Publications
92 found
Show per page
Muller, Alissa, Sullivan, Jack, Schwarzer, Wibke, Wang, Mantian, Park-Windhol, Cindy, Hasler, Pascal W., Janeschitz-Kriegl, Lucas, Duman, Mert, Klingler, Beryll, Matsell, Jane, Hostettler, Simon Manuel, Galliker, Patricia, Hou, Yanyan, Balmer, Pierre, Virág, Tamás, Barrera, Luis Alberto, Young, Lauren, Xu, Quan, Magda, Dániel Péter, et al. (2025). High-efficiency base editing in the retina in primates and human tissues [Journal-article]. Nature Medicine, 31(2), 490–501. https://doi.org/10.1038/s41591-024-03422-8
Muller, Alissa, Sullivan, Jack, Schwarzer, Wibke, Wang, Mantian, Park-Windhol, Cindy, Hasler, Pascal W., Janeschitz-Kriegl, Lucas, Duman, Mert, Klingler, Beryll, Matsell, Jane, Hostettler, Simon Manuel, Galliker, Patricia, Hou, Yanyan, Balmer, Pierre, Virág, Tamás, Barrera, Luis Alberto, Young, Lauren, Xu, Quan, Magda, Dániel Péter, et al. (2025). High-efficiency base editing in the retina in primates and human tissues [Journal-article]. Nature Medicine, 31(2), 490–501. https://doi.org/10.1038/s41591-024-03422-8
Morikawa, Rei, Rodrigues, Tiago M., Schreyer, Helene Marianne, Cowan, Cameron S., Nadeau, Sarah, Graff-Meyer, Alexandra, Patino-Alvarez, Claudia P., Khani, Mohammad Hossein, Jüttner, Josephine, & Neuron, 112(22), 3715–3733. https://doi.org/10.1016/j.neuron.2024.08.015
. (2024). The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision [Journal-article].
Morikawa, Rei, Rodrigues, Tiago M., Schreyer, Helene Marianne, Cowan, Cameron S., Nadeau, Sarah, Graff-Meyer, Alexandra, Patino-Alvarez, Claudia P., Khani, Mohammad Hossein, Jüttner, Josephine, & Neuron, 112(22), 3715–3733. https://doi.org/10.1016/j.neuron.2024.08.015
. (2024). The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision [Journal-article].
Müllner, Fiona E., & Neuron, 112(16), 2765–2782. https://doi.org/10.1016/j.neuron.2024.06.001
. (2024). Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features.
Müllner, Fiona E., & Neuron, 112(16), 2765–2782. https://doi.org/10.1016/j.neuron.2024.06.001
. (2024). Individual thalamic inhibitory interneurons are functionally specialized toward distinct visual features.
Wahle, Philipp, Brancati, Giovanna, Harmel, Christoph, He, Zhisong, Gut, Gabriele, del Castillo, Jacobo Sarabia, Xavier da Silveira dos Santos, Aline, Yu, Qianhui, Noser, Pascal, Fleck, Jonas Simon, Gjeta, Bruno, Pavlinić, Dinko, Picelli, Simone, Hess, Max, Schmidt, Gregor W., Lummen, Tom T. A., Hou, Yanyan, Galliker, Patricia, Goldblum, David, et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology, 41(12), 1765–1775. https://doi.org/10.1038/s41587-023-01747-2
Wahle, Philipp, Brancati, Giovanna, Harmel, Christoph, He, Zhisong, Gut, Gabriele, del Castillo, Jacobo Sarabia, Xavier da Silveira dos Santos, Aline, Yu, Qianhui, Noser, Pascal, Fleck, Jonas Simon, Gjeta, Bruno, Pavlinić, Dinko, Picelli, Simone, Hess, Max, Schmidt, Gregor W., Lummen, Tom T. A., Hou, Yanyan, Galliker, Patricia, Goldblum, David, et al. (2023). Multimodal spatiotemporal phenotyping of human retinal organoid development. Nature Biotechnology, 41(12), 1765–1775. https://doi.org/10.1038/s41587-023-01747-2
Cadoni, Sara, Demené, Charlie, Alcala, Ignacio, Provansal, Matthieu, Nguyen, Diep, Nelidova, Dasha, Labernède, Guillaume, Lubetzki, Jules, Goulet, Ruben, Burban, Emma, Dégardin, Julie, Simonutti, Manuel, Gauvain, Gregory, Arcizet, Fabrice, Marre, Olivier, Dalkara, Deniz, Nature Nanotechnology, 18(6), 667–676. https://doi.org/10.1038/s41565-023-01359-6
, Sahel, José Alain, Tanter, Mickael, & Picaud, Serge. (2023). Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration.
Cadoni, Sara, Demené, Charlie, Alcala, Ignacio, Provansal, Matthieu, Nguyen, Diep, Nelidova, Dasha, Labernède, Guillaume, Lubetzki, Jules, Goulet, Ruben, Burban, Emma, Dégardin, Julie, Simonutti, Manuel, Gauvain, Gregory, Arcizet, Fabrice, Marre, Olivier, Dalkara, Deniz, Nature Nanotechnology, 18(6), 667–676. https://doi.org/10.1038/s41565-023-01359-6
, Sahel, José Alain, Tanter, Mickael, & Picaud, Serge. (2023). Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration.
Munz, M., Bharioke, A., Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T. M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., Ledergerber, N., Gross-Scherf, B., Rózsa, B., Krol, J., Picelli, S., Cowan, C. S., & Roska, B. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell, 186(9), 1930–1949. https://doi.org/10.1016/j.cell.2023.03.025
Munz, M., Bharioke, A., Kosche, G., Moreno-Juan, V., Brignall, A., Rodrigues, T. M., Graff-Meyer, A., Ulmer, T., Haeuselmann, S., Pavlinic, D., Ledergerber, N., Gross-Scherf, B., Rózsa, B., Krol, J., Picelli, S., Cowan, C. S., & Roska, B. (2023). Pyramidal neurons form active, transient, multilayered circuits perturbed by autism-associated mutations at the inception of neocortex. Cell, 186(9), 1930–1949. https://doi.org/10.1016/j.cell.2023.03.025
Judák, Linda, Chiovini, Balázs, Juhász, Gábor, Pálfi, Dénes, Mezriczky, Zsolt, Szadai, Zoltán, Katona, Gergely, Szmola, Benedek, Ócsai, Katalin, Martinecz, Bernadett, Mihály, Anna, Dénes, Ádám, Kerekes, Bálint, Szepesi, Áron, Szalay, Gergely, Ulbert, István, Mucsi, Zoltán, Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34520-1
, & Rózsa, Balázs. (2022). Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo.
Judák, Linda, Chiovini, Balázs, Juhász, Gábor, Pálfi, Dénes, Mezriczky, Zsolt, Szadai, Zoltán, Katona, Gergely, Szmola, Benedek, Ócsai, Katalin, Martinecz, Bernadett, Mihály, Anna, Dénes, Ádám, Kerekes, Bálint, Szepesi, Áron, Szalay, Gergely, Ulbert, István, Mucsi, Zoltán, Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34520-1
, & Rózsa, Balázs. (2022). Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo.
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, & Neuron, 110(12), 2024–2040. https://doi.org/10.1016/j.neuron.2022.03.032
. (2022). General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons.
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, & Neuron, 110(12), 2024–2040. https://doi.org/10.1016/j.neuron.2022.03.032
. (2022). General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons.
Brunner C, Grillet M, Urban A, Nature Protocols, 16(7), 3547–3571. https://doi.org/10.1038/s41596-021-00548-8
, Montaldo G, & Macé E. (2021). Whole-brain functional ultrasound imaging in awake head-fixed mice.
Brunner C, Grillet M, Urban A, Nature Protocols, 16(7), 3547–3571. https://doi.org/10.1038/s41596-021-00548-8
, Montaldo G, & Macé E. (2021). Whole-brain functional ultrasound imaging in awake head-fixed mice.
Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert JB, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, & Nature Medicine, 27(7), 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
. (2021). Partial recovery of visual function in a blind patient after optogenetic therapy.
Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Esposti SD, Delaux A, de Saint Aubert JB, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, & Nature Medicine, 27(7), 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
. (2021). Partial recovery of visual function in a blind patient after optogenetic therapy.
Cowan, Cameron S., Renner, Magdalena, De Gennaro, Martina, Gross-Scherf, Brigitte, Goldblum, David, Hou, Yanyan, Munz, Martin, Rodrigues, Tiago M., Krol, Jacek, Szikra, Tamas, Cuttat, Rachel, Waldt, Annick, Papasaikas, Panagiotis, Diggelmann, Roland, Patino-Alvarez, Claudia P., Galliker, Patricia, Spirig, Stefan E., Pavlinic, Dinko, Gerber-Hollbach, Nadine, et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell, 182(6), 1623–1640. https://doi.org/10.1016/j.cell.2020.08.013
Cowan, Cameron S., Renner, Magdalena, De Gennaro, Martina, Gross-Scherf, Brigitte, Goldblum, David, Hou, Yanyan, Munz, Martin, Rodrigues, Tiago M., Krol, Jacek, Szikra, Tamas, Cuttat, Rachel, Waldt, Annick, Papasaikas, Panagiotis, Diggelmann, Roland, Patino-Alvarez, Claudia P., Galliker, Patricia, Spirig, Stefan E., Pavlinic, Dinko, Gerber-Hollbach, Nadine, et al. (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell, 182(6), 1623–1640. https://doi.org/10.1016/j.cell.2020.08.013
Della Volpe-Waizel, Maria, Traber, Ghislaine L, Maloca, Peter, Zinkernagel M, Schmidt-Erfurth U, Rubin G, Ophthalmic Research, 63(2), 77–87. https://doi.org/10.1159/000501887
, Otto T, Weleber RG, & Scholl HPN. (2020). New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group.
Della Volpe-Waizel, Maria, Traber, Ghislaine L, Maloca, Peter, Zinkernagel M, Schmidt-Erfurth U, Rubin G, Ophthalmic Research, 63(2), 77–87. https://doi.org/10.1159/000501887
, Otto T, Weleber RG, & Scholl HPN. (2020). New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group.
Traber GL, Della Volpe-Waizel M, Maloca P, Schmidt-Erfurth U, Rubin G, Ophthalmic Research, 63(2), 88–96. https://doi.org/10.1159/000504892
, Cordeiro MF, Otto T, Weleber R, Lesmes LA, Arleo A, & Scholl HPN. (2020). New Technologies for Outcome Measures in Glaucoma: Review by the European Vision Institute Special Interest Focus Group.
Traber GL, Della Volpe-Waizel M, Maloca P, Schmidt-Erfurth U, Rubin G, Ophthalmic Research, 63(2), 88–96. https://doi.org/10.1159/000504892
, Cordeiro MF, Otto T, Weleber R, Lesmes LA, Arleo A, & Scholl HPN. (2020). New Technologies for Outcome Measures in Glaucoma: Review by the European Vision Institute Special Interest Focus Group.
Gaub BM, Kasuba KC, Mace E, Strittmatter T, Laskowski PR, Geissler SA, Hierlemann A, Fussenegger M, Proceedings of the National Academy of Sciences of the United States of America, 117(2), 848–856. https://doi.org/10.1073/pnas.1909933117
, & Müller DJ. (2020). Neurons differentiate magnitude and location of mechanical stimuli.
Gaub BM, Kasuba KC, Mace E, Strittmatter T, Laskowski PR, Geissler SA, Hierlemann A, Fussenegger M, Proceedings of the National Academy of Sciences of the United States of America, 117(2), 848–856. https://doi.org/10.1073/pnas.1909933117
, & Müller DJ. (2020). Neurons differentiate magnitude and location of mechanical stimuli.
Nelidova, Dasha, Morikawa, Rei K., Cowan, Cameron S., Raics, Zoltan, Goldblum, David, Scholl, Hendrik P. N., Szikra, Tamas, Szabo, Arnold, Hillier, Daniel, & Science, 368(6495), 1108–1113. https://doi.org/10.1126/science.aaz5887
. (2020). Restoring light sensitivity using tunable near-infrared sensors.
Nelidova, Dasha, Morikawa, Rei K., Cowan, Cameron S., Raics, Zoltan, Goldblum, David, Scholl, Hendrik P. N., Szikra, Tamas, Szabo, Arnold, Hillier, Daniel, & Science, 368(6495), 1108–1113. https://doi.org/10.1126/science.aaz5887
. (2020). Restoring light sensitivity using tunable near-infrared sensors.
Picaud S, Dalkara D, Marazova K, Goureau O, Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26280–26287. https://doi.org/10.1073/pnas.1902292116
, & Sahel JA. (2019). The primate model for understanding and restoring vision.
Picaud S, Dalkara D, Marazova K, Goureau O, Proceedings of the National Academy of Sciences of the United States of America, 116(52), 26280–26287. https://doi.org/10.1073/pnas.1902292116
, & Sahel JA. (2019). The primate model for understanding and restoring vision.
Schubert R, Herzog S, Trenholm S, Nature Protocols, 14(11), 3205–3219. https://doi.org/10.1038/s41596-019-0221-z
, & Müller DJ. (2019). Magnetically guided virus stamping for the targeted infection of single cells or groups of cells.
Schubert R, Herzog S, Trenholm S, Nature Protocols, 14(11), 3205–3219. https://doi.org/10.1038/s41596-019-0221-z
, & Müller DJ. (2019). Magnetically guided virus stamping for the targeted infection of single cells or groups of cells.
Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, Schaettin M, Egolf L, van der Bourg A, Bethge P, Haenraets K, Frézel N, Topilko T, Perin P, Hillier D, Hildebrand S, Schueth A, Roebroeck A, Nature Methods, 16(11), 1105–1108. https://doi.org/10.1038/s41592-019-0554-0
, et al. (2019). The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue.
Voigt FF, Kirschenbaum D, Platonova E, Pagès S, Campbell RAA, Kastli R, Schaettin M, Egolf L, van der Bourg A, Bethge P, Haenraets K, Frézel N, Topilko T, Perin P, Hillier D, Hildebrand S, Schueth A, Roebroeck A, Nature Methods, 16(11), 1105–1108. https://doi.org/10.1038/s41592-019-0554-0
, et al. (2019). The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue.
Jüttner, Josephine, Szabo, Arnold, Gross-Scherf, Brigitte, Morikawa, Rei K., Rompani, Santiago B., Hantz, Peter, Szikra, Tamas, Esposti, Federico, Cowan, Cameron S., Bharioke, Arjun, Patino-Alvarez, Claudia P., Keles, Özkan, Kusnyerik, Akos, Azoulay, Thierry, Hartl, Dominik, Krebs, Arnaud R., Schübeler, Dirk, Hajdu, Rozina I., Lukats, Akos, et al. (2019). Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 22(8), 1345–1356. https://doi.org/10.1038/s41593-019-0431-2
Jüttner, Josephine, Szabo, Arnold, Gross-Scherf, Brigitte, Morikawa, Rei K., Rompani, Santiago B., Hantz, Peter, Szikra, Tamas, Esposti, Federico, Cowan, Cameron S., Bharioke, Arjun, Patino-Alvarez, Claudia P., Keles, Özkan, Kusnyerik, Akos, Azoulay, Thierry, Hartl, Dominik, Krebs, Arnaud R., Schübeler, Dirk, Hajdu, Rozina I., Lukats, Akos, et al. (2019). Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nature Neuroscience, 22(8), 1345–1356. https://doi.org/10.1038/s41593-019-0431-2
EMBO Molecular Medicine, 11(3). https://doi.org/10.15252/emmm.201810218
. (2019). The first steps in vision: cell types, circuits, and repair.
EMBO Molecular Medicine, 11(3). https://doi.org/10.15252/emmm.201810218
. (2019). The first steps in vision: cell types, circuits, and repair.
Sahel JA, Bennett J, & Science Translational Medicine, 11(494). https://doi.org/10.1126/scitranslmed.aax2324
. (2019). Depicting brighter possibilities for treating blindness.
Sahel JA, Bennett J, & Science Translational Medicine, 11(494). https://doi.org/10.1126/scitranslmed.aax2324
. (2019). Depicting brighter possibilities for treating blindness.
Walters S, Schwarz C, Sharma R, Rossi EA, Fischer WS, DiLoreto DA Jr, Strazzeri J, Nelidova D, Biomedical Optics Express, 10(1), 66–82. https://doi.org/10.1364/BOE.10.000066
, Hunter JJ, Williams DR, & Merigan WH. (2019). Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye.
Walters S, Schwarz C, Sharma R, Rossi EA, Fischer WS, DiLoreto DA Jr, Strazzeri J, Nelidova D, Biomedical Optics Express, 10(1), 66–82. https://doi.org/10.1364/BOE.10.000066
, Hunter JJ, Williams DR, & Merigan WH. (2019). Cellular-scale evaluation of induced photoreceptor degeneration in the living primate eye.
Macé É, Montaldo G, Trenholm S, Cowan C, Brignall A, Urban A, & Neuron, 100(5), 1241–1251. https://doi.org/10.1016/j.neuron.2018.11.031
. (2018). Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration.
Macé É, Montaldo G, Trenholm S, Cowan C, Brignall A, Urban A, & Neuron, 100(5), 1241–1251. https://doi.org/10.1016/j.neuron.2018.11.031
. (2018). Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration.
Drinnenberg, Antonia, Franke, Felix, Morikawa, Rei K., Jüttner, Josephine, Hillier, Daniel, Hantz, Peter, Hierlemann, Andreas, Azeredo da Silveira, Rava, & Neuron, 99(1), 117–134. https://doi.org/10.1016/j.neuron.2018.06.001
. (2018). How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse.
Drinnenberg, Antonia, Franke, Felix, Morikawa, Rei K., Jüttner, Josephine, Hillier, Daniel, Hantz, Peter, Hierlemann, Andreas, Azeredo da Silveira, Rava, & Neuron, 99(1), 117–134. https://doi.org/10.1016/j.neuron.2018.06.001
. (2018). How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse.
Nature, 557(7705), 359–367. https://doi.org/10.1038/s41586-018-0076-4
, & Sahel JA. (2018). Restoring vision.
Nature, 557(7705), 359–367. https://doi.org/10.1038/s41586-018-0076-4
, & Sahel JA. (2018). Restoring vision.
Schubert, Rajib, Trenholm, Stuart, Balint, Kamill, Kosche, Georg, Munz, Martin, Martinez-Martin, David, Newton, Richard, Krol, Jacek, Scherf, Brigitte Gross, Yonehara, Keisuke, Wertz, Adrian, Ponti, Aaron, Ghanem, Alexander, Hillier, Daniel, Conzelmann, Karl-Klaus, Nature Biotechnology, 36(1), 81–88. https://doi.org/10.1038/nbt.4034
, Cowan, Cameron S., Mohr, Manuel A., Flaschner, Gotthold, & Muller, Daniel J. (2018). Virus stamping for targeted single-cell infection in vitro and in vivo.
Schubert, Rajib, Trenholm, Stuart, Balint, Kamill, Kosche, Georg, Munz, Martin, Martinez-Martin, David, Newton, Richard, Krol, Jacek, Scherf, Brigitte Gross, Yonehara, Keisuke, Wertz, Adrian, Ponti, Aaron, Ghanem, Alexander, Hillier, Daniel, Conzelmann, Karl-Klaus, Nature Biotechnology, 36(1), 81–88. https://doi.org/10.1038/nbt.4034
, Cowan, Cameron S., Mohr, Manuel A., Flaschner, Gotthold, & Muller, Daniel J. (2018). Virus stamping for targeted single-cell infection in vitro and in vivo.
Hartl, Dominik, Krebs, Arnaud R., Juttner, Josephine, Nucleic Acids Research, 45(20), 11607–11621. https://doi.org/10.1093/nar/gkx923
, & Schubeler, Dirk. (2017). Cis-regulatory landscapes of four cell types of the retina.
Hartl, Dominik, Krebs, Arnaud R., Juttner, Josephine, Nucleic Acids Research, 45(20), 11607–11621. https://doi.org/10.1093/nar/gkx923
, & Schubeler, Dirk. (2017). Cis-regulatory landscapes of four cell types of the retina.
Daum, Janine M., Keles, Özkan, Holwerda, Sjoerd J. B., Kohler, Hubertus, Rijli, Filippo M., Stadler, Michael, & eLife, 6. https://doi.org/10.7554/eLife.31437
. (2017). The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch.
Daum, Janine M., Keles, Özkan, Holwerda, Sjoerd J. B., Kohler, Hubertus, Rijli, Filippo M., Stadler, Michael, & eLife, 6. https://doi.org/10.7554/eLife.31437
. (2017). The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch.
Yonehara, Keisuke, & CREATEd viruses go global [NATURE PUBLISHING GROUP]. 20, 1041–1042. https://doi.org/10.1038/nn.4600
. (2017).
Yonehara, Keisuke, & CREATEd viruses go global [NATURE PUBLISHING GROUP]. 20, 1041–1042. https://doi.org/10.1038/nn.4600
. (2017).
Hillier, Daniel, Fiscella, Michele, Drinnenberg, Antonia, Trenholm, Stuart, Rompani, Santiago B., Raics, Zoltan, Katona, Gergely, Juettner, Josephine, Hierlemann, Andreas, Rozsa, Balazs, & Nature Neuroscience, 20(7), 960–968. https://doi.org/10.1038/nn.4566
. (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex.
Hillier, Daniel, Fiscella, Michele, Drinnenberg, Antonia, Trenholm, Stuart, Rompani, Santiago B., Raics, Zoltan, Katona, Gergely, Juettner, Josephine, Hierlemann, Andreas, Rozsa, Balazs, & Nature Neuroscience, 20(7), 960–968. https://doi.org/10.1038/nn.4566
. (2017). Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex.
Rompani, Santiago B., Müllner, Fiona E., Wanner, Adrian, Neuron, 93(4), 767–776. https://doi.org/10.1016/j.neuron.2017.01.028
, Roth, Chiara N., Yonehara, Keisuke, & Roska, Botond. (2017). Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing.
Rompani, Santiago B., Müllner, Fiona E., Wanner, Adrian, Neuron, 93(4), 767–776. https://doi.org/10.1016/j.neuron.2017.01.028
, Roth, Chiara N., Yonehara, Keisuke, & Roska, Botond. (2017). Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing.
Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, Yonehara K, Nature Communications, 8, 14456. https://doi.org/10.1038/ncomms14456
, Xu C, Lüthi A, Caille S, & Georges F. (2017). NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis.
Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, Yonehara K, Nature Communications, 8, 14456. https://doi.org/10.1038/ncomms14456
, Xu C, Lüthi A, Caille S, & Georges F. (2017). NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis.
Alsteens, David, Newton, Richard, Schubert, Rajib, Martinez-Martin, David, Delguste, Martin, Nature Nanotechnology, 12(2), 177–183. https://doi.org/10.1038/nnano.2016.228
, & Mueller, Daniel J. (2017). Nanomechanical mapping of first binding steps of a virus to animal cells.
Alsteens, David, Newton, Richard, Schubert, Rajib, Martinez-Martin, David, Delguste, Martin, Nature Nanotechnology, 12(2), 177–183. https://doi.org/10.1038/nnano.2016.228
, & Mueller, Daniel J. (2017). Nanomechanical mapping of first binding steps of a virus to animal cells.
Scholl, Hendrik P. N., Strauss, Rupert W., Singh, Mandeep S., Dalkara, Deniz, Science Translational Medicine, 8(368). https://doi.org/10.1126/scitranslmed.aaf2838
, Picaud, Serge, & Sahel, Jose-Alain. (2016). Emerging therapies for inherited retinal degeneration.
Scholl, Hendrik P. N., Strauss, Rupert W., Singh, Mandeep S., Dalkara, Deniz, Science Translational Medicine, 8(368). https://doi.org/10.1126/scitranslmed.aaf2838
, Picaud, Serge, & Sahel, Jose-Alain. (2016). Emerging therapies for inherited retinal degeneration.
Ting, Alice, Segal, Rosalind, Carandini, Matteo, Emiliani, Valentina, Yizhar, Ofer, Opportunities for Technology and Tool Development [CELL PRESS]. 92, 564–566. https://doi.org/10.1016/j.neuron.2016.10.042
, Ji, Na, & Anderson, David J. (2016).
Ting, Alice, Segal, Rosalind, Carandini, Matteo, Emiliani, Valentina, Yizhar, Ofer, Opportunities for Technology and Tool Development [CELL PRESS]. 92, 564–566. https://doi.org/10.1016/j.neuron.2016.10.042
, Ji, Na, & Anderson, David J. (2016).
Yonehara K, & Neuron, 91(5), 945–947. https://doi.org/10.1016/j.neuron.2016.08.029
. (2016). “MAPseq”-uencing Long-Range Neuronal Projections.
Yonehara K, & Neuron, 91(5), 945–947. https://doi.org/10.1016/j.neuron.2016.08.029
. (2016). “MAPseq”-uencing Long-Range Neuronal Projections.
Krol J, & Nature Neuroscience, 19(8), Article 8. https://doi.org/10.1038/nn.4344
. (2016). Treatment synergy in axon regeneration (Patent No. 8).
Krol J, & Nature Neuroscience, 19(8), Article 8. https://doi.org/10.1038/nn.4344
. (2016). Treatment synergy in axon regeneration (Patent No. 8).
Yue L, Weiland JD, Progress in Retinal and Eye Research, 53, 21–47. https://doi.org/10.1016/j.preteyeres.2016.05.002
, & Humayun MS. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems.
Yue L, Weiland JD, Progress in Retinal and Eye Research, 53, 21–47. https://doi.org/10.1016/j.preteyeres.2016.05.002
, & Humayun MS. (2016). Retinal stimulation strategies to restore vision: Fundamentals and systems.
Current Biology, 26(6), R223–R225. https://doi.org/10.1016/j.cub.2016.01.021
(2016). Botond roska.
Current Biology, 26(6), R223–R225. https://doi.org/10.1016/j.cub.2016.01.021
(2016). Botond roska.
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, & Neuron, 89(1), 177–193. https://doi.org/10.1016/j.neuron.2015.11.032
. (2016). Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity.
Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, & Neuron, 89(1), 177–193. https://doi.org/10.1016/j.neuron.2015.11.032
. (2016). Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity.
Franke F, Fiscella M, Sevelev M, Neuron, 89(2), 409–422. https://doi.org/10.1016/j.neuron.2015.12.037
, Hierlemann A, & da Silveira RA. (2016). Structures of Neural Correlation and How They Favor Coding.
Franke F, Fiscella M, Sevelev M, Neuron, 89(2), 409–422. https://doi.org/10.1016/j.neuron.2015.12.037
, Hierlemann A, & da Silveira RA. (2016). Structures of Neural Correlation and How They Favor Coding.
Sorce B, Escobedo C, Toyoda Y, Stewart MP, Cattin CJ, Newton R, Banerjee I, Stettler A, Nature Communications, 6, 8872. https://doi.org/10.1038/ncomms9872
, Eaton S, Hyman AA, Hierlemann A, & Müller DJ. (2015). Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement.
Sorce B, Escobedo C, Toyoda Y, Stewart MP, Cattin CJ, Newton R, Banerjee I, Stettler A, Nature Communications, 6, 8872. https://doi.org/10.1038/ncomms9872
, Eaton S, Hyman AA, Hierlemann A, & Müller DJ. (2015). Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement.
Fiscella, Michele, Franke, Felix, Farrow, Karl, Mueller, Jan, Journal of Neurophysiology, 114(4), 2485–2499. https://doi.org/10.1152/jn.00919.2014
, da Silveira, Rava Azeredo, & Hierlemann, Andreas. (2015). Visual coding with a population of direction-selective neurons.
Fiscella, Michele, Franke, Felix, Farrow, Karl, Mueller, Jan, Journal of Neurophysiology, 114(4), 2485–2499. https://doi.org/10.1152/jn.00919.2014
, da Silveira, Rava Azeredo, & Hierlemann, Andreas. (2015). Visual coding with a population of direction-selective neurons.
Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann KK, & Science, 349(6243), 70–74. https://doi.org/10.1126/science.aab1687
. (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules.
Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann KK, & Science, 349(6243), 70–74. https://doi.org/10.1126/science.aab1687
. (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules.
Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Nature Communications, 6, 7305. https://doi.org/10.1038/ncomms8305
, & Filipowicz W. (2015). A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture.
Krol J, Krol I, Alvarez CP, Fiscella M, Hierlemann A, Nature Communications, 6, 7305. https://doi.org/10.1038/ncomms8305
, & Filipowicz W. (2015). A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture.
Krol J, & Cell, 161(4), Article 4. https://doi.org/10.1016/j.cell.2015.04.031
. (2015). Rods feed cones to keep them alive (Patent No. 4).
Krol J, & Cell, 161(4), Article 4. https://doi.org/10.1016/j.cell.2015.04.031
. (2015). Rods feed cones to keep them alive (Patent No. 4).
Adamantidis, Antoine, Arber, Silvia, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community. Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
Adamantidis, Antoine, Arber, Silvia, Bains, Jaideep S., Bamberg, Ernst, Bonci, Antonello, Buzsaki, Gyoergy, Cardin, Jessica A., Costa, Rui M., Dan, Yang, Goda, Yukiko, Graybiel, Ann M., Haeusser, Michael, Hegemann, Peter, Huguenard, John R., Insel, Thomas R., Janak, Patricia H., Johnston, Daniel, Josselyn, Sheena A., Koch, Christof, et al. (2015). Optogenetics: 10 years after ChR2 in neurons--views from the community. Nature Neuroscience, 18(9), 1202–1212. https://doi.org/10.1038/nn.4106
Zhang C, Rompani SB, Journal of Neurophysiology, 112(12), 3125–3137. https://doi.org/10.1152/jn.00505.2014
, & McCall MA. (2014). Adeno-associated virus-rnai of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells.
Zhang C, Rompani SB, Journal of Neurophysiology, 112(12), 3125–3137. https://doi.org/10.1152/jn.00505.2014
, & McCall MA. (2014). Adeno-associated virus-rnai of GlyRα1 and characterization of its synapse-specific inhibition in OFF alpha transient retinal ganglion cells.
Yonehara K, & Current Biology, 24(18), Article 18. https://doi.org/10.1016/j.cub.2014.08.009
. (2014). Neuroscience: Retinal projectome reveals organizing principles of the visual system (Patent No. 18).
Yonehara K, & Current Biology, 24(18), Article 18. https://doi.org/10.1016/j.cub.2014.08.009
. (2014). Neuroscience: Retinal projectome reveals organizing principles of the visual system (Patent No. 18).
Busskamp, Volker, Krol, Jacek, Nelidova, Dasha, Daum, Janine, Szikra, Tamas, Tsuda, Ben, Jüttner, Josephine, Farrow, Karl, Scherf, Brigitte Gross, Alvarez, Claudia Patricia Patino, Genoud, Christel, Sothilingam, Vithiyanjali, Tanimoto, Naoyuki, Stadler, Michael, Seeliger, Mathias, Stoffel, Markus, Filipowicz, Witold, & Neuron, 83(3), 586–600. https://doi.org/10.1016/j.neuron.2014.06.020
. (2014). MiRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function.
Busskamp, Volker, Krol, Jacek, Nelidova, Dasha, Daum, Janine, Szikra, Tamas, Tsuda, Ben, Jüttner, Josephine, Farrow, Karl, Scherf, Brigitte Gross, Alvarez, Claudia Patricia Patino, Genoud, Christel, Sothilingam, Vithiyanjali, Tanimoto, Naoyuki, Stadler, Michael, Seeliger, Mathias, Stoffel, Markus, Filipowicz, Witold, & Neuron, 83(3), 586–600. https://doi.org/10.1016/j.neuron.2014.06.020
. (2014). MiRNAs 182 and 183 Are Necessary to Maintain Adult Cone Photoreceptor Outer Segments and Visual Function.
Trenholm S, & Neuron, 83(1), Article 1. https://doi.org/10.1016/j.neuron.2014.06.012
. (2014). Cell-type-specific electric stimulation for vision restoration (Patent No. 1).
Trenholm S, & Neuron, 83(1), Article 1. https://doi.org/10.1016/j.neuron.2014.06.012
. (2014). Cell-type-specific electric stimulation for vision restoration (Patent No. 1).
Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sørensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanlal SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17(8), 1123–1129. https://doi.org/10.1038/nn.3752
Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sørensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M, Ramanlal SB, Bandler RC, Allen BD, Forest CR, Chow BY, Han X, Lin Y, Tye KM, et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17(8), 1123–1129. https://doi.org/10.1038/nn.3752
Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, EMBO Molecular Medicine, 6(9), 1175–1190. https://doi.org/10.15252/emmm.201404077
, & Bennett J. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter.
Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, EMBO Molecular Medicine, 6(9), 1175–1190. https://doi.org/10.15252/emmm.201404077
, & Bennett J. (2014). Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter.
Szikra, Tamas, Trenholm, Stuart, Drinnenberg, Antonia, Jüttner, Josephine, Raics, Zoltan, Farrow, Karl, Biel, Martin, Awatramani, Gautam, Clark, Damon A., Sahel, José-Alain, Da Silveira, Rava Azeredo, & Nature Neuroscience, 17(12), 1728–1735. https://doi.org/10.1038/nn.3852
. (2014). Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition.
Szikra, Tamas, Trenholm, Stuart, Drinnenberg, Antonia, Jüttner, Josephine, Raics, Zoltan, Farrow, Karl, Biel, Martin, Awatramani, Gautam, Clark, Damon A., Sahel, José-Alain, Da Silveira, Rava Azeredo, & Nature Neuroscience, 17(12), 1728–1735. https://doi.org/10.1038/nn.3852
. (2014). Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition.
Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK, & Neuron, 79(6), 1078–1085. https://doi.org/10.1016/j.neuron.2013.08.005
. (2013). The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells.
Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK, & Neuron, 79(6), 1078–1085. https://doi.org/10.1016/j.neuron.2013.08.005
. (2013). The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells.
Yonehara K, & Cell, 154(6), Article 6. https://doi.org/10.1016/j.cell.2013.08.027
. (2013). XMotion detection: Neuronal circuit meets theory (Patent No. 6).
Yonehara K, & Cell, 154(6), Article 6. https://doi.org/10.1016/j.cell.2013.08.027
. (2013). XMotion detection: Neuronal circuit meets theory (Patent No. 6).
Tang JC, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, Cell, 154(4), 39–928. https://doi.org/10.1016/j.cell.2013.07.021
, & Cepko CL. (2013). XA nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation.
Tang JC, Szikra T, Kozorovitskiy Y, Teixiera M, Sabatini BL, Cell, 154(4), 39–928. https://doi.org/10.1016/j.cell.2013.07.021
, & Cepko CL. (2013). XA nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation.
Sahel JA, Léveillard T, Picaud S, Dalkara D, Marazova K, Safran A, Paques M, Duebel J, Graefe’s Archive for Clinical and Experimental Ophthalmology, 251(7), 1669–1677. https://doi.org/10.1007/s00417-013-2314-7
, & Mohand-Said S. (2013). Functional rescue of cone photoreceptors in retinitis pigmentosa.
Sahel JA, Léveillard T, Picaud S, Dalkara D, Marazova K, Safran A, Paques M, Duebel J, Graefe’s Archive for Clinical and Experimental Ophthalmology, 251(7), 1669–1677. https://doi.org/10.1007/s00417-013-2314-7
, & Mohand-Said S. (2013). Functional rescue of cone photoreceptors in retinitis pigmentosa.
Sahel JA, & Annual Review of Neuroscience, 36, 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304
. (2013). Gene therapy for blindness.
Sahel JA, & Annual Review of Neuroscience, 36, 467–488. https://doi.org/10.1146/annurev-neuro-062012-170304
. (2013). Gene therapy for blindness.
Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K, & Neuron, 78(2), Article 2. https://doi.org/10.1016/j.neuron.2013.02.014
. (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold (Patent No. 2).
Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K, Yonehara K, & Neuron, 78(2), Article 2. https://doi.org/10.1016/j.neuron.2013.02.014
. (2013). Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold (Patent No. 2).
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Science, 339(6116), 204–207. https://doi.org/10.1126/science.1229326
, Peters AH, Eichmann A, Wellik D, Ducret S, & Rijli FM. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons.
Di Meglio T, Kratochwil CF, Vilain N, Loche A, Vitobello A, Yonehara K, Hrycaj SM, Science, 339(6116), 204–207. https://doi.org/10.1126/science.1229326
, Peters AH, Eichmann A, Wellik D, Ducret S, & Rijli FM. (2013). Ezh2 orchestrates topographic migration and connectivity of mouse precerebellar neurons.
Packer AM, Nature Neuroscience, 16(7), 805–815. https://doi.org/10.1038/nn.3427
, & Häusser M. (2013). Targeting neurons and photons for optogenetics.
Packer AM, Nature Neuroscience, 16(7), 805–815. https://doi.org/10.1038/nn.3427
, & Häusser M. (2013). Targeting neurons and photons for optogenetics.
Biologie aujourd’hui, 207(2), 21–109. https://doi.org/10.1051/jbio/2013011
, Busskamp V, Sahel JA, & Picaud S. (2013). [Retinitis pigmentosa: eye sight restoration by optogenetic therapy].
Biologie aujourd’hui, 207(2), 21–109. https://doi.org/10.1051/jbio/2013011
, Busskamp V, Sahel JA, & Picaud S. (2013). [Retinitis pigmentosa: eye sight restoration by optogenetic therapy].
Fiscella M, Farrow K, Jones IL, Jäckel D, Müller J, Frey U, Bakkum DJ, Hantz P, Journal of Neuroscience Methods, 211(1), 103–113. https://doi.org/10.1016/j.jneumeth.2012.08.017
, & Hierlemann A. (2012). Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
Fiscella M, Farrow K, Jones IL, Jäckel D, Müller J, Frey U, Bakkum DJ, Hantz P, Journal of Neuroscience Methods, 211(1), 103–113. https://doi.org/10.1016/j.jneumeth.2012.08.017
, & Hierlemann A. (2012). Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, & Nature Neuroscience, 15(3), 487–495. https://doi.org/10.1038/nn.3032
. (2012). Transcriptional code and disease map for adult retinal cell types.
Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, & Nature Neuroscience, 15(3), 487–495. https://doi.org/10.1038/nn.3032
. (2012). Transcriptional code and disease map for adult retinal cell types.
Busskamp V, Picaud S, Sahel JA, & Gene Therapy, 19(2), 169–175. https://doi.org/10.1038/gt.2011.155
. (2012). Optogenetic therapy for retinitis pigmentosa.
Busskamp V, Picaud S, Sahel JA, & Gene Therapy, 19(2), 169–175. https://doi.org/10.1038/gt.2011.155
. (2012). Optogenetic therapy for retinitis pigmentosa.
Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D, Chiovini B, Vizi ES, Nature Methods, 9(2), 201–208. https://doi.org/10.1038/nmeth.1851
, & Rózsa B. (2012). Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes.
Katona G, Szalay G, Maák P, Kaszás A, Veress M, Hillier D, Chiovini B, Vizi ES, Nature Methods, 9(2), 201–208. https://doi.org/10.1038/nmeth.1851
, & Rózsa B. (2012). Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes.
Busskamp V, & Current Opinion in Neurobiology, 21(6), 942–946. https://doi.org/10.1016/j.conb.2011.06.001
. (2011). Optogenetic approaches to restoring visual function in retinitis pigmentosa.
Busskamp V, & Current Opinion in Neurobiology, 21(6), 942–946. https://doi.org/10.1016/j.conb.2011.06.001
. (2011). Optogenetic approaches to restoring visual function in retinitis pigmentosa.
da Silveira, Rava Azeredo, & Current Opinion in Neurobiology, 21(5), 664–671. https://doi.org/10.1016/j.conb.2011.05.007
. (2011). Cell Types, Circuits, Computation.
da Silveira, Rava Azeredo, & Current Opinion in Neurobiology, 21(5), 664–671. https://doi.org/10.1016/j.conb.2011.05.007
. (2011). Cell Types, Circuits, Computation.
Fradot M, Busskamp V, Forster V, Cronin T, Léveillard T, Bennett J, Sahel JA, Human Gene Therapy, 22(5), 587–593. https://doi.org/10.1089/hum.2010.157
, & Picaud S. (2011). Gene therapy in ophthalmology: Validation on cultured retinal cells and explants from postmortem human eyes.
Fradot M, Busskamp V, Forster V, Cronin T, Léveillard T, Bennett J, Sahel JA, Human Gene Therapy, 22(5), 587–593. https://doi.org/10.1089/hum.2010.157
, & Picaud S. (2011). Gene therapy in ophthalmology: Validation on cultured retinal cells and explants from postmortem human eyes.
Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, & Nature, 469(7330), 407–410. https://doi.org/10.1038/nature09711
. (2011). Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, & Nature, 469(7330), 407–410. https://doi.org/10.1038/nature09711
. (2011). Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, & Science, 329(5990), 413–417. https://doi.org/10.1126/science.1190897
. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.
Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, & Science, 329(5990), 413–417. https://doi.org/10.1126/science.1190897
. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.
Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D, Oertner TG, Schratt G, Bibel M, Cell, 141(4), 618–631. https://doi.org/10.1016/j.cell.2010.03.039
, & Filipowicz W. (2010). Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs.
Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Richter J, Duebel J, Bicker S, Fehling HJ, Schübeler D, Oertner TG, Schratt G, Bibel M, Cell, 141(4), 618–631. https://doi.org/10.1016/j.cell.2010.03.039
, & Filipowicz W. (2010). Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs.
Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, & Nature Neuroscience, 12(10), 1308–1316. https://doi.org/10.1038/nn.2389
. (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit.
Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, & Nature Neuroscience, 12(10), 1308–1316. https://doi.org/10.1038/nn.2389
. (2009). Approach sensitivity in the retina processed by a multifunctional neural circuit.
Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, & Nature Neuroscience, 12(9), 1197–1204. https://doi.org/10.1038/nn.2370
. (2009). Genetic address book for retinal cell types.
Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, & Nature Neuroscience, 12(9), 1197–1204. https://doi.org/10.1038/nn.2370
. (2009). Genetic address book for retinal cell types.
Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, & Nature Methods, 6(2), 127–130. https://doi.org/10.1038/nmeth.1292
. (2009). Genetically timed, activity-sensor and rainbow transsynaptic viral tools.
Boldogkoi Z, Balint K, Awatramani GB, Balya D, Busskamp V, Viney TJ, Lagali PS, Duebel J, Pásti E, Tombácz D, Tóth JS, Takács IF, Scherf BG, & Nature Methods, 6(2), 127–130. https://doi.org/10.1038/nmeth.1292
. (2009). Genetically timed, activity-sensor and rainbow transsynaptic viral tools.
Molnar A, Hsueh HA, Journal of Computational Neuroscience, 27(3), 569–590. https://doi.org/10.1007/s10827-009-0170-6
, & Werblin FS. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission.
Molnar A, Hsueh HA, Journal of Computational Neuroscience, 27(3), 569–590. https://doi.org/10.1007/s10827-009-0170-6
, & Werblin FS. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission.
Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Journal of Comparative Neurology, 509(2), 225–238. https://doi.org/10.1002/cne.21730
, Sun BB, & Cepko CL. (2008). The transcriptome of retinal Müller glial cells.
Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Journal of Comparative Neurology, 509(2), 225–238. https://doi.org/10.1002/cne.21730
, Sun BB, & Cepko CL. (2008). The transcriptome of retinal Müller glial cells.
Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, & Nature Neuroscience, 11(6), 667–675. https://doi.org/10.1038/nn.2117
. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.
Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, & Nature Neuroscience, 11(6), 667–675. https://doi.org/10.1038/nn.2117
. (2008). Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.
Trimarchi JM, Stadler MB, Journal of Comparative Neurology, 502(6), 1047–1065. https://doi.org/10.1002/cne.21368
, Billings N, Sun B, Bartch B, & Cepko CL. (2007). Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling.
Trimarchi JM, Stadler MB, Journal of Comparative Neurology, 502(6), 1047–1065. https://doi.org/10.1002/cne.21368
, Billings N, Sun B, Bartch B, & Cepko CL. (2007). Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling.
Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, & Current Biology, 17(11), 981–988. https://doi.org/10.1016/j.cub.2007.04.058
. (2007). Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing.
Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, & Current Biology, 17(11), 981–988. https://doi.org/10.1016/j.cub.2007.04.058
. (2007). Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing.
Werblin F, & Scientific American, 296(4), 72–79. https://doi.org/10.1038/scientificamerican0407-72
. (2007). The movies in our eyes.
Werblin F, & Scientific American, 296(4), 72–79. https://doi.org/10.1038/scientificamerican0407-72
. (2007). The movies in our eyes.
Journal of Neurophysiology, 95(6), 3810–3822. https://doi.org/10.1152/jn.00113.2006
, Molnar, Alyosha, & Werblin, Frank S. (2006). Parallel processing in retinal ganglion cells: How integration of space-time patterns of excitation and inhibition form the spiking output.
Journal of Neurophysiology, 95(6), 3810–3822. https://doi.org/10.1152/jn.00113.2006
, Molnar, Alyosha, & Werblin, Frank S. (2006). Parallel processing in retinal ganglion cells: How integration of space-time patterns of excitation and inhibition form the spiking output.
Porod W, Werblin F, Chua LO, Roska T, Rodriguez-Vazquez A, Annals of the New York Academy of Sciences, 1013, 92–109. https://doi.org/10.1196/annals.1305.011
, Fay P, Bernstein GH, Huang YF, & Csurgay AI. (2004). Bio-inspired nano-sensor-enhanced CNN visual computer.
Porod W, Werblin F, Chua LO, Roska T, Rodriguez-Vazquez A, Annals of the New York Academy of Sciences, 1013, 92–109. https://doi.org/10.1196/annals.1305.011
, Fay P, Bernstein GH, Huang YF, & Csurgay AI. (2004). Bio-inspired nano-sensor-enhanced CNN visual computer.
Nature Neuroscience, 6(6), 600–608. https://doi.org/10.1038/nn1061
, & Werblin F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types.
Nature Neuroscience, 6(6), 600–608. https://doi.org/10.1038/nn1061
, & Werblin F. (2003). Rapid global shifts in natural scenes block spiking in specific ganglion cell types.
Guerrero, G, Siegel, MS, BIOPHYSICAL JOURNAL, 83, 3607–3618. https://doi.org/10.1016/S0006-3495(02)75361-7
, Loots, E, & Isacoff, EY. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential.
Guerrero, G, Siegel, MS, BIOPHYSICAL JOURNAL, 83, 3607–3618. https://doi.org/10.1016/S0006-3495(02)75361-7
, Loots, E, & Isacoff, EY. (2002). Tuning FlaSh: Redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential.
Nature, 410(6828), 583–587. https://doi.org/10.1038/35069068
, & Werblin F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina.
Nature, 410(6828), 583–587. https://doi.org/10.1038/35069068
, & Werblin F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina.
Werblin F, Progress in Brain Research, 131, 229–238. https://doi.org/10.1016/s0079-6123(01)31019-1
, & Balya D. (2001). Parallel processing in the mammalian retina: Lateral and vertical interactions across stacked representations.
Werblin F, Progress in Brain Research, 131, 229–238. https://doi.org/10.1016/s0079-6123(01)31019-1
, & Balya D. (2001). Parallel processing in the mammalian retina: Lateral and vertical interactions across stacked representations.
Journal of Neuroscience, 20(5), 1941–1951. https://doi.org/10.1523/jneurosci.20-05-01941.2000
, Nemeth E, Orzo L, & Werblin FS. (2000). Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander.
Journal of Neuroscience, 20(5), 1941–1951. https://doi.org/10.1523/jneurosci.20-05-01941.2000
, Nemeth E, Orzo L, & Werblin FS. (2000). Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander.
JOURNAL OF NEUROPHYSIOLOGY, 80, 1951–1960. https://doi.org/10.1152/jn.1998.80.4.1951
, Gaal, L, & Werblin, FS. (1998). Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: An analytical study.
JOURNAL OF NEUROPHYSIOLOGY, 80, 1951–1960. https://doi.org/10.1152/jn.1998.80.4.1951
, Gaal, L, & Werblin, FS. (1998). Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: An analytical study.
Journal of Neuroscience, 18(9), 3451–3459. https://doi.org/10.1523/jneurosci.18-09-03451.1998
, Nemeth E, & Werblin FS. (1998). Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina.
Journal of Neuroscience, 18(9), 3451–3459. https://doi.org/10.1523/jneurosci.18-09-03451.1998
, Nemeth E, & Werblin FS. (1998). Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina.
Gaal L, Journal of Neurophysiology, 79(1), 190–196. https://doi.org/10.1152/jn.1998.79.1.190
, Picaud SA, Wu SM, Marc R, & Werblin FS. (1998). Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors.
Gaal L, Journal of Neurophysiology, 79(1), 190–196. https://doi.org/10.1152/jn.1998.79.1.190
, Picaud SA, Wu SM, Marc R, & Werblin FS. (1998). Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors.