Publications
184 found
Show per page
Mittal, Nitish, Ataman, Meric, Tintignac, Lionel, Ham, Daniel J., Jörin, Lena, Schmidt, Alexander, Sinnreich, Michael, Ruegg, Markus A., & Npj Regenerative Medicine, 9(1). https://doi.org/10.1038/s41536-024-00369-9
. (2024). Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice [Journal-article].
Mittal, Nitish, Ataman, Meric, Tintignac, Lionel, Ham, Daniel J., Jörin, Lena, Schmidt, Alexander, Sinnreich, Michael, Ruegg, Markus A., & Npj Regenerative Medicine, 9(1). https://doi.org/10.1038/s41536-024-00369-9
. (2024). Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice [Journal-article].
Banerjee, Arka, Ataman, Meric, Smialek, Maciej Jerzy, Mookherjee, Debdatto, Rabl, Julius, Mironov, Aleksei, Mues, Lea, Enkler, Ludovic, Coto-Llerena, Mairene, Schmidt, Alexander, Boehringer, Daniel, Piscuoglio, Salvatore, Spang, Anne, Mittal, Nitish, & Nucleic Acids Research, 52(15), 9028–9048. https://doi.org/10.1093/nar/gkae630
. (2024). Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains [Journal-article].
Banerjee, Arka, Ataman, Meric, Smialek, Maciej Jerzy, Mookherjee, Debdatto, Rabl, Julius, Mironov, Aleksei, Mues, Lea, Enkler, Ludovic, Coto-Llerena, Mairene, Schmidt, Alexander, Boehringer, Daniel, Piscuoglio, Salvatore, Spang, Anne, Mittal, Nitish, & Nucleic Acids Research, 52(15), 9028–9048. https://doi.org/10.1093/nar/gkae630
. (2024). Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of a subset of proteins with alpha helical domains [Journal-article].
Ataman, Meric, Mittal, Nitish, Tintignac, Lionel, Schmidt, Alexander, Ham, Daniel J., González, Asier, Ruegg, Markus A., & Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-06679-4
. (2024). Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles [Journal-article].
Ataman, Meric, Mittal, Nitish, Tintignac, Lionel, Schmidt, Alexander, Ham, Daniel J., González, Asier, Ruegg, Markus A., & Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-06679-4
. (2024). Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles [Journal-article].
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48046-1
, & Gruber, Andreas J. (2024). MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer [Journal-article].
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48046-1
, & Gruber, Andreas J. (2024). MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer [Journal-article].
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Supplementary Results. https://doi.org/10.5281/zenodo.10849750
, & Gruber, Andreas J. (2024, March 21).
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Supplementary Results. https://doi.org/10.5281/zenodo.10849750
, & Gruber, Andreas J. (2024, March 21).
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Nature Communications, 15(1). https://doi.org/10.5281/zenodo.10845501
, & Gruber, Andreas J. (2024). MAPP.
Bak, Maciej, van Nimwegen, Erik, Kouzel, Ian U., Gur, Tamer, Schmidt, Ralf, Nature Communications, 15(1). https://doi.org/10.5281/zenodo.10845501
, & Gruber, Andreas J. (2024). MAPP.
Bryce-Smith, Sam, Burri, Dominik, Gazzara, Matthew R., Herrmann, Christina J., Danecka, Weronika, Fitzsimmons, Christina M., Wan, Yuk Kei, Zhuang, Farica, Fansler, Mervin M., Fernández, José M., Ferret, Meritxell, Gonzalez-Uriarte, Asier, Haynes, Samuel, Herdman, Chelsea, Kanitz, Alexander, Katsantoni, Maria, Marini, Federico, McDonnel, Euan, Nicolet, Ben, et al. (2023). Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data [Journal-article]. RNA, 29(12), 1839–1855. https://doi.org/10.1261/rna.079849.123
Bryce-Smith, Sam, Burri, Dominik, Gazzara, Matthew R., Herrmann, Christina J., Danecka, Weronika, Fitzsimmons, Christina M., Wan, Yuk Kei, Zhuang, Farica, Fansler, Mervin M., Fernández, José M., Ferret, Meritxell, Gonzalez-Uriarte, Asier, Haynes, Samuel, Herdman, Chelsea, Kanitz, Alexander, Katsantoni, Maria, Marini, Federico, McDonnel, Euan, Nicolet, Ben, et al. (2023). Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data [Journal-article]. RNA, 29(12), 1839–1855. https://doi.org/10.1261/rna.079849.123
Banerjee, A., Ataman, M., Smialek, M. J., Mookherjee, D., Rabl, J., Mironov, A., Mues, L., Enkler, L., Coto-Llerena, M., Schmidt, A., Boehringer, D., Piscuoglio, S., Spang, A., Mittal, N., & Zavolan, M. (2023). Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of proteins with alpha helical domains [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.03.535332
Banerjee, A., Ataman, M., Smialek, M. J., Mookherjee, D., Rabl, J., Mironov, A., Mues, L., Enkler, L., Coto-Llerena, M., Schmidt, A., Boehringer, D., Piscuoglio, S., Spang, A., Mittal, N., & Zavolan, M. (2023). Ribosomal protein RPL39L is an efficiency factor in the cotranslational folding of proteins with alpha helical domains [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.04.03.535332
Bohmann, Dirk, O’Connell, Mary, Frendewey, David, Gerber, André, Hernandez, Nouria, Krämer, Angela, Minvielle-Sebastia, Lionel, Shaw, Peter, Wahle, Elmar, & RNA, 29(9), v–xiii. https://doi.org/10.1261/rna.079742.123
. (2023). Walter Keller (1938-2023): a tribute from his mentees.
Bohmann, Dirk, O’Connell, Mary, Frendewey, David, Gerber, André, Hernandez, Nouria, Krämer, Angela, Minvielle-Sebastia, Lionel, Shaw, Peter, Wahle, Elmar, & RNA, 29(9), v–xiii. https://doi.org/10.1261/rna.079742.123
. (2023). Walter Keller (1938-2023): a tribute from his mentees.
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
, & Handschin, Christoph. (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α.
de Smalen, Laura M., Börsch, Anastasiya, Leuchtmann, Aurel B., Gill, Jonathan F., Ritz, Danilo, Proceedings of the National Academy of Sciences (PNAS), 120(36), e2302360120. https://doi.org/10.1073/pnas.2302360120
, & Handschin, Christoph. (2023). Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α.
Katsantoni, Maria, van Nimwegen, Erik, & Genome Biology, 24(1), 77. https://doi.org/10.1186/s13059-023-02913-0
. (2023). Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs.
Katsantoni, Maria, van Nimwegen, Erik, & Genome Biology, 24(1), 77. https://doi.org/10.1186/s13059-023-02913-0
. (2023). Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs.
Moon, Youngbin, Burri, Dominik, & NAR genomics and bioinformatics, 5(3), lqad079. https://doi.org/10.1093/nargab/lqad079
. (2023). Identification of experimentally-supported poly(A) sites in single-cell RNA-seq data with SCINPAS.
Moon, Youngbin, Burri, Dominik, & NAR genomics and bioinformatics, 5(3), lqad079. https://doi.org/10.1093/nargab/lqad079
. (2023). Identification of experimentally-supported poly(A) sites in single-cell RNA-seq data with SCINPAS.
Seyres, Denis, Gorka, Oliver, Schmidt, Ralf, Marone, Romina, Rna, 4(30), 418. https://doi.org/10.1261/rna.079897.123
, & Jeker, Lukas T. (2023). T helper cells exhibit a dynamic and reversible 3’UTR landscape [Posted-content].
Seyres, Denis, Gorka, Oliver, Schmidt, Ralf, Marone, Romina, Rna, 4(30), 418. https://doi.org/10.1261/rna.079897.123
, & Jeker, Lukas T. (2023). T helper cells exhibit a dynamic and reversible 3’UTR landscape [Posted-content].
Katsantoni, Maria, van Nimwegen, Erik, & Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.07.06.498949
. (2022).
Katsantoni, Maria, van Nimwegen, Erik, & Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.07.06.498949
. (2022).
Breda, Jeremie, Banerjee, Arka, Jayachandran, Rajesh, Pieters, Jean, & A novel approach to single cell analysis to reveal intrinsic differences in immune marker expression in unstimulated macrophages from BALB/c and C57BL/6 mouse strains [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.05.29.493868
. (2022).
Breda, Jeremie, Banerjee, Arka, Jayachandran, Rajesh, Pieters, Jean, & A novel approach to single cell analysis to reveal intrinsic differences in immune marker expression in unstimulated macrophages from BALB/c and C57BL/6 mouse strains [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.05.29.493868
. (2022).
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Handschin C, Tintignac LA, Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
, Mittal N, & Rüegg MA. (2022).
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Handschin C, Tintignac LA, Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
, Mittal N, & Rüegg MA. (2022).
Bak, Maciej, van Nimwegen, Erik, Schmidt, Ralf, Frequent co-regulation of splicing and polyadenylation by RNA-binding proteins inferred with MAPP [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.01.09.475576
, & Gruber, Andreas J. (2022).
Bak, Maciej, van Nimwegen, Erik, Schmidt, Ralf, Frequent co-regulation of splicing and polyadenylation by RNA-binding proteins inferred with MAPP [Posted-content]. bioRxiv. https://doi.org/10.1101/2022.01.09.475576
, & Gruber, Andreas J. (2022).
Breda, Jeremie, Banerjee, Arka, Jayachandran, Rajesh, Pieters, Jean, & FEBS Letters, 596(20), 2630–2643. https://doi.org/10.1002/1873-3468.14478
. (2022). A novel approach to single-cell analysis reveals intrinsic differences in immune marker expression in unstimulated BALB/c and C57BL/6 macrophages.
Breda, Jeremie, Banerjee, Arka, Jayachandran, Rajesh, Pieters, Jean, & FEBS Letters, 596(20), 2630–2643. https://doi.org/10.1002/1873-3468.14478
. (2022). A novel approach to single-cell analysis reveals intrinsic differences in immune marker expression in unstimulated BALB/c and C57BL/6 macrophages.
Ghosh, Souvik, Ataman, Meric, Bak, Maciej, Börsch, Anastasiya, Schmidt, Alexander, Buczak, Katarzyna, Martin, Georges, Dimitriades, Beatrice, Herrmann, Christina J., Kanitz, Alexander, & Nucleic Acids Research, 50(6), 3096–3114. https://doi.org/10.1093/nar/gkac114
. (2022). CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis.
Ghosh, Souvik, Ataman, Meric, Bak, Maciej, Börsch, Anastasiya, Schmidt, Alexander, Buczak, Katarzyna, Martin, Georges, Dimitriades, Beatrice, Herrmann, Christina J., Kanitz, Alexander, & Nucleic Acids Research, 50(6), 3096–3114. https://doi.org/10.1093/nar/gkac114
. (2022). CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
, Mittal, Nitish, & Rüegg, Markus A. (2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Kaiser, Marco S., Milan, Giulia, Ham, Daniel J., Lin, Shuo, Oliveri, Filippo, Chojnowska, Kathrin, Tintignac, Lionel A., Mittal, Nitish, Zimmerli, Christian E., Glass, David J., Communications Biology, 5(1), 1141. https://doi.org/10.1038/s42003-022-04097-y
, & Rüegg, Markus A. (2022). Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis.
Kaiser, Marco S., Milan, Giulia, Ham, Daniel J., Lin, Shuo, Oliveri, Filippo, Chojnowska, Kathrin, Tintignac, Lionel A., Mittal, Nitish, Zimmerli, Christian E., Glass, David J., Communications Biology, 5(1), 1141. https://doi.org/10.1038/s42003-022-04097-y
, & Rüegg, Markus A. (2022). Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis.
Pignatti, Emanuele, Altinkilic, Emre Murat, Bräutigam, Konstantin, Grössl, Michael, Perren, Aurel, Endocrinology, 163(7), bqac076. https://doi.org/10.1210/endocr/bqac076
, & Flück, Christa E. (2022). Cholesterol deprivation drives DHEA biosynthesis in human adrenals.
Pignatti, Emanuele, Altinkilic, Emre Murat, Bräutigam, Konstantin, Grössl, Michael, Perren, Aurel, Endocrinology, 163(7), bqac076. https://doi.org/10.1210/endocr/bqac076
, & Flück, Christa E. (2022). Cholesterol deprivation drives DHEA biosynthesis in human adrenals.
Streese, Lukas, Demougin, Philippe, Iborra, Paula, Kanitz, Alexander, Deiseroth, Arne, Kröpfl, Julia M., Schmidt-Trucksäss, Arno, Scientific Reports, 12(1), 2991. https://doi.org/10.1038/s41598-022-06956-4
, & Hanssen, Henner. (2022). Untargeted sequencing of circulating microRNAs in a healthy and diseased older population.
Streese, Lukas, Demougin, Philippe, Iborra, Paula, Kanitz, Alexander, Deiseroth, Arne, Kröpfl, Julia M., Schmidt-Trucksäss, Arno, Scientific Reports, 12(1), 2991. https://doi.org/10.1038/s41598-022-06956-4
, & Hanssen, Henner. (2022). Untargeted sequencing of circulating microRNAs in a healthy and diseased older population.
Katsantoni, Maria, Gypas, Foivos, Herrmann, Christina J., Burri, Dominik, Bak, Maciej, Iborra, Paula, Agarwal, Krish, Ataman, Meric, Börsch, Anastasiya, ZARP: An automated workflow for processing of RNA-seq data [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.11.18.469017
, & Kanitz, Alexander. (2021).
Katsantoni, Maria, Gypas, Foivos, Herrmann, Christina J., Burri, Dominik, Bak, Maciej, Iborra, Paula, Agarwal, Krish, Ataman, Meric, Börsch, Anastasiya, ZARP: An automated workflow for processing of RNA-seq data [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.11.18.469017
, & Kanitz, Alexander. (2021).
Burri, Dominik, & Shortening of 3’ UTRs in most cell types composing tumor tissues implicates alternative polyadenylation in protein metabolism [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.06.30.450496
. (2021).
Burri, Dominik, & Shortening of 3’ UTRs in most cell types composing tumor tissues implicates alternative polyadenylation in protein metabolism [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.06.30.450496
. (2021).
Karousis, Evangelos D., Gypas, Foivos, Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.04.30.442116
, & Mühlemann, Oliver. (2021).
Karousis, Evangelos D., Gypas, Foivos, Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells [Posted-content]. bioRxiv. https://doi.org/10.1101/2021.04.30.442116
, & Mühlemann, Oliver. (2021).
Börsch, Anastasiya, Ham, Daniel J., Mittal, Nitish, Tintignac, Lionel A., Migliavacca, Eugenia, Feige, Jérôme N., Rüegg, Markus A., & Communications Biology, 4(1), 194. https://doi.org/10.1038/s42003-021-01723-z
. (2021). Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia.
Börsch, Anastasiya, Ham, Daniel J., Mittal, Nitish, Tintignac, Lionel A., Migliavacca, Eugenia, Feige, Jérôme N., Rüegg, Markus A., & Communications Biology, 4(1), 194. https://doi.org/10.1038/s42003-021-01723-z
. (2021). Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia.
Börsch, Anastasiya, & American journal of aging science and research, 2(1), 19–23.
. (2021). Transcription factor motif activity as a biomarker of muscle aging.
Börsch, Anastasiya, & American journal of aging science and research, 2(1), 19–23.
. (2021). Transcription factor motif activity as a biomarker of muscle aging.
Breda, Jérémie, Nature Biotechnology, 39(8), 1008–1016. https://doi.org/10.1038/s41587-021-00875-x
, & van Nimwegen, Erik. (2021). Bayesian inference of gene expression states from single-cell RNA-seq data.
Breda, Jérémie, Nature Biotechnology, 39(8), 1008–1016. https://doi.org/10.1038/s41587-021-00875-x
, & van Nimwegen, Erik. (2021). Bayesian inference of gene expression states from single-cell RNA-seq data.
Burri, Dominik, & RNA (New York, N.Y.), 27(12), 1459–1470. https://doi.org/10.1261/rna.078886.121
. (2021). Shortening of 3p UTRs in most cell types composing tumor tissues implicates alternative polyadenylation in protein metabolism.
Burri, Dominik, & RNA (New York, N.Y.), 27(12), 1459–1470. https://doi.org/10.1261/rna.078886.121
. (2021). Shortening of 3p UTRs in most cell types composing tumor tissues implicates alternative polyadenylation in protein metabolism.
Cléry, Antoine, Krepl, Miroslav, Nguyen, Cristina K. X., Moursy, Ahmed, Jorjani, Hadi, Katsantoni, Maria, Okoniewski, Michal, Mittal, Nitish, Nature Communications, 12(1), 428. https://doi.org/10.1038/s41467-020-20481-w
, Sponer, Jiri, & Allain, Frédéric H.-T. (2021). Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing.
Cléry, Antoine, Krepl, Miroslav, Nguyen, Cristina K. X., Moursy, Ahmed, Jorjani, Hadi, Katsantoni, Maria, Okoniewski, Michal, Mittal, Nitish, Nature Communications, 12(1), 428. https://doi.org/10.1038/s41467-020-20481-w
, Sponer, Jiri, & Allain, Frédéric H.-T. (2021). Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing.
Coto-Llerena, Mairene, Tosti, Nadia, Taha-Mehlitz, Stephanie, Kancherla, Venkatesh, Paradiso, Viola, Gallon, John, Bianco, Gaia, Garofoli, Andrea, Ghosh, Souvik, Tang, Fengyuan, Ercan, Caner, Christofori, Gerhard M., Matter, Matthias S., Droeser, Raoul A., Hepatology Communications, 5(4), 661–674. https://doi.org/10.1002/hep4.1656
, Soysal, Savas D., von Flüe, Markus, Kollmar, Otto, Terracciano, Luigi M., et al. (2021). Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members.
Coto-Llerena, Mairene, Tosti, Nadia, Taha-Mehlitz, Stephanie, Kancherla, Venkatesh, Paradiso, Viola, Gallon, John, Bianco, Gaia, Garofoli, Andrea, Ghosh, Souvik, Tang, Fengyuan, Ercan, Caner, Christofori, Gerhard M., Matter, Matthias S., Droeser, Raoul A., Hepatology Communications, 5(4), 661–674. https://doi.org/10.1002/hep4.1656
, Soysal, Savas D., von Flüe, Markus, Kollmar, Otto, Terracciano, Luigi M., et al. (2021). Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members.
Ghosh, Souvik, Börsch, Anastasiya, Ghosh, Shreemoyee, & BMC Genomics, 22(1), 238. https://doi.org/10.1186/s12864-021-07532-2
. (2021). The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins.
Ghosh, Souvik, Börsch, Anastasiya, Ghosh, Shreemoyee, & BMC Genomics, 22(1), 238. https://doi.org/10.1186/s12864-021-07532-2
. (2021). The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins.
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
, Mittal, Nitish, & Rüegg, Markus A. (2021).
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
, Mittal, Nitish, & Rüegg, Markus A. (2021).
Karousis, Evangelos D., Gypas, Foivos, Genome Biology, 22(1), 223. https://doi.org/10.1186/s13059-021-02439-3
, & Mühlemann, Oliver. (2021). Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells.
Karousis, Evangelos D., Gypas, Foivos, Genome Biology, 22(1), 223. https://doi.org/10.1186/s13059-021-02439-3
, & Mühlemann, Oliver. (2021). Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells.
Ghosh, Souvik, Börsch, Anastasiya, & The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.18.191395
. (2020).
Ghosh, Souvik, Börsch, Anastasiya, & The transcriptional landscape of a hepatoma cell line grown on scaffolds of extracellular matrix proteins [Posted-content]. bioRxiv. https://doi.org/10.1101/2020.07.18.191395
. (2020).
Ghosh, Souvik, Guimaraes, Joao C., Lanzafame, Manuela, Schmidt, Alexander, Syed, Afzal Pasha, Dimitriades, Beatrice, Börsch, Anastasiya, Ghosh, Shreemoyee, Mittal, Nitish, Montavon, Thomas, Correia, Ana Luisa, Danner, Johannes, Meister, Gunter, Terracciano, Luigi M., Pfeffer, Sébastien, Piscuoglio, Salvatore, & The EMBO Journal, 39(18), e103922. https://doi.org/10.15252/embj.2019103922
. (2020). Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation.
Ghosh, Souvik, Guimaraes, Joao C., Lanzafame, Manuela, Schmidt, Alexander, Syed, Afzal Pasha, Dimitriades, Beatrice, Börsch, Anastasiya, Ghosh, Shreemoyee, Mittal, Nitish, Montavon, Thomas, Correia, Ana Luisa, Danner, Johannes, Meister, Gunter, Terracciano, Luigi M., Pfeffer, Sébastien, Piscuoglio, Salvatore, & The EMBO Journal, 39(18), e103922. https://doi.org/10.15252/embj.2019103922
. (2020). Prevention of dsRNA-induced interferon signaling by AGO1x is linked to breast cancer cell proliferation.
Gruber, Andreas J., & Nature Reviews. Genetics, 21(1), 63–64. https://doi.org/10.1038/s41576-019-0199-y
. (2020). Reply to ‘A different perspective on alternative cleavage and polyadenylation’.
Gruber, Andreas J., & Nature Reviews. Genetics, 21(1), 63–64. https://doi.org/10.1038/s41576-019-0199-y
. (2020). Reply to ‘A different perspective on alternative cleavage and polyadenylation’.
Guimaraes, Joao C., Mittal, Nitish, Gnann, Alexandra, Jedlinski, Dominik, Riba, Andrea, Buczak, Katarzyna, Schmidt, Alexander, & Genome Biology, 21(1), 44. https://doi.org/10.1186/s13059-020-1943-5
. (2020). A rare codon-based translational program of cell proliferation.
Guimaraes, Joao C., Mittal, Nitish, Gnann, Alexandra, Jedlinski, Dominik, Riba, Andrea, Buczak, Katarzyna, Schmidt, Alexander, & Genome Biology, 21(1), 44. https://doi.org/10.1186/s13059-020-1943-5
. (2020). A rare codon-based translational program of cell proliferation.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Handschin, Christoph, Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Handschin, Christoph, Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
, & Rüegg, Markus A. (2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Hasler, Daniele, Meduri, Rajyalakshmi, Bąk, Maciej, Lehmann, Gerhard, Heizinger, Leonhard, Wang, Xin, Li, Zhi-Tong, Sement, François M., Bruckmann, Astrid, Dock-Bregeon, Anne-Catherine, Merkl, Rainer, Kalb, Reinhard, Grauer, Eva, Kunstmann, Erdmute, Molecular Cell, 77(5), 1014–1031. https://doi.org/10.1016/j.molcel.2020.01.001
, Liu, Mo-Fang, Fischer, Utz, & Meister, Gunter. (2020). The Alazami Syndrome-Associated Protein LARP7 Guides U6 Small Nuclear RNA Modification and Contributes to Splicing Robustness.
Hasler, Daniele, Meduri, Rajyalakshmi, Bąk, Maciej, Lehmann, Gerhard, Heizinger, Leonhard, Wang, Xin, Li, Zhi-Tong, Sement, François M., Bruckmann, Astrid, Dock-Bregeon, Anne-Catherine, Merkl, Rainer, Kalb, Reinhard, Grauer, Eva, Kunstmann, Erdmute, Molecular Cell, 77(5), 1014–1031. https://doi.org/10.1016/j.molcel.2020.01.001
, Liu, Mo-Fang, Fischer, Utz, & Meister, Gunter. (2020). The Alazami Syndrome-Associated Protein LARP7 Guides U6 Small Nuclear RNA Modification and Contributes to Splicing Robustness.
Ho-Xuan, Hung, Lehmann, Gerhard, Glazar, Petar, Gypas, Foivos, Eichner, Norbert, Heizler, Kevin, Schlitt, Hans Jürgen, Cancers, 13(1), 49. https://doi.org/10.3390/cancers13010049
, Rajewsky, Nikolaus, Meister, Gunter, & Hackl, Christina. (2020). Gene Expression Signatures of a Preclinical Mouse Model during Colorectal Cancer Progression under Low-Dose Metronomic Chemotherapy.
Ho-Xuan, Hung, Lehmann, Gerhard, Glazar, Petar, Gypas, Foivos, Eichner, Norbert, Heizler, Kevin, Schlitt, Hans Jürgen, Cancers, 13(1), 49. https://doi.org/10.3390/cancers13010049
, Rajewsky, Nikolaus, Meister, Gunter, & Hackl, Christina. (2020). Gene Expression Signatures of a Preclinical Mouse Model during Colorectal Cancer Progression under Low-Dose Metronomic Chemotherapy.
Jutzi, Daniel, Campagne, Sébastien, Schmidt, Ralf, Reber, Stefan, Mechtersheimer, Jonas, Gypas, Foivos, Schweingruber, Christoph, Colombo, Martino, von Schroetter, Christine, Loughlin, Fionna E., Devoy, Anny, Hedlund, Eva, Nature Communications, 11(1), 6341. https://doi.org/10.1038/s41467-020-20191-3
, Allain, Frédéric H.-T., & Ruepp, Marc-David. (2020). Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis.
Jutzi, Daniel, Campagne, Sébastien, Schmidt, Ralf, Reber, Stefan, Mechtersheimer, Jonas, Gypas, Foivos, Schweingruber, Christoph, Colombo, Martino, von Schroetter, Christine, Loughlin, Fionna E., Devoy, Anny, Hedlund, Eva, Nature Communications, 11(1), 6341. https://doi.org/10.1038/s41467-020-20191-3
, Allain, Frédéric H.-T., & Ruepp, Marc-David. (2020). Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis.
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
, & Hall, Michael N. (2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs.
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
, & Hall, Michael N. (2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs.
Breda, Jérémie, Bayesian inference of the gene expression states of single cells from scRNA-seq data [Posted-content]. bioRxiv. https://doi.org/10.1101/2019.12.28.889956
, & van Nimwegen, Erik. (2019).
Breda, Jérémie, Bayesian inference of the gene expression states of single cells from scRNA-seq data [Posted-content]. bioRxiv. https://doi.org/10.1101/2019.12.28.889956
, & van Nimwegen, Erik. (2019).
Ghosh, Souvik, Guimaraes, Joao C, Lanzafame, Manuela, Schmidt, Alexander, Syed, Afzal Pasha, Dimitriades, Beatrice, Börsch, Anastasiya, Ghosh, Shreemoyee, Correia, Ana Luisa, Danner, Johannes, Meister, Gunter, Terracciano, Luigi M., Piscuoglio, Salvatore, & AGO1x prevents dsRNA-induced interferon signaling to promote breast cancer cell proliferation [Posted-content]. bioRxiv. https://doi.org/10.1101/603506
. (2019).
Ghosh, Souvik, Guimaraes, Joao C, Lanzafame, Manuela, Schmidt, Alexander, Syed, Afzal Pasha, Dimitriades, Beatrice, Börsch, Anastasiya, Ghosh, Shreemoyee, Correia, Ana Luisa, Danner, Johannes, Meister, Gunter, Terracciano, Luigi M., Piscuoglio, Salvatore, & AGO1x prevents dsRNA-induced interferon signaling to promote breast cancer cell proliferation [Posted-content]. bioRxiv. https://doi.org/10.1101/603506
. (2019).
Gruber, Andreas J., & Nature Reviews. Genetics, 20(10), 599–614. https://doi.org/10.1038/s41576-019-0145-z
. (2019). Alternative cleavage and polyadenylation in health and disease.
Gruber, Andreas J., & Nature Reviews. Genetics, 20(10), 599–614. https://doi.org/10.1038/s41576-019-0145-z
. (2019). Alternative cleavage and polyadenylation in health and disease.
Herrmann, Christina J., Schmidt, Ralf, Kanitz, Alexander, Artimo, Panu, Gruber, Andreas J., & Nucleic Acids Research, 48(D1), D174–D179. https://doi.org/10.1093/nar/gkz918
. (2019). PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3′ end sequencing.
Herrmann, Christina J., Schmidt, Ralf, Kanitz, Alexander, Artimo, Panu, Gruber, Andreas J., & Nucleic Acids Research, 48(D1), D174–D179. https://doi.org/10.1093/nar/gkz918
. (2019). PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3′ end sequencing.
Kanitz, Alexander, Syed, Afzal Pasha, Kaji, Keisuke, & BMC Genomics, 20(1), 100. https://doi.org/10.1186/s12864-019-5438-2
. (2019). Conserved regulation of RNA processing in somatic cell reprogramming.
Kanitz, Alexander, Syed, Afzal Pasha, Kaji, Keisuke, & BMC Genomics, 20(1), 100. https://doi.org/10.1186/s12864-019-5438-2
. (2019). Conserved regulation of RNA processing in somatic cell reprogramming.
Păunescu, Virgil, Journal of Cellular and Molecular Medicine, 23(4), 3045–3046. https://doi.org/10.1111/jcmm.14173
, & Oprea, Tudor. (2019). In memoriam: Francisc Schneider (1933-2017).
Păunescu, Virgil, Journal of Cellular and Molecular Medicine, 23(4), 3045–3046. https://doi.org/10.1111/jcmm.14173
, & Oprea, Tudor. (2019). In memoriam: Francisc Schneider (1933-2017).
Riba, Andrea, Di Nanni, Noemi, Mittal, Nitish, Arhné, Erik, Schmidt, Alexander, & Proceedings of the National Academy of Sciences, 116(30), 15023–15032. https://doi.org/10.1073/pnas.1817299116
. (2019). Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
Riba, Andrea, Di Nanni, Noemi, Mittal, Nitish, Arhné, Erik, Schmidt, Alexander, & Proceedings of the National Academy of Sciences, 116(30), 15023–15032. https://doi.org/10.1073/pnas.1817299116
. (2019). Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
Sendoel, Ataman, Subasic, Deni, Ducoli, Luca, Keller, Martin, Michel, Erich, Kohler, Ines, Singh, Kapil Dev, Zheng, Xue, Brümmer, Anneke, Imig, Jochen, Kishore, Shivendra, Wu, Yibo, Kanitz, Alexander, Kaech, Andres, Mittal, Nitish, Matia-González, Ana M., Gerber, André P., Cell Death & Differentiation Subscription, 26(10), 2157–2178. https://doi.org/10.1038/s41418-019-0291-z
, Aebersold, Ruedi, et al. (2019). MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans.
Sendoel, Ataman, Subasic, Deni, Ducoli, Luca, Keller, Martin, Michel, Erich, Kohler, Ines, Singh, Kapil Dev, Zheng, Xue, Brümmer, Anneke, Imig, Jochen, Kishore, Shivendra, Wu, Yibo, Kanitz, Alexander, Kaech, Andres, Mittal, Nitish, Matia-González, Ana M., Gerber, André P., Cell Death & Differentiation Subscription, 26(10), 2157–2178. https://doi.org/10.1038/s41418-019-0291-z
, Aebersold, Ruedi, et al. (2019). MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans.
Riba, Andrea, Nanni, Noemi Di, Mittal, Nitish, Arhné, Erik, Schmidt, Alexander, & Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates [Posted-content]. bioRxiv. https://doi.org/10.1101/465914
. (2018).
Riba, Andrea, Nanni, Noemi Di, Mittal, Nitish, Arhné, Erik, Schmidt, Alexander, & Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates [Posted-content]. bioRxiv. https://doi.org/10.1101/465914
. (2018).
Essig, Katharina, Kronbeck, Nina, Guimaraes, Joao C., Lohs, Claudia, Schlundt, Andreas, Hoffmann, Anne, Behrens, Gesine, Brenner, Sven, Kowalska, Joanna, Lopez-Rodriguez, Cristina, Jemielity, Jacek, Holtmann, Helmut, Reiche, Kristin, Hackermüller, Jörg, Sattler, Michael, Nature Communications, 9(1), 3810. https://doi.org/10.1038/s41467-018-06184-3
, & Heissmeyer, Vigo. (2018). Roquin targets mRNAs in a 3′-UTR-specific manner by different modes of regulation.
Essig, Katharina, Kronbeck, Nina, Guimaraes, Joao C., Lohs, Claudia, Schlundt, Andreas, Hoffmann, Anne, Behrens, Gesine, Brenner, Sven, Kowalska, Joanna, Lopez-Rodriguez, Cristina, Jemielity, Jacek, Holtmann, Helmut, Reiche, Kristin, Hackermüller, Jörg, Sattler, Michael, Nature Communications, 9(1), 3810. https://doi.org/10.1038/s41467-018-06184-3
, & Heissmeyer, Vigo. (2018). Roquin targets mRNAs in a 3′-UTR-specific manner by different modes of regulation.
Gruber, Andreas J., Gypas, Foivos, Riba, Andrea, Schmidt, Ralf, & Nature Methods, 15(10), 832–836. https://doi.org/10.1038/s41592-018-0114-z
. (2018). Terminal exon characterization with TECtool reveals an abundance of cell-specific isoforms.
Gruber, Andreas J., Gypas, Foivos, Riba, Andrea, Schmidt, Ralf, & Nature Methods, 15(10), 832–836. https://doi.org/10.1038/s41592-018-0114-z
. (2018). Terminal exon characterization with TECtool reveals an abundance of cell-specific isoforms.
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., van Nimwegen, Erik, & Genome Biology, 19(1), 44. https://doi.org/10.1186/s13059-018-1415-3
. (2018). Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC.
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., van Nimwegen, Erik, & Genome Biology, 19(1), 44. https://doi.org/10.1186/s13059-018-1415-3
. (2018). Discovery of physiological and cancer-related regulators of 3′ UTR processing with KAPAC.
Rzepiela, Andrzej J., Ghosh, Souvik, Breda, Jeremie, Vina-Vilaseca, Arnau, Syed, Afzal P., Gruber, Andreas J., Eschbach, Katja, Beisel, Christian, van Nimwegen, Erik, & Molecular Systems Biology, 14(8), e8266. https://doi.org/10.15252/msb.20188266
. (2018). Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction.
Rzepiela, Andrzej J., Ghosh, Souvik, Breda, Jeremie, Vina-Vilaseca, Arnau, Syed, Afzal P., Gruber, Andreas J., Eschbach, Katja, Beisel, Christian, van Nimwegen, Erik, & Molecular Systems Biology, 14(8), e8266. https://doi.org/10.15252/msb.20188266
. (2018). Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction.
FEBS Letters, 592(17), 2825–2827. https://doi.org/10.1002/1873-3468.13230
, & Gerber, André P. (2018). Mirroring the multifaceted role of RNA and its partners in gene expression.
FEBS Letters, 592(17), 2825–2827. https://doi.org/10.1002/1873-3468.13230
, & Gerber, André P. (2018). Mirroring the multifaceted role of RNA and its partners in gene expression.
Current Opinion in Cell Biology, 52, 8–13. https://doi.org/10.1016/j.ceb.2017.12.002
, & Kanitz, Alexander. (2018). RNA splicing and its connection with other regulatory layers in somatic cell reprogramming.
Current Opinion in Cell Biology, 52, 8–13. https://doi.org/10.1016/j.ceb.2017.12.002
, & Kanitz, Alexander. (2018). RNA splicing and its connection with other regulatory layers in somatic cell reprogramming.
Pachkov, Mikhail, Balwierz, Piotr J, Arnold, Phil, Gruber, Andreas J, ISMARA: Completely automated inference of gene regulatory networks from high-throughput data [Posted-content]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3328v1
, & van Nimwegen, Erik. (2017).
Pachkov, Mikhail, Balwierz, Piotr J, Arnold, Phil, Gruber, Andreas J, ISMARA: Completely automated inference of gene regulatory networks from high-throughput data [Posted-content]. PeerJ Preprints. https://doi.org/10.7287/peerj.preprints.3328v1
, & van Nimwegen, Erik. (2017).
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., van Nimwegen, Erik, & Discovery of physiological and cancer-related regulators of 3’ UTR processing with KAPAC [Posted-content]. bioRxiv. https://doi.org/10.1101/195958
. (2017).
Gruber, Andreas J., Schmidt, Ralf, Ghosh, Souvik, Martin, Georges, Gruber, Andreas R., van Nimwegen, Erik, & Discovery of physiological and cancer-related regulators of 3’ UTR processing with KAPAC [Posted-content]. bioRxiv. https://doi.org/10.1101/195958
. (2017).
Dimitrova, Yoana, Gruber, Andreas J., Mittal, Nitish, Ghosh, Souvik, Dimitriades, Beatrice, Mathow, Daniel, Grandy, William Aaron, Christofori, Gerhard, & Biology Direct, 12(1), 8. https://doi.org/10.1186/s13062-017-0180-7
. (2017). TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition.
Dimitrova, Yoana, Gruber, Andreas J., Mittal, Nitish, Ghosh, Souvik, Dimitriades, Beatrice, Mathow, Daniel, Grandy, William Aaron, Christofori, Gerhard, & Biology Direct, 12(1), 8. https://doi.org/10.1186/s13062-017-0180-7
. (2017). TFAP2A is a component of the ZEB1/2 network that regulates TGFB1-induced epithelial to mesenchymal transition.
Essig, Katharina, Hu, Desheng, Guimaraes, Joao C., Alterauge, Dominik, Edelmann, Stephanie, Raj, Timsse, Kranich, Jan, Behrens, Gesine, Heiseke, Alexander, Floess, Stefan, Klein, Juliane, Maiser, Andreas, Marschall, Susan, Hrabĕ de Angelis, Martin, Leonhardt, Heinrich, Calkhoven, Cornelis F., Noessner, Elfriede, Brocker, Thomas, Huehn, Jochen, et al. (2017). Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity, 47(6), 1067–1082. https://doi.org/10.1016/j.immuni.2017.11.008
Essig, Katharina, Hu, Desheng, Guimaraes, Joao C., Alterauge, Dominik, Edelmann, Stephanie, Raj, Timsse, Kranich, Jan, Behrens, Gesine, Heiseke, Alexander, Floess, Stefan, Klein, Juliane, Maiser, Andreas, Marschall, Susan, Hrabĕ de Angelis, Martin, Leonhardt, Heinrich, Calkhoven, Cornelis F., Noessner, Elfriede, Brocker, Thomas, Huehn, Jochen, et al. (2017). Roquin Suppresses the PI3K-mTOR Signaling Pathway to Inhibit T Helper Cell Differentiation and Conversion of Treg to Tfr Cells. Immunity, 47(6), 1067–1082. https://doi.org/10.1016/j.immuni.2017.11.008
Gumienny, Rafal, Jedlinski, Dominik J., Schmidt, Alexander, Gypas, Foivos, Martin, Georges, Vina-Vilaseca, Arnau, & Nucleic Acids Research, 45(5), 2341–2353. https://doi.org/10.1093/nar/gkw1321
. (2017). High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq.
Gumienny, Rafal, Jedlinski, Dominik J., Schmidt, Alexander, Gypas, Foivos, Martin, Georges, Vina-Vilaseca, Arnau, & Nucleic Acids Research, 45(5), 2341–2353. https://doi.org/10.1093/nar/gkw1321
. (2017). High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq.
Martin, Georges, Schmidt, Ralf, Gruber, Andreas J., Ghosh, Souvik, Keller, Walter, & Journal of Visualized Experiments, 128, e56129. https://doi.org/10.3791/56129
. (2017). 3′ End Sequencing Library Preparation with A-seq2.
Martin, Georges, Schmidt, Ralf, Gruber, Andreas J., Ghosh, Souvik, Keller, Walter, & Journal of Visualized Experiments, 128, e56129. https://doi.org/10.3791/56129
. (2017). 3′ End Sequencing Library Preparation with A-seq2.
Mittal, Nitish, Guimaraes, Joao C., Gross, Thomas, Schmidt, Alexander, Vina-Vilaseca, Arnau, Nedialkova, Danny D., Aeschimann, Florian, Leidel, Sebastian A., Spang, Anne, & Nature Communications, 8(457), 1–12. https://doi.org/10.1038/s41467-017-00539-y
. (2017). The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.
Mittal, Nitish, Guimaraes, Joao C., Gross, Thomas, Schmidt, Alexander, Vina-Vilaseca, Arnau, Nedialkova, Danny D., Aeschimann, Florian, Leidel, Sebastian A., Spang, Anne, & Nature Communications, 8(457), 1–12. https://doi.org/10.1038/s41467-017-00539-y
. (2017). The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.
Omidi, Saeed, PLoS Computational Biology, 13(7), e1005176. https://doi.org/10.1371/journal.pcbi.1005176
, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & van Nimwegen, Erik. (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
Omidi, Saeed, PLoS Computational Biology, 13(7), e1005176. https://doi.org/10.1371/journal.pcbi.1005176
, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & van Nimwegen, Erik. (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
Riba, Andrea, Emmenlauer, Mario, Chen, Amy, Sigoillot, Frederic, Cong, Feng, Dehio, Christoph, Jenkins, Jeremy, & Cell Systems, 4(2), 182–193. https://doi.org/10.1016/j.cels.2017.01.011
. (2017). Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results.
Riba, Andrea, Emmenlauer, Mario, Chen, Amy, Sigoillot, Frederic, Cong, Feng, Dehio, Christoph, Jenkins, Jeremy, & Cell Systems, 4(2), 182–193. https://doi.org/10.1016/j.cels.2017.01.011
. (2017). Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results.
Genome Biology, 18(1), 226. https://doi.org/10.1186/s13059-017-1361-5
, & Graveley, Brenton R. (2017). RNAs: dynamic and mutable.
Genome Biology, 18(1), 226. https://doi.org/10.1186/s13059-017-1361-5
, & Graveley, Brenton R. (2017). RNAs: dynamic and mutable.
Omidi, Saeed, Automated Incorporation of Pairwise Dependency in Transcription Factor Binding Site Prediction Using Dinucleotide Weight Tensors [Posted-content]. bioRxiv. https://doi.org/10.1101/078212
, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & Nimwegen, Erik van. (2016).
Omidi, Saeed, Automated Incorporation of Pairwise Dependency in Transcription Factor Binding Site Prediction Using Dinucleotide Weight Tensors [Posted-content]. bioRxiv. https://doi.org/10.1101/078212
, Pachkov, Mikhail, Breda, Jeremie, Berger, Severin, & Nimwegen, Erik van. (2016).
Gumienny, Rafal, Jedlinski, Dominik, Martin, Georges, Vina-Villaseca, Arnau, & High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. [Posted-content]. bioRxiv. https://doi.org/10.1101/037259
. (2016).
Gumienny, Rafal, Jedlinski, Dominik, Martin, Georges, Vina-Villaseca, Arnau, & High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. [Posted-content]. bioRxiv. https://doi.org/10.1101/037259
. (2016).
Gruber, Andreas J., Schmidt, Ralf, Gruber, Andreas R., Martin, Georges, Ghosh, Souvik, Belmadani, Manuel, Keller, Walter, & Genome Research, 26(8), 1145–1159. https://doi.org/10.1101/gr.202432.115
. (2016). A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation.
Gruber, Andreas J., Schmidt, Ralf, Gruber, Andreas R., Martin, Georges, Ghosh, Souvik, Belmadani, Manuel, Keller, Walter, & Genome Research, 26(8), 1145–1159. https://doi.org/10.1101/gr.202432.115
. (2016). A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation.
Guimaraes, Joao C., & Genome Biology, 17(1), 236. https://doi.org/10.1186/s13059-016-1104-z
. (2016). Patterns of ribosomal protein expression specify normal and malignant human cells.
Guimaraes, Joao C., & Genome Biology, 17(1), 236. https://doi.org/10.1186/s13059-016-1104-z
. (2016). Patterns of ribosomal protein expression specify normal and malignant human cells.
Janowski, Robert, Heinz, Gitta A, Schlundt, Andreas, Wommelsdorf, Nina, Brenner, Sven, Gruber, Andreas R, Blank, Michael, Buch, Thorsten, Buhmann, Raymund, Nature Communications, 7, 11032. https://doi.org/10.1038/ncomms11032
, Niessing, Dierk, Heissmeyer, Vigo, & Sattler, Michael. (2016). Roquin recognizes a non-canonical hexaloop structure in the 3′-UTR of Ox40.
Janowski, Robert, Heinz, Gitta A, Schlundt, Andreas, Wommelsdorf, Nina, Brenner, Sven, Gruber, Andreas R, Blank, Michael, Buch, Thorsten, Buhmann, Raymund, Nature Communications, 7, 11032. https://doi.org/10.1038/ncomms11032
, Niessing, Dierk, Heissmeyer, Vigo, & Sattler, Michael. (2016). Roquin recognizes a non-canonical hexaloop structure in the 3′-UTR of Ox40.
Jorjani, Hadi, Kehr, Stephanie, Jedlinski, Dominik J., Gumienny, Rafal, Hertel, Jana, Stadler, Peter F., Nucleic Acids Research, 44(11), 5068–5082. https://doi.org/10.1093/nar/gkw386
, & Gruber, Andreas R. (2016). An updated human snoRNAome.
Jorjani, Hadi, Kehr, Stephanie, Jedlinski, Dominik J., Gumienny, Rafal, Hertel, Jana, Stadler, Peter F., Nucleic Acids Research, 44(11), 5068–5082. https://doi.org/10.1093/nar/gkw386
, & Gruber, Andreas R. (2016). An updated human snoRNAome.
Martin, Georges, & Nature Methods, 13(6), 482–483. https://doi.org/10.1038/nmeth.3870
. (2016). Redesigning CLIP for efficiency, accuracy and speed.
Martin, Georges, & Nature Methods, 13(6), 482–483. https://doi.org/10.1038/nmeth.3870
. (2016). Redesigning CLIP for efficiency, accuracy and speed.
Ustianenko, Dmytro, Pasulka, Josef, Feketova, Zuzana, Bednarik, Lukas, Zigackova, Dagmar, Fortova, Andrea, The EMBO Journal, 35(20), 2179–2191. https://doi.org/10.15252/embj.201694857
, & Vanacova, Stepanka. (2016). TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs.
Ustianenko, Dmytro, Pasulka, Josef, Feketova, Zuzana, Bednarik, Lukas, Zigackova, Dagmar, Fortova, Andrea, The EMBO Journal, 35(20), 2179–2191. https://doi.org/10.15252/embj.201694857
, & Vanacova, Stepanka. (2016). TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs.
Rzepiela, Andrzej Jerzy, Vina-Vilaseca, Arnau, Breda, Jeremie, Ghosh, Souvik, Syed, Afzal P, Gruber, Andreas J, Grandy, William A, Eschbach, Katja, Beisel, Christian, van Nimwegen, Erik, & Exploiting variability of single cells to uncover the in vivo hierarchy of miRNA targets [Posted-content]. bioRxiv. https://doi.org/10.1101/035097
. (2015).
Rzepiela, Andrzej Jerzy, Vina-Vilaseca, Arnau, Breda, Jeremie, Ghosh, Souvik, Syed, Afzal P, Gruber, Andreas J, Grandy, William A, Eschbach, Katja, Beisel, Christian, van Nimwegen, Erik, & Exploiting variability of single cells to uncover the in vivo hierarchy of miRNA targets [Posted-content]. bioRxiv. https://doi.org/10.1101/035097
. (2015).
Mittal, Nitish, Kunz, Christophe, Gypas, Foivos, Kishore, Shivendra, Martin, Georges, Wenzel, Friedel, Nimwegen, Erik van, Schaer, Primo, & Ewing sarcoma breakpoint region 1 prevents transcription-associated genome instability [Posted-content]. bioRxiv. https://doi.org/10.1101/034215
. (2015).
Mittal, Nitish, Kunz, Christophe, Gypas, Foivos, Kishore, Shivendra, Martin, Georges, Wenzel, Friedel, Nimwegen, Erik van, Schaer, Primo, & Ewing sarcoma breakpoint region 1 prevents transcription-associated genome instability [Posted-content]. bioRxiv. https://doi.org/10.1101/034215
. (2015).
Gruber, Andreas J, Schmidt, Ralf, Gruber, Andreas R, Martin, Georges, Ghosh, Souvik, Belmadani, Manuel, Keller, Walter, & A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogenous ribonucleoprotein C on cleavage and polyadenylation [Posted-content]. bioRxiv. https://doi.org/10.1101/033001
. (2015).
Gruber, Andreas J, Schmidt, Ralf, Gruber, Andreas R, Martin, Georges, Ghosh, Souvik, Belmadani, Manuel, Keller, Walter, & A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogenous ribonucleoprotein C on cleavage and polyadenylation [Posted-content]. bioRxiv. https://doi.org/10.1101/033001
. (2015).
Breda, Jeremie, Rzepiela, Andrzej J, Gumienny, Rafal, van Nimwegen, Erik, & Methods, 85, 90–99. https://doi.org/10.1016/j.ymeth.2015.04.012
. (2015). Quantifying the strength of miRNA-target interactions.
Breda, Jeremie, Rzepiela, Andrzej J, Gumienny, Rafal, van Nimwegen, Erik, & Methods, 85, 90–99. https://doi.org/10.1016/j.ymeth.2015.04.012
. (2015). Quantifying the strength of miRNA-target interactions.
Gumienny, Rafal, & Nucleic Acids Research, 43(3), 1380–1391. https://doi.org/10.1093/nar/gkv050
. (2015). Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G.
Gumienny, Rafal, & Nucleic Acids Research, 43(3), 1380–1391. https://doi.org/10.1093/nar/gkv050
. (2015). Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G.
Gumienny, Rafal, & Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. (erratum)]. Nucleic Acids Research, 43, Article 18. https://doi.org/10.1093/nar/gkv924
. (2015). Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. (erratum) [Review of
Gumienny, Rafal, & Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. (erratum)]. Nucleic Acids Research, 43, Article 18. https://doi.org/10.1093/nar/gkv924
. (2015). Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. (erratum) [Review of
Imig, Jochen, Brunschweiger, Andreas, Brümmer, Anneke, Guennewig, Boris, Mittal, Nitish, Kishore, Shivendra, Tsikrika, Panagiota, Gerber, André P, Nature Chemical Biology, 11(2), 107–114. https://doi.org/10.1038/nchembio.1713
, & Hall, Jonathan. (2015). miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction.
Imig, Jochen, Brunschweiger, Andreas, Brümmer, Anneke, Guennewig, Boris, Mittal, Nitish, Kishore, Shivendra, Tsikrika, Panagiota, Gerber, André P, Nature Chemical Biology, 11(2), 107–114. https://doi.org/10.1038/nchembio.1713
, & Hall, Jonathan. (2015). miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction.
Kanitz, Alexander, Gypas, Foivos, Gruber, Andreas J, Gruber, Andreas R, Martin, Georges, & Genome Biology, 16, 150. https://doi.org/10.1186/s13059-015-0702-5
. (2015). Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data.
Kanitz, Alexander, Gypas, Foivos, Gruber, Andreas J, Gruber, Andreas R, Martin, Georges, & Genome Biology, 16, 150. https://doi.org/10.1186/s13059-015-0702-5
. (2015). Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data.
Subasic, Deni, Brümmer, Anneke, Wu, Yibo, Pinto, Sérgio Morgado, Imig, Jochen, Keller, Martin, Jovanovic, Marko, Lightfoot, Helen Louise, Nasso, Sara, Goetze, Sandra, Brunner, Erich, Hall, Jonathan, Aebersold, Ruedi, Genome Research, 25(11), 1680–1691. https://doi.org/10.1101/gr.183160.114
, & Hengartner, Michael O. (2015). Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.
Subasic, Deni, Brümmer, Anneke, Wu, Yibo, Pinto, Sérgio Morgado, Imig, Jochen, Keller, Martin, Jovanovic, Marko, Lightfoot, Helen Louise, Nasso, Sara, Goetze, Sandra, Brunner, Erich, Hall, Jonathan, Aebersold, Ruedi, Genome Research, 25(11), 1680–1691. https://doi.org/10.1101/gr.183160.114
, & Hengartner, Michael O. (2015). Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.
Tattikota, Sudhir G, Rathjen, Thomas, Hausser, Jean, Khedkar, Aditya, Kabra, Uma D, Pandey, Varun, Sury, Matthias, Wessels, Hans-Hermann, Mollet, Inês G, Eliasson, Lena, Selbach, Matthias, Zinzen, Robert P, Journal of Biological Chemistry, 290(33), 20284–20294. https://doi.org/10.1074/jbc.m115.658625
, Kadener, Sebastian, Tschöp, Matthias H, Jastroch, Martin, Friedländer, Marc R, & Poy, Matthew N. (2015). miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.
Tattikota, Sudhir G, Rathjen, Thomas, Hausser, Jean, Khedkar, Aditya, Kabra, Uma D, Pandey, Varun, Sury, Matthias, Wessels, Hans-Hermann, Mollet, Inês G, Eliasson, Lena, Selbach, Matthias, Zinzen, Robert P, Journal of Biological Chemistry, 290(33), 20284–20294. https://doi.org/10.1074/jbc.m115.658625
, Kadener, Sebastian, Tschöp, Matthias H, Jastroch, Martin, Friedländer, Marc R, & Poy, Matthew N. (2015). miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism.
Inferring gene expression regulatory networks from high-throughput measurements]. Methods, 85, 1–2. https://doi.org/10.1016/j.ymeth.2015.07.006
. (2015). Inferring gene expression regulatory networks from high-throughput measurements [Review of
Inferring gene expression regulatory networks from high-throughput measurements]. Methods, 85, 1–2. https://doi.org/10.1016/j.ymeth.2015.07.006
. (2015). Inferring gene expression regulatory networks from high-throughput measurements [Review of
RNA, 21(4), 531–533. https://doi.org/10.1261/rna.049999.115
, & Keller, Walter. (2015). Reflections on the RNA world.
RNA, 21(4), 531–533. https://doi.org/10.1261/rna.049999.115
, & Keller, Walter. (2015). Reflections on the RNA world.
Hausser, J., & Zavolan, M. (2014). Erratum: Identification and consequences of miRNA-target interactions-beyond repression of gene expression (Nature Reviews Genetics (2014) 15 (599-612)). Nature Reviews Genetics, 15(10). https://doi.org/10.1038/nrg3827
Hausser, J., & Zavolan, M. (2014). Erratum: Identification and consequences of miRNA-target interactions-beyond repression of gene expression (Nature Reviews Genetics (2014) 15 (599-612)). Nature Reviews Genetics, 15(10). https://doi.org/10.1038/nrg3827
Balwierz, Piotr J, Pachkov, Mikhail, Arnold, Phil, Gruber, Andreas J, Genome Research, 24(5), 869–884. https://doi.org/10.1101/gr.169508.113
, & van Nimwegen, Erik. (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs.
Balwierz, Piotr J, Pachkov, Mikhail, Arnold, Phil, Gruber, Andreas J, Genome Research, 24(5), 869–884. https://doi.org/10.1101/gr.169508.113
, & van Nimwegen, Erik. (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs.
Daubner, Gerrit M., Brümmer, Anneke, Tocchini, Cristina, Gerhardy, Stefan, Ciosk, Rafal, Nucleic Acids Research, 42(12), 8092–8105. https://doi.org/10.1093/nar/gku445
, & Allain, Frédéric H.-T. (2014). Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1.
Daubner, Gerrit M., Brümmer, Anneke, Tocchini, Cristina, Gerhardy, Stefan, Ciosk, Rafal, Nucleic Acids Research, 42(12), 8092–8105. https://doi.org/10.1093/nar/gku445
, & Allain, Frédéric H.-T. (2014). Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1.
Erhard, Florian, Haas, Jürgen, Lieber, Diana, Malterer, Georg, Jaskiewicz, Lukasz, Genome Research, 24(6), 906–919. https://doi.org/10.1101/gr.166702.113
, Dölken, Lars, & Zimmer, Ralf. (2014). Widespread context-dependency of microRNA-mediated regulation.
Erhard, Florian, Haas, Jürgen, Lieber, Diana, Malterer, Georg, Jaskiewicz, Lukasz, Genome Research, 24(6), 906–919. https://doi.org/10.1101/gr.166702.113
, Dölken, Lars, & Zimmer, Ralf. (2014). Widespread context-dependency of microRNA-mediated regulation.
Gruber, Andreas J., Grandy, William A., Balwierz, Piotr J., Dimitrova, Yoana A., Pachkov, Mikhail, Ciaudo, Constance, van Nimwegen, Erik, & Nucleic Acids Research, 42(14), 9313–9326. https://doi.org/10.1093/nar/gku544
. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways.
Gruber, Andreas J., Grandy, William A., Balwierz, Piotr J., Dimitrova, Yoana A., Pachkov, Mikhail, Ciaudo, Constance, van Nimwegen, Erik, & Nucleic Acids Research, 42(14), 9313–9326. https://doi.org/10.1093/nar/gku544
. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways.
Gruber, Andreas R., Martin, Georges, Müller, Philipp, Schmidt, Alexander, Gruber, Andreas J., Gumienny, Rafal, Mittal, Nitish, Jayachandran, Rajesh, Pieters, Jean, Keller, Walter, van Nimwegen, Erik, & Nature Communications, 5(5465), 5465. https://doi.org/10.1038/ncomms6465
. (2014). Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells.
Gruber, Andreas R., Martin, Georges, Müller, Philipp, Schmidt, Alexander, Gruber, Andreas J., Gumienny, Rafal, Mittal, Nitish, Jayachandran, Rajesh, Pieters, Jean, Keller, Walter, van Nimwegen, Erik, & Nature Communications, 5(5465), 5465. https://doi.org/10.1038/ncomms6465
. (2014). Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells.
Hausser, Jean, & Nature Reviews. Genetics, 15(9), 599–612. https://doi.org/10.1038/nrg3765
. (2014). Identification and consequences of miRNA-target interactions - beyond repression of gene expression.
Hausser, Jean, & Nature Reviews. Genetics, 15(9), 599–612. https://doi.org/10.1038/nrg3765
. (2014). Identification and consequences of miRNA-target interactions - beyond repression of gene expression.
Jorjani, Hadi, & Bioinformatics, 30(7), 971–974. https://doi.org/10.1093/bioinformatics/btt752
. (2014). TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data.
Jorjani, Hadi, & Bioinformatics, 30(7), 971–974. https://doi.org/10.1093/bioinformatics/btt752
. (2014). TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data.
Kishore, Shivendra, Piscuoglio, Salvatore, Kovac, Michal, Gylling, Annette, Wenzel, Friedel, Trapani, Francesca, Altermatt, Hans Joerg, Mele, Valentina, Marra, Giancarlo, Peltomäki, Päivi, Terracciano, Luigi, Cancer Research, 74(1), 224–234. https://doi.org/10.1158/0008-5472.can-13-2100
, & Heinimann, Karl. (2014). 3’UTR poly(T/U) tract deletions and altered expression of EWSR1 are a hallmark of mismatch repair deficient cancers.
Kishore, Shivendra, Piscuoglio, Salvatore, Kovac, Michal, Gylling, Annette, Wenzel, Friedel, Trapani, Francesca, Altermatt, Hans Joerg, Mele, Valentina, Marra, Giancarlo, Peltomäki, Päivi, Terracciano, Luigi, Cancer Research, 74(1), 224–234. https://doi.org/10.1158/0008-5472.can-13-2100
, & Heinimann, Karl. (2014). 3’UTR poly(T/U) tract deletions and altered expression of EWSR1 are a hallmark of mismatch repair deficient cancers.
Kishore S, Piscuoglio S, Kovac MB, Gylling A, Wenzel F, Trapani F, Altermatt HJ, Mele V, Marra G, Peltomäki P, Terracciano L, Cancer research, 74(1), 224–234. https://doi.org/10.1158/0008-5472.can-13-2100
, & Heinimann K. (2014). 3′-UTR poly(T/U) tract deletions and altered expression of EWSR1 are a hallmark of mismatch repair-deficient cancers.
Kishore S, Piscuoglio S, Kovac MB, Gylling A, Wenzel F, Trapani F, Altermatt HJ, Mele V, Marra G, Peltomäki P, Terracciano L, Cancer research, 74(1), 224–234. https://doi.org/10.1158/0008-5472.can-13-2100
, & Heinimann K. (2014). 3′-UTR poly(T/U) tract deletions and altered expression of EWSR1 are a hallmark of mismatch repair-deficient cancers.
Latreille, Mathieu, Hausser, Jean, Stützer, Ina, Zhang, Quan, Hastoy, Benoit, Gargani, Sofia, Kerr-Conte, Julie, Pattou, Francois, Journal of Clinical Investigation, 124(6), 2722–2735. https://doi.org/10.1172/jci73066
, Esguerra, Jonathan L. S., Eliasson, Lena, Rülicke, Thomas, Rorsman, Patrik, & Stoffel, Markus. (2014). MicroRNA-7a regulates pancreatic β cell function.
Latreille, Mathieu, Hausser, Jean, Stützer, Ina, Zhang, Quan, Hastoy, Benoit, Gargani, Sofia, Kerr-Conte, Julie, Pattou, Francois, Journal of Clinical Investigation, 124(6), 2722–2735. https://doi.org/10.1172/jci73066
, Esguerra, Jonathan L. S., Eliasson, Lena, Rülicke, Thomas, Rorsman, Patrik, & Stoffel, Markus. (2014). MicroRNA-7a regulates pancreatic β cell function.