fleck, Jonas Simon, Gjeta, Bruno, Pavlinić, Dinko, Picelli, Simone, Hess, Max, Schmidt, Gregor W., Lummen, Tom T. A., Hou, Yanyan, Galliker, Patricia, Goldblum, David, et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology, 41(12), 1765–1775. https://doi.org/10.1038/s41587-023-01747-2
Cadoni, Sara, Demené, Charlie, Alcala, Ignacio, Provansal, Matthieu, Nguyen, Diep, Nelidova, Dasha, Labernède, Guillaume, Lubetzki, Jules, Goulet, Ruben, Burban, Emma, Dégardin, Julie, Simonutti, Manuel, Gauvain, Gregory, Arcizet, Fabrice, Marre, Olivier, Dalkara, Deniz, , Sahel, José Alain, Tanter, Mickael, & Picaud, Serge. (2023). Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration. Nature Nanotechnology, 18(6), 667–676. https://doi.org/10.1038/s41565-023-01359-6
Cadoni, Sara, Demené, Charlie, Alcala, Ignacio, Provansal, Matthieu, Nguyen, Diep, Nelidova, Dasha, Labernède, Guillaume, Lubetzki, Jules, Goulet, Ruben, Burban, Emma, Dégardin, Julie, Simonutti, Manuel, Gauvain, Gregory, Arcizet, Fabrice, Marre, Olivier, Dalkara, Deniz, , Sahel, José Alain, Tanter, Mickael, & Picaud, Serge. (2023). Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration. Nature Nanotechnology, 18(6), 667–676. https://doi.org/10.1038/s41565-023-01359-6
Munz, M., Bharioke, A., Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T. M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., Ledergerber, N., Gross-Scherf, B., Rózsa, B., Krol, J., Picelli, S., Cowan, C. S., & Roska, B. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell, 186(9), 1930–1949. https://doi.org/10.1016/j.cell.2023.03.025
Munz, M., Bharioke, A., Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T. M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., Ledergerber, N., Gross-Scherf, B., Rózsa, B., Krol, J., Picelli, S., Cowan, C. S., & Roska, B. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell, 186(9), 1930–1949. https://doi.org/10.1016/j.cell.2023.03.025
Judák, Linda, Chiovini, Balázs, Juhász, Gábor, Pálfi, Dénes, Mezriczky, Zsolt, Szadai, Zoltán, Katona, Gergely, Szmola, Benedek, Ócsai, Katalin, Martinecz, Bernadett, Mihály, Anna, Dénes, Ádám, Kerekes, Bálint, Szepesi, Áron, Szalay, Gergely, Ulbert, István, Mucsi, Zoltán, , & Rózsa, Balázs. (2022). Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34520-1
Judák, Linda, Chiovini, Balázs, Juhász, Gábor, Pálfi, Dénes, Mezriczky, Zsolt, Szadai, Zoltán, Katona, Gergely, Szmola, Benedek, Ócsai, Katalin, Martinecz, Bernadett, Mihály, Anna, Dénes, Ádám, Kerekes, Bálint, Szepesi, Áron, Szalay, Gergely, Ulbert, István, Mucsi, Zoltán, , & Rózsa, Balázs. (2022). Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34520-1
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, & . (2022). General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron, 110(12), 2024–2040. https://doi.org/10.1016/j.neuron.2022.03.032
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, & . (2022). General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron, 110(12), 2024–2040. https://doi.org/10.1016/j.neuron.2022.03.032
Brunner C, Grillet M, Urban A, , Montaldo G, & Macé E. (2021). Whole-brain functional ultrasound imaging in awake head-fixed mice. Nature Protocols, 16(7), 3547–3571. https://doi.org/10.1038/s41596-021-00548-8
Brunner C, Grillet M, Urban A, , Montaldo G, & Macé E. (2021). Whole-brain functional ultrasound imaging in awake head-fixed mice. Nature Protocols, 16(7), 3547–3571. https://doi.org/10.1038/s41596-021-00548-8
Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert JB, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, & . (2021). Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine, 27(7), 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert JB, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, & . (2021). Partial recovery of visual function in a blind patient after optogenetic therapy. Nature Medicine, 27(7), 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
Cowan, Cameron S., Renner, Magdalena, De Gennaro, Martina, Gross-Scherf, Brigitte, Goldblum, David, Hou, Yanyan, Munz, Martin, Rodrigues, Tiago M., Krol, Jacek, Szikra, Tamas, Cuttat, Rachel, Waldt, Annick, Papasaikas, Panagiotis, Diggelmann, Roland, Patino-Alvarez, Claudia P., Galliker, Patricia, Spirig, Stefan E., Pavlinic, Dinko, Gerber-Hollbach, Nadine, et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell, 182(6), 1623–1640. https://doi.org/10.1016/j.cell.2020.08.013
Cowan, Cameron S., Renner, Magdalena, De Gennaro, Martina, Gross-Scherf, Brigitte, Goldblum, David, Hou, Yanyan, Munz, Martin, Rodrigues, Tiago M., Krol, Jacek, Szikra, Tamas, Cuttat, Rachel, Waldt, Annick, Papasaikas, Panagiotis, Diggelmann, Roland, Patino-Alvarez, Claudia P., Galliker, Patricia, Spirig, Stefan E., Pavlinic, Dinko, Gerber-Hollbach, Nadine, et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell, 182(6), 1623–1640. https://doi.org/10.1016/j.cell.2020.08.013
Della Volpe-Waizel, Maria, Traber, Ghislaine L, Maloca, Peter, Zinkernagel M, Schmidt-Erfurth U, Rubin G, , Otto T, Weleber RG, & Scholl HPN. (2020). New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 63(2), 77–87. https://doi.org/10.1159/000501887
Della Volpe-Waizel, Maria, Traber, Ghislaine L, Maloca, Peter, Zinkernagel M, Schmidt-Erfurth U, Rubin G, , Otto T, Weleber RG, & Scholl HPN. (2020). New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 63(2), 77–87. https://doi.org/10.1159/000501887
Traber GL, Della Volpe-Waizel M, Maloca P, Schmidt-Erfurth U, Rubin G, , Cordeiro MF, Otto T, Weleber R, Lesmes LA, Arleo A, & Scholl HPN. (2020). New Technologies for Outcome Measures in Glaucoma: Review by the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 63(2), 88–96. https://doi.org/10.1159/000504892
Traber GL, Della Volpe-Waizel M, Maloca P, Schmidt-Erfurth U, Rubin G, , Cordeiro MF, Otto T, Weleber R, Lesmes LA, Arleo A, & Scholl HPN. (2020). New Technologies for Outcome Measures in Glaucoma: Review by the European Vision Institute Special Interest Focus Group. Ophthalmic Research, 63(2), 88–96. https://doi.org/10.1159/000504892
Gaub BM, Kasuba KC, Mace E, Strittmatter T, Laskowski PR, Geissler SA, Hierlemann A, Fussenegger M, , & Müller DJ. (2020). Neurons differentiate magnitude and location of mechanical stimuli. Proceedings of the National Academy of Sciences of the United States of America, 117(2), 848–856. https://doi.org/10.1073/pnas.1909933117
Gaub BM, Kasuba KC, Mace E, Strittmatter T, Laskowski PR, Geissler SA, Hierlemann A, Fussenegger M, , & Müller DJ. (2020). Neurons differentiate magnitude and location of mechanical stimuli. Proceedings of the National Academy of Sciences of the United States of America, 117(2), 848–856. https://doi.org/10.1073/pnas.1909933117
Nelidova, Dasha, Morikawa, Rei K., Cowan, Cameron S., Raics, Zoltan, Goldblum, David, Scholl, Hendrik P. N., Szikra, Tamas, Szabo, Arnold, Hillier, Daniel, & . (2020). Restoring light sensitivity using tunable near-infrared sensors. Science, 368(6495), 1108–1113. https://doi.org/10.1126/science.aaz5887
Nelidova, Dasha, Morikawa, Rei K., Cowan, Cameron S., Raics, Zoltan, Goldblum, David, Scholl, Hendrik P. N., Szikra, Tamas, Szabo, Arnold, Hillier, Daniel, & . (2020). Restoring light sensitivity using tunable near-infrared sensors. Science, 368(6495), 1108–1113. https://doi.org/10.1126/science.aaz5887
Picaud S, Dalkara D, Marazova K, Goureau O, , & Sahel JA. (2019). The primate model for understanding and restoring vision. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26280–26287. https://doi.org/10.1073/pnas.1902292116
Picaud S, Dalkara D, Marazova K, Goureau O, , & Sahel JA. (2019). The primate model for understanding and restoring vision. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26280–26287. https://doi.org/10.1073/pnas.1902292116
Schubert R, Herzog S, Trenholm S, , & Müller DJ. (2019). Magnetically guided virus stamping for the targeted infection of single cells or groups of cells. Nature Protocols, 14(11), 3205–3219. https://doi.org/10.1038/s41596-019-0221-z
Schubert R, Herzog S, Trenholm S, , & Müller DJ. (2019). Magnetically guided virus stamping for the targeted infection of single cells or groups of cells. Nature Protocols, 14(11), 3205–3219. https://doi.org/10.1038/s41596-019-0221-z
Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, Schaettin M, Egolf L, van der Bourg A, Bethge P, Haenraets K, Frézel N, Topilko T, Perin P, Hillier D, Hildebrand S, Schueth A, Roebroeck A, , et al. (2019). The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 16(11), 1105–1108. https://doi.org/10.1038/s41592-019-0554-0
Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, Schaettin M, Egolf L, van der Bourg A, Bethge P, Haenraets K, Frézel N, Topilko T, Perin P, Hillier D, Hildebrand S, Schueth A, Roebroeck A, , et al. (2019). The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 16(11), 1105–1108. https://doi.org/10.1038/s41592-019-0554-0
Jüttner, Josephine, Szabo, Arnold, Gross-Scherf, Brigitte, Morikawa, Rei K., Rompani, Santiago B., Hantz, Peter, Szikra, Tamas, Esposti, Federico, Cowan, Cameron S., Bharioke, Arjun, Patino-Alvarez, Claudia P., Keles, Özkan, Kusnyerik, Akos, Azoulay, Thierry, Hartl, Dominik, Krebs, Arnaud R., Schübeler, Dirk, Hajdu, Rozina I., Lukats, Akos, et al. (2019). Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 22(8), 1345–1356. https://doi.org/10.1038/s41593-019-0431-2
Jüttner, Josephine, Szabo, Arnold, Gross-Scherf, Brigitte, Morikawa, Rei K., Rompani, Santiago B., Hantz, Peter, Szikra, Tamas, Esposti, Federico, Cowan, Cameron S., Bharioke, Arjun, Patino-Alvarez, Claudia P., Keles, Özkan, Kusnyerik, Akos, Azoulay, Thierry, Hartl, Dominik, Krebs, Arnaud R., Schübeler, Dirk, Hajdu, Rozina I., Lukats, Akos, et al. (2019). Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 22(8), 1345–1356. https://doi.org/10.1038/s41593-019-0431-2
. (2019). The first steps in vision: cell types, circuits, and repair. EMBO Molecular Medicine, 11(3). https://doi.org/10.15252/emmm.201810218
. (2019). The first steps in vision: cell types, circuits, and repair. EMBO Molecular Medicine, 11(3). https://doi.org/10.15252/emmm.201810218
Sahel JA, Bennett J, & . (2019). Depicting brighter possibilities for treating blindness. Science Translational Medicine, 11(494). https://doi.org/10.1126/scitranslmed.aax2324
Sahel JA, Bennett J, & . (2019). Depicting brighter possibilities for treating blindness. Science Translational Medicine, 11(494). https://doi.org/10.1126/scitranslmed.aax2324
Walters S, Schwarz C, Sharma R, Rossi EA, Fischer WS, DiLoreto DA Jr, Strazzeri J, Nelidova D, , Hunter JJ, Williams DR, & Merigan WH. (2019). Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye. Biomedical Optics Express, 10(1), 66–82. https://doi.org/10.1364/boe.10.000066
Walters S, Schwarz C, Sharma R, Rossi EA, Fischer WS, DiLoreto DA Jr, Strazzeri J, Nelidova D, , Hunter JJ, Williams DR, & Merigan WH. (2019). Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye. Biomedical Optics Express, 10(1), 66–82. https://doi.org/10.1364/boe.10.000066
Macé É, Montaldo G, Trenholm S, Cowan C, Brignall A, Urban A, & . (2018). Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration. Neuron, 100(5), 1241–1251. https://doi.org/10.1016/j.neuron.2018.11.031
Macé É, Montaldo G, Trenholm S, Cowan C, Brignall A, Urban A, & . (2018). Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration. Neuron, 100(5), 1241–1251. https://doi.org/10.1016/j.neuron.2018.11.031
Drinnenberg, Antonia, Franke, Felix, Morikawa, Rei K., Jüttner, Josephine, Hillier, Daniel, Hantz, Peter, Hierlemann, Andreas, Azeredo da Silveira, Rava, & . (2018). How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse. Neuron, 99(1), 117–134. https://doi.org/10.1016/j.neuron.2018.06.001
Drinnenberg, Antonia, Franke, Felix, Morikawa, Rei K., Jüttner, Josephine, Hillier, Daniel, Hantz, Peter, Hierlemann, Andreas, Azeredo da Silveira, Rava, & . (2018). How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse. Neuron, 99(1), 117–134. https://doi.org/10.1016/j.neuron.2018.06.001
, & Sahel JA. (2018). Restoring vision. Nature, 557(7705), 359–367. https://doi.org/10.1038/s41586-018-0076-4
, & Sahel JA. (2018). Restoring vision. Nature, 557(7705), 359–367. https://doi.org/10.1038/s41586-018-0076-4
Schubert, Rajib, Trenholm, Stuart, Balint, Kamill, Kosche, Georg, Munz, Martin, Martinez-Martin, David, Newton, Richard, Krol, Jacek, Scherf, Brigitte Gross, Yonehara, Keisuke, Wertz, Adrian, Ponti, Aaron, Ghanem, Alexander, Hillier, Daniel, Conzelmann, Karl-Klaus, , Cowan, Cameron S., Mohr, Manuel A., Flaschner, Gotthold, & Muller, Daniel J. (2018). Virus stamping for targeted single-cell infection in vitro and in vivo. Nature Biotechnology, 36(1), 81–88. https://doi.org/10.1038/nbt.4034
Schubert, Rajib, Trenholm, Stuart, Balint, Kamill, Kosche, Georg, Munz, Martin, Martinez-Martin, David, Newton, Richard, Krol, Jacek, Scherf, Brigitte Gross, Yonehara, Keisuke, Wertz, Adrian, Ponti, Aaron, Ghanem, Alexander, Hillier, Daniel, Conzelmann, Karl-Klaus, , Cowan, Cameron S., Mohr, Manuel A., Flaschner, Gotthold, & Muller, Daniel J. (2018). Virus stamping for targeted single-cell infection in vitro and in vivo. Nature Biotechnology, 36(1), 81–88. https://doi.org/10.1038/nbt.4034
Hartl, Dominik, Krebs, Arnaud R., Juttner, Josephine, , & Schubeler, Dirk. (2017). Cis-regulatory landscapes of four cell types of the retina. Nucleic Acids Research, 45(20), 11607–11621. https://doi.org/10.1093/nar/gkx923
Hartl, Dominik, Krebs, Arnaud R., Juttner, Josephine, , & Schubeler, Dirk. (2017). Cis-regulatory landscapes of four cell types of the retina. Nucleic Acids Research, 45(20), 11607–11621. https://doi.org/10.1093/nar/gkx923
Daum, Janine M., Keles, Özkan, Holwerda, Sjoerd J. B., Kohler, Hubertus, Rijli, Filippo M., Stadler, Michael, & . (2017). The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch. eLife, 6. https://doi.org/10.7554/elife.31437
Daum, Janine M., Keles, Özkan, Holwerda, Sjoerd J. B., Kohler, Hubertus, Rijli, Filippo M., Stadler, Michael, & . (2017). The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch. eLife, 6. https://doi.org/10.7554/elife.31437
Yonehara, Keisuke, & . (2017). CREATEd viruses go global (Patent No. 8). Nature Neuroscience, 20(8), Article 8. https://doi.org/10.1038/nn.4600
Yonehara, Keisuke, & . (2017). CREATEd viruses go global (Patent No. 8). Nature Neuroscience, 20(8), Article 8. https://doi.org/10.1038/nn.4600
Hillier, Daniel, Fiscella, Michele, Drinnenberg, Antonia, Trenholm, Stuart, Rompani, Santiago B., Raics, Zoltan, Katona, Gergely, Juettner, Josephine, Hierlemann, Andreas, Rozsa, Balazs, & . (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nature Neuroscience, 20(7), 960–968. https://doi.org/10.1038/nn.4566
Hillier, Daniel, Fiscella, Michele, Drinnenberg, Antonia, Trenholm, Stuart, Rompani, Santiago B., Raics, Zoltan, Katona, Gergely, Juettner, Josephine, Hierlemann, Andreas, Rozsa, Balazs, & . (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nature Neuroscience, 20(7), 960–968. https://doi.org/10.1038/nn.4566
Rompani, Santiago B., Müllner, Fiona E., Wanner, Adrian, , Roth, Chiara N., Yonehara, Keisuke, & Roska, Botond. (2017). Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing. Neuron, 93(4), 767–776. https://doi.org/10.1016/j.neuron.2017.01.028
Rompani, Santiago B., Müllner, Fiona E., Wanner, Adrian, , Roth, Chiara N., Yonehara, Keisuke, & Roska, Botond. (2017). Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing. Neuron, 93(4), 767–776. https://doi.org/10.1016/j.neuron.2017.01.028
Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, Yonehara K, , Xu C, Lüthi A, Caille S, & Georges F. (2017). NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nature Communications, 8, 14456. https://doi.org/10.1038/ncomms14456
Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, Yonehara K, , Xu C, Lüthi A, Caille S, & Georges F. (2017). NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nature Communications, 8, 14456. https://doi.org/10.1038/ncomms14456
Alsteens, David, Newton, Richard, Schubert, Rajib, Martinez-Martin, David, Delguste, Martin, , & Mueller, Daniel J. (2017). Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotechnology, 12(2), 177–183. https://doi.org/10.1038/nnano.2016.228
Alsteens, David, Newton, Richard, Schubert, Rajib, Martinez-Martin, David, Delguste, Martin, , & Mueller, Daniel J. (2017). Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotechnology, 12(2), 177–183. https://doi.org/10.1038/nnano.2016.228
Scholl, Hendrik P. N., Strauss, Rupert W., Singh, Mandeep S., Dalkara, Deniz, , Picaud, Serge, & Sahel, Jose-Alain. (2016). Emerging therapies for inherited retinal degeneration. Science Translational Medicine, 8(368). https://doi.org/10.1126/scitranslmed.aaf2838
Scholl, Hendrik P. N., Strauss, Rupert W., Singh, Mandeep S., Dalkara, Deniz, , Picaud, Serge, & Sahel, Jose-Alain. (2016). Emerging therapies for inherited retinal degeneration. Science Translational Medicine, 8(368). https://doi.org/10.1126/scitranslmed.aaf2838
Ting, Alice, Segal, Rosalind, Carandini, Matteo, Emiliani, Valentina, Yizhar, Ofer, , Ji, Na, & Anderson, David J. (2016). Opportunities for Technology and Tool Development (Patent No. 3). Neuron, 92(3), Article 3. https://doi.org/10.1016/j.neuron.2016.10.042
Ting, Alice, Segal, Rosalind, Carandini, Matteo, Emiliani, Valentina, Yizhar, Ofer, , Ji, Na, & Anderson, David J. (2016). Opportunities for Technology and Tool Development (Patent No. 3). Neuron, 92(3), Article 3. https://doi.org/10.1016/j.neuron.2016.10.042
Yonehara K, & . (2016). “MAPseq”-uencing Long-Range Neuronal Projections. Neuron, 91(5), 945–947. https://doi.org/10.1016/j.neuron.2016.08.029
Yonehara K, & . (2016). “MAPseq”-uencing Long-Range Neuronal Projections. Neuron, 91(5), 945–947. https://doi.org/10.1016/j.neuron.2016.08.029
Krol J, & . (2016). Treatment synergy in axon regeneration (Patent No. 8). Nature Neuroscience, 19(8), Article 8. https://doi.org/10.1038/nn.4344
Krol J, & . (2016). Treatment synergy in axon regeneration (Patent No. 8). Nature Neuroscience, 19(8), Article 8. https://doi.org/10.1038/nn.4344
Yue L, Weiland JD, , & Humayun MS. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in Retinal and Eye Research, 53, 21–47. https://doi.org/10.1016/j.preteyeres.2016.05.002
Yue L, Weiland JD, , & Humayun MS. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in Retinal and Eye Research, 53, 21–47. https://doi.org/10.1016/j.preteyeres.2016.05.002
(2016). Botond roska. Current Biology, 26(6), R223–R225. https://doi.org/10.1016/j.cub.2016.01.021
(2016). Botond roska. Current Biology, 26(6), R223–R225. https://doi.org/10.1016/j.cub.2016.01.021
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, & . (2016). Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity. Neuron, 89(1), 177–193. https://doi.org/10.1016/j.neuron.2015.11.032
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, & . (2016). Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity. Neuron, 89(1), 177–193. https://doi.org/10.1016/j.neuron.2015.11.032
Franke F, Fiscella M, Sevelev M, , Hierlemann A, & da Silveira RA. (2016). Structures of Neural Correlation and How They Favor Coding. Neuron, 89(2), 409–422. https://doi.org/10.1016/j.neuron.2015.12.037
Franke F, Fiscella M, Sevelev M, , Hierlemann A, & da Silveira RA. (2016). Structures of Neural Correlation and How They Favor Coding. Neuron, 89(2), 409–422. https://doi.org/10.1016/j.neuron.2015.12.037
Sorce B, Escobedo C, Toyoda Y, Stewart MP, Cattin CJ, Newton R, Banerjee I, Stettler A, , Eaton S, Hyman AA, Hierlemann A, & Müller DJ. (2015). Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nature Communications, 6, 8872. https://doi.org/10.1038/ncomms9872
Sorce B, Escobedo C, Toyoda Y, Stewart MP, Cattin CJ, Newton R, Banerjee I, Stettler A, , Eaton S, Hyman AA, Hierlemann A, & Müller DJ. (2015). Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nature Communications, 6, 8872. https://doi.org/10.1038/ncomms9872
Fiscella, Michele, Franke, Felix, Farrow, Karl, Mueller, Jan, , da Silveira, Rava Azeredo, & Hierlemann, Andreas. (2015). Visual coding with a population of direction-selective neurons. Journal of Neurophysiology, 114(4), 2485–2499. https://doi.org/10.1152/jn.00919.2014
Fiscella, Michele, Franke, Felix, Farrow, Karl, Mueller, Jan, , da Silveira, Rava Azeredo, & Hierlemann, Andreas. (2015). Visual coding with a population of direction-selective neurons. Journal of Neurophysiology, 114(4), 2485–2499. https://doi.org/10.1152/jn.00919.2014
Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann KK, & . (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science, 349(6243), 70–74. https://doi.org/10.1126/science.aab1687
Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann KK, & . (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science, 349(6243), 70–74. https://doi.org/10.1126/science.aab1687
Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, , & Filipowicz W. (2015). A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nature Communications, 6, 7305. https://doi.org/10.1038/ncomms8305
Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, , & Filipowicz W. (2015). A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Nature Communications, 6, 7305. https://doi.org/10.1038/ncomms8305
Krol J, & . (2015). Rods feed cones to keep them alive (Patent No. 4). Cell, 161(4), Article 4. https://doi.org/10.1016/j.cell.2015.04.031
Krol J, & . (2015). Rods feed cones to keep them alive (Patent No. 4). Cell, 161(4), Article 4. https://doi.org/10.1016/j.cell.2015.04.031
Adamantidis, Antoine, Arber, Silvia, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community. Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
Adamantidis, Antoine, Arber, Silvia, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community. Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
Zhang C, Rompani SB, , & McCall MA. (2014). Adeno-associated virus-rnai of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. Journal of Neurophysiology, 112(12), 3125–3137. https://doi.org/10.1152/jn.00505.2014
Zhang C, Rompani SB, , & McCall MA. (2014). Adeno-associated virus-rnai of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells. Journal of Neurophysiology, 112(12), 3125–3137. https://doi.org/10.1152/jn.00505.2014
Yonehara K, & . (2014). Neuroscience: Retinal projectome reveals organizing principles of the visual system (Patent No. 18). Current Biology, 24(18), Article 18. https://doi.org/10.1016/j.cub.2014.08.009
Yonehara K, & . (2014). Neuroscience: Retinal projectome reveals organizing principles of the visual system (Patent No. 18). Current Biology, 24(18), Article 18. https://doi.org/10.1016/j.cub.2014.08.009
Busskamp, Volker, Krol, Jacek, Nelidova, Dasha, Daum, Janine, Szikra, Tamas, Tsuda, Ben, Jüttner, Josephine, Farrow, Karl, Scherf, Brigitte Gross, Alvarez, Claudia Patricia Patino, Genoud, Christel, Sothilingam, Vithiyanjali, Tanimoto, Naoyuki, Stadler, Michael, Seeliger, Mathias, Stoffel, Markus, Filipowicz, Witold, & . (2014). MiRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function. Neuron, 83(3), 586–600. https://doi.org/10.1016/j.neuron.2014.06.020
Busskamp, Volker, Krol, Jacek, Nelidova, Dasha, Daum, Janine, Szikra, Tamas, Tsuda, Ben, Jüttner, Josephine, Farrow, Karl, Scherf, Brigitte Gross, Alvarez, Claudia Patricia Patino, Genoud, Christel, Sothilingam, Vithiyanjali, Tanimoto, Naoyuki, Stadler, Michael, Seeliger, Mathias, Stoffel, Markus, Filipowicz, Witold, & . (2014). MiRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function. Neuron, 83(3), 586–600. https://doi.org/10.1016/j.neuron.2014.06.020
Trenholm S, & . (2014). Cell-type-specific electric stimulation for vision restoration (Patent No. 1). Neuron, 83(1), Article 1. https://doi.org/10.1016/j.neuron.2014.06.012
Trenholm S, & . (2014). Cell-type-specific electric stimulation for vision restoration (Patent No. 1). Neuron, 83(1), Article 1. https://doi.org/10.1016/j.neuron.2014.06.012
Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sørensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanlal SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17(8), 1123–1129. https://doi.org/10.1038/nn.3752
Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sørensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanlal SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17(8), 1123–1129. https://doi.org/10.1038/nn.3752
Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, , & Bennett J. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Molecular Medicine, 6(9), 1175–1190. https://doi.org/10.15252/emmm.201404077
Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, , & Bennett J. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Molecular Medicine, 6(9), 1175–1190. https://doi.org/10.15252/emmm.201404077
Szikra, Tamas, Trenholm, Stuart, Drinnenberg, Antonia, Jüttner, Josephine, Raics, Zoltan, Farrow, Karl, Biel, Martin, Awatramani, Gautam, Clark, Damon A., Sahel, José-Alain, Da Silveira, Rava Azeredo, & . (2014). Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nature Neuroscience, 17(12), 1728–1735. https://doi.org/10.1038/nn.3852
Szikra, Tamas, Trenholm, Stuart, Drinnenberg, Antonia, Jüttner, Josephine, Raics, Zoltan, Farrow, Karl, Biel, Martin, Awatramani, Gautam, Clark, Damon A., Sahel, José-Alain, Da Silveira, Rava Azeredo, & . (2014). Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nature Neuroscience, 17(12), 1728–1735. https://doi.org/10.1038/nn.3852
Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK, & . (2013). The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron, 79(6), 1078–1085. https://doi.org/10.1016/j.neuron.2013.08.005
Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK, & . (2013). The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron, 79(6), 1078–1085. https://doi.org/10.1016/j.neuron.2013.08.005
Yonehara K, & . (2013). XMotion detection: Neuronal circuit meets theory (Patent No. 6). Cell, 154(6), Article 6. https://doi.org/10.1016/j.cell.2013.08.027
Yonehara K, & . (2013). XMotion detection: Neuronal circuit meets theory (Patent No. 6). Cell, 154(6), Article 6. https://doi.org/10.1016/j.cell.2013.08.027
Tang JC, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, , & Cepko CL. (2013). XA nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell, 154(4), 39–928. https://doi.org/10.1016/j.cell.2013.07.021
Tang JC, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, , & Cepko CL. (2013). XA nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell, 154(4), 39–928. https://doi.org/10.1016/j.cell.2013.07.021
Sahel JA, Léveillard T, Picaud S, Dalkara D, Marazova K, Safran A, Paques M, Duebel J, , & Mohand-Said S. (2013). Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251(7), 1669–1677. https://doi.org/10.1007/s00417-013-2314-7
Sahel JA, Léveillard T, Picaud S, Dalkara D, Marazova K, Safran A, Paques M, Duebel J, , & Mohand-Said S. (2013). Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefe’s Archive for Clinical and Experimental Ophthalmology, 251(7), 1669–1677. https://doi.org/10.1007/s00417-013-2314-7
Sahel JA, & . (2013). Gene therapy for blindness. Annual Review of Neuroscience, 36, 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304
Sahel JA, & . (2013). Gene therapy for blindness. Annual Review of Neuroscience, 36, 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304
Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K, & . (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold (Patent No. 2). Neuron, 78(2), Article 2. https://doi.org/10.1016/j.neuron.2013.02.014
Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K, & . (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold (Patent No. 2). Neuron, 78(2), Article 2. https://doi.org/10.1016/j.neuron.2013.02.014
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, , Peters AH, Eichmann A, Wellik D, Ducret S, & Rijli FM. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science, 339(6116), 204–207. https://doi.org/10.1126/science.1229326
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, , Peters AH, Eichmann A, Wellik D, Ducret S, & Rijli FM. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons. Science, 339(6116), 204–207. https://doi.org/10.1126/science.1229326
Packer AM, , & Häusser M. (2013). Targeting neurons and photons for optogenetics. Nature Neuroscience, 16(7), 805–815. https://doi.org/10.1038/nn.3427
Packer AM, , & Häusser M. (2013). Targeting neurons and photons for optogenetics. Nature Neuroscience, 16(7), 805–815. https://doi.org/10.1038/nn.3427
, Busskamp V, Sahel JA, & Picaud S. (2013). [Retinitis pigmentosa: eye sight restoration by optogenetic therapy]. Biologie aujourd’hui, 207(2), 21–109. https://doi.org/10.1051/jbio/2013011
, Busskamp V, Sahel JA, & Picaud S. (2013). [Retinitis pigmentosa: eye sight restoration by optogenetic therapy]. Biologie aujourd’hui, 207(2), 21–109. https://doi.org/10.1051/jbio/2013011
Fiscella M, Farrow K, Jones IL, Jäckel D, Müller J, Frey U, Bakkum DJ, Hantz P, , & Hierlemann A. (2012). Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection. Journal of Neuroscience Methods, 211(1), 103–113. https://doi.org/10.1016/j.jneumeth.2012.08.017
Fiscella M, Farrow K, Jones IL, Jäckel D, Müller J, Frey U, Bakkum DJ, Hantz P, , & Hierlemann A. (2012). Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection. Journal of Neuroscience Methods, 211(1), 103–113. https://doi.org/10.1016/j.jneumeth.2012.08.017
Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, & . (2012). Transcriptional code and disease map for adult retinal cell types. Nature Neuroscience, 15(3), 487–495. https://doi.org/10.1038/nn.3032
Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, & . (2012). Transcriptional code and disease map for adult retinal cell types. Nature Neuroscience, 15(3), 487–495. https://doi.org/10.1038/nn.3032
Busskamp V, Picaud S, Sahel JA, & . (2012). Optogenetic therapy for retinitis pigmentosa. Gene Therapy, 19(2), 169–175. https://doi.org/10.1038/gt.2011.155
Busskamp V, Picaud S, Sahel JA, & . (2012). Optogenetic therapy for retinitis pigmentosa. Gene Therapy, 19(2), 169–175. https://doi.org/10.1038/gt.2011.155
Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D, Chiovini B, Vizi ES, , & Rózsa B. (2012). Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nature Methods, 9(2), 201–208. https://doi.org/10.1038/nmeth.1851
Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D, Chiovini B, Vizi ES, , & Rózsa B. (2012). Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nature Methods, 9(2), 201–208. https://doi.org/10.1038/nmeth.1851
Busskamp V, & . (2011). Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology, 21(6), 942–946. https://doi.org/10.1016/j.conb.2011.06.001
Busskamp V, & . (2011). Optogenetic approaches to restoring visual function in retinitis pigmentosa. Current Opinion in Neurobiology, 21(6), 942–946. https://doi.org/10.1016/j.conb.2011.06.001
da Silveira, Rava Azeredo, & . (2011). Cell Types, Circuits, Computation. Current Opinion in Neurobiology, 21(5), 664–671. https://doi.org/10.1016/j.conb.2011.05.007
da Silveira, Rava Azeredo, & . (2011). Cell Types, Circuits, Computation. Current Opinion in Neurobiology, 21(5), 664–671. https://doi.org/10.1016/j.conb.2011.05.007
Fradot M, Busskamp V, Forster V, Cronin T, Léveillard T, Bennett J, Sahel JA, , & Picaud S. (2011). Gene therapy in ophthalmology: Validation on cultured retinal cells and explants from postmortem human eyes. Human Gene Therapy, 22(5), 587–593. https://doi.org/10.1089/hum.2010.157
Fradot M, Busskamp V, Forster V, Cronin T, Léveillard T, Bennett J, Sahel JA, , & Picaud S. (2011). Gene therapy in ophthalmology: Validation on cultured retinal cells and explants from postmortem human eyes. Human Gene Therapy, 22(5), 587–593. https://doi.org/10.1089/hum.2010.157
Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, & . (2011). Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature, 469(7330), 407–410. https://doi.org/10.1038/nature09711
Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, & . (2011). Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature, 469(7330), 407–410. https://doi.org/10.1038/nature09711
Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, & . (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329(5990), 413–417. https://doi.org/10.1126/science.1190897
Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, & . (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 329(5990), 413–417. https://doi.org/10.1126/science.1190897
Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D, Oertner TG, Schratt G, Bibel M, , & Filipowicz W. (2010). Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs. Cell, 141(4), 618–631. https://doi.org/10.1016/j.cell.2010.03.039
Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D, Oertner TG, Schratt G, Bibel M, , & Filipowicz W. (2010). Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs. Cell, 141(4), 618–631. https://doi.org/10.1016/j.cell.2010.03.039
Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, & . (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience, 12(10), 1308–1316. https://doi.org/10.1038/nn.2389
Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, & . (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit. Nature Neuroscience, 12(10), 1308–1316. https://doi.org/10.1038/nn.2389
Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, & . (2009). Genetic address book for retinal cell types. Nature Neuroscience, 12(9), 1197–1204. https://doi.org/10.1038/nn.2370
Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, & . (2009). Genetic address book for retinal cell types. Nature Neuroscience, 12(9), 1197–1204. https://doi.org/10.1038/nn.2370
Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, & . (2009). Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nature Methods, 6(2), 127–130. https://doi.org/10.1038/nmeth.1292
Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, & . (2009). Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nature Methods, 6(2), 127–130. https://doi.org/10.1038/nmeth.1292
Molnar A, Hsueh HA, , & Werblin FS. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience, 27(3), 569–590. https://doi.org/10.1007/s10827-009-0170-6
Molnar A, Hsueh HA, , & Werblin FS. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience, 27(3), 569–590. https://doi.org/10.1007/s10827-009-0170-6
Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, , Sun BB, & Cepko CL. (2008). The transcriptome of retinal Müller glial cells. Journal of Comparative Neurology, 509(2), 225–238. https://doi.org/10.1002/cne.21730
Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, , Sun BB, & Cepko CL. (2008). The transcriptome of retinal Müller glial cells. Journal of Comparative Neurology, 509(2), 225–238. https://doi.org/10.1002/cne.21730
Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, & . (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience, 11(6), 667–675. https://doi.org/10.1038/nn.2117
Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, & . (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature Neuroscience, 11(6), 667–675. https://doi.org/10.1038/nn.2117
Trimarchi JM, Stadler MB, , Billings N, Sun B, Bartch B, & Cepko CL. (2007). Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. Journal of Comparative Neurology, 502(6), 1047–1065. https://doi.org/10.1002/cne.21368
Trimarchi JM, Stadler MB, , Billings N, Sun B, Bartch B, & Cepko CL. (2007). Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. Journal of Comparative Neurology, 502(6), 1047–1065. https://doi.org/10.1002/cne.21368
Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, & . (2007). Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing. Current Biology, 17(11), 981–988. https://doi.org/10.1016/j.cub.2007.04.058
Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, & . (2007). Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing. Current Biology, 17(11), 981–988. https://doi.org/10.1016/j.cub.2007.04.058
Werblin F, & . (2007). The movies in our eyes. Scientific American, 296(4), 72–79. https://doi.org/10.1038/scientificamerican0407-72
Werblin F, & . (2007). The movies in our eyes. Scientific American, 296(4), 72–79. https://doi.org/10.1038/scientificamerican0407-72
, Molnar, Alyosha, & Werblin, Frank S. (2006). Parallel processing in retinal ganglion cells: How integration of space-time patterns of excitation and inhibition form the spiking output. Journal of Neurophysiology, 95(6), 3810–3822. https://doi.org/10.1152/jn.00113.2006
, Molnar, Alyosha, & Werblin, Frank S. (2006). Parallel processing in retinal ganglion cells: How integration of space-time patterns of excitation and inhibition form the spiking output. Journal of Neurophysiology, 95(6), 3810–3822. https://doi.org/10.1152/jn.00113.2006
Porod W, Werblin F, Chua LO, Roska T, Rodriguez-Vazquez A, , Fay P, Bernstein GH, Huang YF, & Csurgay AI. (2004). Bio-inspired nano-sensor-enhanced CNN visual computer. Annals of the New York Academy of Sciences, 1013, 92–109. https://doi.org/10.1196/annals.1305.011
Porod W, Werblin F, Chua LO, Roska T, Rodriguez-Vazquez A, , Fay P, Bernstein GH, Huang YF, & Csurgay AI. (2004). Bio-inspired nano-sensor-enhanced CNN visual computer. Annals of the New York Academy of Sciences, 1013, 92–109. https://doi.org/10.1196/annals.1305.011
, & Werblin F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nature Neuroscience, 6(6), 600–608. https://doi.org/10.1038/nn1061
, & Werblin F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nature Neuroscience, 6(6), 600–608. https://doi.org/10.1038/nn1061
Guerrero, G, Siegel, MS, , Loots, E, & Isacoff, EY. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. BIOPHYSICAL JOURNAL, 83, 3607–3618. https://doi.org/10.1016/s0006-3495(02)75361-7
Guerrero, G, Siegel, MS, , Loots, E, & Isacoff, EY. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. BIOPHYSICAL JOURNAL, 83, 3607–3618. https://doi.org/10.1016/s0006-3495(02)75361-7
, & Werblin F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410(6828), 583–587. https://doi.org/10.1038/35069068
, & Werblin F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410(6828), 583–587. https://doi.org/10.1038/35069068
Werblin F, , & Balya D. (2001). Parallel processing in the mammalian retina: Lateral and vertical interactions across stacked representations. Progress in Brain Research, 131, 229–238. https://doi.org/10.1016/s0079-6123(01)31019-1
Werblin F, , & Balya D. (2001). Parallel processing in the mammalian retina: Lateral and vertical interactions across stacked representations. Progress in Brain Research, 131, 229–238. https://doi.org/10.1016/s0079-6123(01)31019-1
, Nemeth E, Orzo L, & Werblin FS. (2000). Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander. Journal of Neuroscience, 20(5), 1941–1951. https://doi.org/10.1523/jneurosci.20-05-01941.2000
, Nemeth E, Orzo L, & Werblin FS. (2000). Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander. Journal of Neuroscience, 20(5), 1941–1951. https://doi.org/10.1523/jneurosci.20-05-01941.2000
, Nemeth E, & Werblin FS. (1998). Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. Journal of Neuroscience, 18(9), 3451–3459. https://doi.org/10.1523/jneurosci.18-09-03451.1998
, Nemeth E, & Werblin FS. (1998). Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. Journal of Neuroscience, 18(9), 3451–3459. https://doi.org/10.1523/jneurosci.18-09-03451.1998
Gaal L, , Picaud SA, Wu SM, Marc R, & Werblin FS. (1998). Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. Journal of Neurophysiology, 79(1), 190–196. https://doi.org/10.1152/jn.1998.79.1.190
Gaal L, , Picaud SA, Wu SM, Marc R, & Werblin FS. (1998). Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. Journal of Neurophysiology, 79(1), 190–196. https://doi.org/10.1152/jn.1998.79.1.190
, Gaal, L, & Werblin, FS. (1998). Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: An analytical study. JOURNAL OF NEUROPHYSIOLOGY, 80, 1951–1960. https://doi.org/10.1152/jn.1998.80.4.1951
, Gaal, L, & Werblin, FS. (1998). Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: An analytical study. JOURNAL OF NEUROPHYSIOLOGY, 80, 1951–1960. https://doi.org/10.1152/jn.1998.80.4.1951