Publications
37 found
Show per page
Lazaridis, I. I., Lukovnikova, S., Peros, G., Andreou, A., Mattiello, D., Köstler, T., Schizas, D., Zingg, U., Cavelti-Weder, C., & Delko, T. (2024). Family planning, reproductive health and pregnancy after bariatric surgery: a survey of bariatric healthcare professionals in Switzerland [Journal-article]. Swiss Medical Weekly, 154(12), 3841. https://doi.org/10.57187/s.3841
Lazaridis, I. I., Lukovnikova, S., Peros, G., Andreou, A., Mattiello, D., Köstler, T., Schizas, D., Zingg, U., Cavelti-Weder, C., & Delko, T. (2024). Family planning, reproductive health and pregnancy after bariatric surgery: a survey of bariatric healthcare professionals in Switzerland [Journal-article]. Swiss Medical Weekly, 154(12), 3841. https://doi.org/10.57187/s.3841
Baldrich, Adrian, Althaus, Dominic, Menter, Thomas, Hirsiger, Julia R., Köppen, Julius, Hupfer, Robin, Juskevicius, Darius, Konantz, Martina, Bosch, Angela, Drexler, Beatrice, Gerull, Sabine, Ghosh, Adhideb, Meyer, Benedikt J., Jauch, Annaise, Pini, Katia, Poletti, Fabio, Berkemeier, Caroline M., Heijnen, Ingmar, Panne, Isabelle, et al. (2024). Post-transplant Inflammatory Bowel Disease Associated with Donor-Derived TIM-3 Deficiency. Journal of Clinical Immunology, 44. https://doi.org/10.1007/s10875-024-01667-z
Baldrich, Adrian, Althaus, Dominic, Menter, Thomas, Hirsiger, Julia R., Köppen, Julius, Hupfer, Robin, Juskevicius, Darius, Konantz, Martina, Bosch, Angela, Drexler, Beatrice, Gerull, Sabine, Ghosh, Adhideb, Meyer, Benedikt J., Jauch, Annaise, Pini, Katia, Poletti, Fabio, Berkemeier, Caroline M., Heijnen, Ingmar, Panne, Isabelle, et al. (2024). Post-transplant Inflammatory Bowel Disease Associated with Donor-Derived TIM-3 Deficiency. Journal of Clinical Immunology, 44. https://doi.org/10.1007/s10875-024-01667-z
Bosch, Angela J. T., Keller, Lena, Steiger, Laura, Rohm, Theresa V., Wiedemann, Sophia J., Low, Andy J. Y., Stawiski, Marc, Rachid, Leila, Roux, Julien, Konrad, Daniel, Wueest, Stephan, Tugues, Sonia, Greter, Melanie, Böni-Schnetzler, Marianne, Meier, Daniel T., & Diabetologia, 66(12), 2292–2306. https://doi.org/10.1007/s00125-023-06007-1
. (2023). CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice [Journal-article].
Bosch, Angela J. T., Keller, Lena, Steiger, Laura, Rohm, Theresa V., Wiedemann, Sophia J., Low, Andy J. Y., Stawiski, Marc, Rachid, Leila, Roux, Julien, Konrad, Daniel, Wueest, Stephan, Tugues, Sonia, Greter, Melanie, Böni-Schnetzler, Marianne, Meier, Daniel T., & Diabetologia, 66(12), 2292–2306. https://doi.org/10.1007/s00125-023-06007-1
. (2023). CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice [Journal-article].
Bosch, A. J. T., Rohm, T. V., AlAsfoor, S., Low, A. J. Y., Keller, L., Baumann, Z., Parayil, N., Stawiski, M., Rachid, L., Dervos, T., Mitrovic, S., Meier, D. T., & Cavelti-Weder, C. (2023). Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Particle and Fibre Toxicology, 20(1). https://doi.org/10.1186/s12989-023-00518-w
Bosch, A. J. T., Rohm, T. V., AlAsfoor, S., Low, A. J. Y., Keller, L., Baumann, Z., Parayil, N., Stawiski, M., Rachid, L., Dervos, T., Mitrovic, S., Meier, D. T., & Cavelti-Weder, C. (2023). Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Particle and Fibre Toxicology, 20(1). https://doi.org/10.1186/s12989-023-00518-w
Perakakis, N., Harb, H., Hale, B. G., Varga, Z., Steenblock, C., Kanczkowski, W., Alexaki, V. I., Ludwig, B., Mirtschink, P., Solimena, M., Toepfner, N., Zeissig, S., Gado, M., Abela, I. A., Beuschlein, F., Spinas, G. A., Cavelti-Weder, C., Gerber, P. A., Huber, M., et al. (2023). Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. The Lancet Diabetes and Endocrinology, 11(9), 675–693. https://doi.org/10.1016/s2213-8587(23)00154-7
Perakakis, N., Harb, H., Hale, B. G., Varga, Z., Steenblock, C., Kanczkowski, W., Alexaki, V. I., Ludwig, B., Mirtschink, P., Solimena, M., Toepfner, N., Zeissig, S., Gado, M., Abela, I. A., Beuschlein, F., Spinas, G. A., Cavelti-Weder, C., Gerber, P. A., Huber, M., et al. (2023). Mechanisms and clinical relevance of the bidirectional relationship of viral infections with metabolic diseases. The Lancet Diabetes and Endocrinology, 11(9), 675–693. https://doi.org/10.1016/s2213-8587(23)00154-7
Bosch, A. J. T., Keller, L., Steiger, L., Rohm, T. V., Wiedemann, S. J., Low, A. J. Y., Stawiski, M., Rachid, L., Roux, J., Konrad, D., Wueest, S., Tugues, S., Greter, M., Böni-Schnetzler, M., Meier, D. T., & Cavelti-Weder, C. (2023). CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice. Diabetologia, 66, 2292–2306. https://doi.org/10.1007/s00125-023-06007-1
Bosch, A. J. T., Keller, L., Steiger, L., Rohm, T. V., Wiedemann, S. J., Low, A. J. Y., Stawiski, M., Rachid, L., Roux, J., Konrad, D., Wueest, S., Tugues, S., Greter, M., Böni-Schnetzler, M., Meier, D. T., & Cavelti-Weder, C. (2023). CSF1R inhibition with PLX5622 affects multiple immune cell compartments and induces tissue-specific metabolic effects in lean mice. Diabetologia, 66, 2292–2306. https://doi.org/10.1007/s00125-023-06007-1
Bosch, A. J. T., Rohm, T. V., AlAsfoor, S., Low, A. J. Y., Baumann, Z., Parayil, N., Noreen, F., Roux, J., Meier, D. T., & Cavelti-Weder, C. (2023). Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. Particle and Fibre Toxicology, 20. https://doi.org/10.1186/s12989-023-00536-8
Bosch, A. J. T., Rohm, T. V., AlAsfoor, S., Low, A. J. Y., Baumann, Z., Parayil, N., Noreen, F., Roux, J., Meier, D. T., & Cavelti-Weder, C. (2023). Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice. Particle and Fibre Toxicology, 20. https://doi.org/10.1186/s12989-023-00536-8
Hepprich, M., Antwi, K., Wiesner, P., Cavelti-Weder, C., Donath, M. Y., Christ, E. R., & Wild, D. (2022, April 26). Glucagon-like peptide-1 receptor PET/CT in patients with and without post gastric bypass hypoglycemia – a prospective, matched case-control study [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-1561857/v1
Hepprich, M., Antwi, K., Wiesner, P., Cavelti-Weder, C., Donath, M. Y., Christ, E. R., & Wild, D. (2022, April 26). Glucagon-like peptide-1 receptor PET/CT in patients with and without post gastric bypass hypoglycemia – a prospective, matched case-control study [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-1561857/v1
Hepprich, Matthias, Mudry, Jonathan M., Gregoriano, Claudia, Jornayvaz, Francois R., Carballo, Sebastian, Wojtusciszyn, Anne, Bart, Pierre-Alexandre, Chiche, Jean-Daniel, Fischli, Stefan, Baumgartner, Thomas, eClinicalMedicine, 53. https://doi.org/10.1016/j.eclinm.2022.101649
, Braun, Dominique L., Günthard, Huldrych F., Beuschlein, Felix, Conen, Anna, West, Emily, Isenring, Egon, Zechmann, Stefan, Bucklar, Gabriela, et al. (2022). Canakinumab in patients with COVID-19 and type 2 diabetes – A multicentre, randomised, double-blind, placebo-controlled trial.
Hepprich, Matthias, Mudry, Jonathan M., Gregoriano, Claudia, Jornayvaz, Francois R., Carballo, Sebastian, Wojtusciszyn, Anne, Bart, Pierre-Alexandre, Chiche, Jean-Daniel, Fischli, Stefan, Baumgartner, Thomas, eClinicalMedicine, 53. https://doi.org/10.1016/j.eclinm.2022.101649
, Braun, Dominique L., Günthard, Huldrych F., Beuschlein, Felix, Conen, Anna, West, Emily, Isenring, Egon, Zechmann, Stefan, Bucklar, Gabriela, et al. (2022). Canakinumab in patients with COVID-19 and type 2 diabetes – A multicentre, randomised, double-blind, placebo-controlled trial.
Hoffmann, C., Gerber, P. A., Cavelti-Weder, C., Licht, L., Kotb, R., Al Dweik, R., Cherfane, M., Bornstein, S., & Perakakis, N. (2022). Liver, NAFLD and COVID-19. Hormone and Metabolic Research. https://doi.org/10.1055/a-1834-9008
Hoffmann, C., Gerber, P. A., Cavelti-Weder, C., Licht, L., Kotb, R., Al Dweik, R., Cherfane, M., Bornstein, S., & Perakakis, N. (2022). Liver, NAFLD and COVID-19. Hormone and Metabolic Research. https://doi.org/10.1055/a-1834-9008
Melhem, Hassan, Kaya, Berna, Kaymak, Tanay, Wuggenig, Philipp, Flint, Emilio, Roux, Julien, Oost, Koen C., Mucosal Immunology, 15, 443–458. https://doi.org/10.1038/s41385-022-00494-y
, Balmer, Maria L., Walser, Jean-Claude, Morales, Rodrigo A., Riedel, Christian U., Liberali, Prisca, Villablanca, Eduardo J., & Niess, Jan Hendrik. (2022). Epithelial GPR35 protects from Citrobacter rodentium infection by preserving goblet cells and mucosal barrier integrity.
Melhem, Hassan, Kaya, Berna, Kaymak, Tanay, Wuggenig, Philipp, Flint, Emilio, Roux, Julien, Oost, Koen C., Mucosal Immunology, 15, 443–458. https://doi.org/10.1038/s41385-022-00494-y
, Balmer, Maria L., Walser, Jean-Claude, Morales, Rodrigo A., Riedel, Christian U., Liberali, Prisca, Villablanca, Eduardo J., & Niess, Jan Hendrik. (2022). Epithelial GPR35 protects from Citrobacter rodentium infection by preserving goblet cells and mucosal barrier integrity.
Rohm, Theresa V., Keller, Lena, Bosch, Angela J. T., AlAsfoor, Shefaa, Baumann, Zora, Thomas, Amandine, Wiedemann, Sophia J., Steiger, Laura, Dalmas, Elise, Wehner, Josua, Rachid, Leila, Mooser, Catherine, Yilmaz, Bahtiyar, Fernandez Trigo, Nerea, Jauch, Annaise J., Wueest, Stephan, Konrad, Daniel, Henri, Sandrine, Niess, Jan H., et al. (2022). Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Communications Biology, 5. https://doi.org/10.1038/s42003-022-03305-z
Rohm, Theresa V., Keller, Lena, Bosch, Angela J. T., AlAsfoor, Shefaa, Baumann, Zora, Thomas, Amandine, Wiedemann, Sophia J., Steiger, Laura, Dalmas, Elise, Wehner, Josua, Rachid, Leila, Mooser, Catherine, Yilmaz, Bahtiyar, Fernandez Trigo, Nerea, Jauch, Annaise J., Wueest, Stephan, Konrad, Daniel, Henri, Sandrine, Niess, Jan H., et al. (2022). Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Communications Biology, 5. https://doi.org/10.1038/s42003-022-03305-z
Schneider, R., Kraljević, M., Peterli, R., Rohm, T. V., Bosch, A. J. T., Low, A. J. Y., Keller, L., AlAsfoor, S., Häfliger, S., Yilmaz, B., Peterson, C. J., Lazaridis, I. I., Vonäsch, P., Delko, T., & Surg Obes Relat Dis, 18(11), 1286–1297. https://doi.org/10.1016/j.soard.2022.06.286
(2022). Roux-en-Y gastric bypass with a long versus a short biliopancreatic limb improves weight loss and glycemic control in obese mice.
Schneider, R., Kraljević, M., Peterli, R., Rohm, T. V., Bosch, A. J. T., Low, A. J. Y., Keller, L., AlAsfoor, S., Häfliger, S., Yilmaz, B., Peterson, C. J., Lazaridis, I. I., Vonäsch, P., Delko, T., & Surg Obes Relat Dis, 18(11), 1286–1297. https://doi.org/10.1016/j.soard.2022.06.286
(2022). Roux-en-Y gastric bypass with a long versus a short biliopancreatic limb improves weight loss and glycemic control in obese mice.
Rohm TV, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, Delko T, Hruz P, & Frontiers in Immunology, 12, 668654. https://doi.org/10.3389/fimmu.2021.668654
. (2021). Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-Inflammatory Intestinal Macrophage Accumulation.
Rohm TV, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, Delko T, Hruz P, & Frontiers in Immunology, 12, 668654. https://doi.org/10.3389/fimmu.2021.668654
. (2021). Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-Inflammatory Intestinal Macrophage Accumulation.
Schneider R, Kraljević M, Peterli R, Rohm TV, Klasen JM, Obesity Surgery, 30(9), 3561–3569. https://doi.org/10.1007/s11695-020-04750-7
, & Delko T. (2020). GLP-1 Analogues as a Complementary Therapy in Patients after Metabolic Surgery: a Systematic Review and Qualitative Synthesis.
Schneider R, Kraljević M, Peterli R, Rohm TV, Klasen JM, Obesity Surgery, 30(9), 3561–3569. https://doi.org/10.1007/s11695-020-04750-7
, & Delko T. (2020). GLP-1 Analogues as a Complementary Therapy in Patients after Metabolic Surgery: a Systematic Review and Qualitative Synthesis.
Sarcevic J, Case Report—Secondary Antibody Deficiency Due to Endogenous Hypercortisolism [Frontiers Media S.A.]. 11, 1435. https://doi.org/10.3389/fimmu.2020.01435
, Berger CT, & Trendelenburg M. (2020).
Sarcevic J, Case Report—Secondary Antibody Deficiency Due to Endogenous Hypercortisolism [Frontiers Media S.A.]. 11, 1435. https://doi.org/10.3389/fimmu.2020.01435
, Berger CT, & Trendelenburg M. (2020).
Sarcevic, Jelena, Frontiers in Immunology, 11, 1435. https://doi.org/10.3389/fimmu.2020.01435
, Berger, T. Christoph, & Trendelenburg, Marten. (2020). Secondary Antibody Deficiency Due to Endogenous Hypercortisolism.
Sarcevic, Jelena, Frontiers in Immunology, 11, 1435. https://doi.org/10.3389/fimmu.2020.01435
, Berger, T. Christoph, & Trendelenburg, Marten. (2020). Secondary Antibody Deficiency Due to Endogenous Hypercortisolism.
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, Hall, Michael N., Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors.
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, Hall, Michael N., Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors.
AlAsfoor S, Rohm TV, Bosch AJT, Dervos T, Calabrese D, Matter MS, Weber A, & Scientific reports, 8(1), 15331. https://doi.org/10.1038/s41598-018-32853-w
. (2018). Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver.
AlAsfoor S, Rohm TV, Bosch AJT, Dervos T, Calabrese D, Matter MS, Weber A, & Scientific reports, 8(1), 15331. https://doi.org/10.1038/s41598-018-32853-w
. (2018). Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver.
Streuli, S. B., Cavelti-Weder, C., Meienberg, F., Bühler, C., & Grendelmeier, P. (2017). AZ-Verschlechterung unter tuberkulostatischer Therapie [Journal-article]. Swiss Medical Forum ‒ Schweizerisches Medizin-Forum, 17(43). https://doi.org/10.4414/smf.2017.03087
Streuli, S. B., Cavelti-Weder, C., Meienberg, F., Bühler, C., & Grendelmeier, P. (2017). AZ-Verschlechterung unter tuberkulostatischer Therapie [Journal-article]. Swiss Medical Forum ‒ Schweizerisches Medizin-Forum, 17(43). https://doi.org/10.4414/smf.2017.03087
Current protocols in stem cell biology, 40, 4A. https://doi.org/10.1002/cpsc.21
, Zumsteg A, Li W, & Zhou Q. (2017). Reprogramming of Pancreatic Acinar Cells to Functional Beta Cells by In Vivo Transduction of a Polycistronic Construct Containing Pdx1, Ngn3, MafA in Mice.
Current protocols in stem cell biology, 40, 4A. https://doi.org/10.1002/cpsc.21
, Zumsteg A, Li W, & Zhou Q. (2017). Reprogramming of Pancreatic Acinar Cells to Functional Beta Cells by In Vivo Transduction of a Polycistronic Construct Containing Pdx1, Ngn3, MafA in Mice.
Diabetologia, 59(3), 522–532. https://doi.org/10.1007/s00125-015-3838-7
, Li, W., Zumsteg, A., Stemann-Andersen, M., Zhang, Y., Yamada, T., Wang, M., Lu, J., Jermendy, A., Bee, Y. M., Bonner-Weir, S., Weir, G. C., & Zhou, Q. (2016). Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.
Diabetologia, 59(3), 522–532. https://doi.org/10.1007/s00125-015-3838-7
, Li, W., Zumsteg, A., Stemann-Andersen, M., Zhang, Y., Yamada, T., Wang, M., Lu, J., Jermendy, A., Bee, Y. M., Bonner-Weir, S., Weir, G. C., & Zhou, Q. (2016). Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.
Molecular Therapy, 24(5), 1003–1012. https://doi.org/10.1038/mt.2015.227
, Timper, K., Seelig, E., Keller, C., Osranek, M., Lassing, U., Spohn, G., Maurer, P., Muller, P., Jennings, G. T., Willers, J., Saudan, P., Donath, M. Y., & Bachmann, M. F. (2016). Development of an Interleukin-1β Vaccine in Patients with Type 2 Diabetes.
Molecular Therapy, 24(5), 1003–1012. https://doi.org/10.1038/mt.2015.227
, Timper, K., Seelig, E., Keller, C., Osranek, M., Lassing, U., Spohn, G., Maurer, P., Muller, P., Jennings, G. T., Willers, J., Saudan, P., Donath, M. Y., & Bachmann, M. F. (2016). Development of an Interleukin-1β Vaccine in Patients with Type 2 Diabetes.
Li W, Corrigendum: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. (Patent No. 8). 33(8), Article 8. https://doi.org/10.1038/nbt0815-882a
, Zhang Y, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang Y, Zeng S, Gifford D, Meissner A, Weir G, & Zhou Q. (2015).
Li W, Corrigendum: Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. (Patent No. 8). 33(8), Article 8. https://doi.org/10.1038/nbt0815-882a
, Zhang Y, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang Y, Zeng S, Gifford D, Meissner A, Weir G, & Zhou Q. (2015).
Current pathobiology reports, 3(1), 57–65. https://doi.org/10.1007/s40139-015-0068-0
, Li W, Zumsteg A, Stemann M, Yamada T, Bonner-Weir S, Weir G, & Zhou Q. (2015). Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes.
Current pathobiology reports, 3(1), 57–65. https://doi.org/10.1007/s40139-015-0068-0
, Li W, Zumsteg A, Stemann M, Yamada T, Bonner-Weir S, Weir G, & Zhou Q. (2015). Direct Reprogramming for Pancreatic Beta-Cells Using Key Developmental Genes.
Yamada, Takatsuga, Endocrinology, 156(6), 2029–2038. https://doi.org/10.1210/en.2014-1987
, Caballero, Francisco, Lysy, Philippe A., Guo, Lili, Sharma, Arun, Li, Weida, Zhou, Qiao, Bonner-Weir, Susan, & Weir, Gordon C. (2015). Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells.
Yamada, Takatsuga, Endocrinology, 156(6), 2029–2038. https://doi.org/10.1210/en.2014-1987
, Caballero, Francisco, Lysy, Philippe A., Guo, Lili, Sharma, Arun, Li, Weida, Zhou, Qiao, Bonner-Weir, Susan, & Weir, Gordon C. (2015). Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells.
Li W, Nature Biotechnology, 32(12), 1223–1230. https://doi.org/10.1038/nbt.3082
, Zhang Y, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang Y, Zeng S, Gifford D, Meissner A, Weir G, & Zhou Q. (2014). Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells.
Li W, Nature Biotechnology, 32(12), 1223–1230. https://doi.org/10.1038/nbt.3082
, Zhang Y, Clement K, Donovan S, Gonzalez G, Zhu J, Stemann M, Xu K, Hashimoto T, Yamada T, Nakanishi M, Zhang Y, Zeng S, Gifford D, Meissner A, Weir G, & Zhou Q. (2014). Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells.
Methods in molecular biology (Clifton, N.J.), 1150, 247–262. https://doi.org/10.1007/978-1-4939-0512-6_17
, Li W, Weir GC, & Zhou Q. (2014). Direct lineage conversion of pancreatic exocrine to endocrine Beta cells in vivo with defined factors.
Methods in molecular biology (Clifton, N.J.), 1150, 247–262. https://doi.org/10.1007/978-1-4939-0512-6_17
, Li W, Weir GC, & Zhou Q. (2014). Direct lineage conversion of pancreatic exocrine to endocrine Beta cells in vivo with defined factors.
Endocrinology, 154(12), 4493–4502. https://doi.org/10.1210/en.2013-1463
, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, Bonner-Weir S, & Weir GC. (2013). Pancreatic duct ligation after almost complete β-cell loss: exocrine regeneration but no evidence of β-cell regeneration.
Endocrinology, 154(12), 4493–4502. https://doi.org/10.1210/en.2013-1463
, Shtessel M, Reuss JE, Jermendy A, Yamada T, Caballero F, Bonner-Weir S, & Weir GC. (2013). Pancreatic duct ligation after almost complete β-cell loss: exocrine regeneration but no evidence of β-cell regeneration.
Biason-Lauber, Anna, Böni-Schnetzler, Marianne, Hubbard, Basil P, Bouzakri, Karim, Brunner, Andrea, Cell Metabolism, 17(3), 448–455. https://doi.org/10.1016/j.cmet.2013.02.001
, Keller, Cornelia, Meyer-Böni, Monika, Meier, Daniel T, Brorsson, Caroline, Timper, Katharina, Leibowitz, Gil, Patrignani, Andrea, Bruggmann, Remy, Boily, Gino, Zulewski, Henryk, Geier, Andreas, Cermak, Jennifer M, Elliott, Peter, et al. (2013). Identification of a SIRT1 mutation in a family with type 1 diabetes.
Biason-Lauber, Anna, Böni-Schnetzler, Marianne, Hubbard, Basil P, Bouzakri, Karim, Brunner, Andrea, Cell Metabolism, 17(3), 448–455. https://doi.org/10.1016/j.cmet.2013.02.001
, Keller, Cornelia, Meyer-Böni, Monika, Meier, Daniel T, Brorsson, Caroline, Timper, Katharina, Leibowitz, Gil, Patrignani, Andrea, Bruggmann, Remy, Boily, Gino, Zulewski, Henryk, Geier, Andreas, Cermak, Jennifer M, Elliott, Peter, et al. (2013). Identification of a SIRT1 mutation in a family with type 1 diabetes.
Diabetes Care, 35(8), 1654–1662. https://doi.org/10.2337/dc11-2219
, Babians-Brunner, Andrea, Keller, Cornelia, Stahel, Marc A, Kurz-Levin, Malaika, Zayed, Hany, Solinger, Alan M, Mandrup-Poulsen, Thomas, Dinarello, Charles A, & Donath, Marc Y. (2012). Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes.
Diabetes Care, 35(8), 1654–1662. https://doi.org/10.2337/dc11-2219
, Babians-Brunner, Andrea, Keller, Cornelia, Stahel, Marc A, Kurz-Levin, Malaika, Zayed, Hany, Solinger, Alan M, Mandrup-Poulsen, Thomas, Dinarello, Charles A, & Donath, Marc Y. (2012). Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes.
Diabetes Care, 35(6), e41. https://doi.org/10.2337/dc12-0115
, Muggli, Bettina, Keller, Cornelia, Babians-Brunner, Andrea, Biason-Lauber, Anna, Donath, Marc Y, & Schmid-Grendelmeier, Peter. (2012). Successful use of omalizumab in an inadequately controlled type 2 diabetic patient with severe insulin allergy.
Diabetes Care, 35(6), e41. https://doi.org/10.2337/dc12-0115
, Muggli, Bettina, Keller, Cornelia, Babians-Brunner, Andrea, Biason-Lauber, Anna, Donath, Marc Y, & Schmid-Grendelmeier, Peter. (2012). Successful use of omalizumab in an inadequately controlled type 2 diabetic patient with severe insulin allergy.
Weir GC, Genome medicine, 3(9), 61. https://doi.org/10.1186/gm277
, & Bonner-Weir S. (2011). Stem cell approaches for diabetes: towards beta cell replacement.
Weir GC, Genome medicine, 3(9), 61. https://doi.org/10.1186/gm277
, & Bonner-Weir S. (2011). Stem cell approaches for diabetes: towards beta cell replacement.
Diabetes Care : The Journal of Clinical and Applied Research and Education : A Journal of the American Diabetes Association, 34(10), e158. https://doi.org/10.2337/dc11-1196
, Furrer, Romana, Keller, Cornelia, Babians-Brunner, Andrea, Solinger, Alan M, Gast, H, Fontana, A, Donath, Marc Y, & Penner, Iris K. (2011). Inhibition of IL-1beta improves fatigue in type 2 diabetes.
Diabetes Care : The Journal of Clinical and Applied Research and Education : A Journal of the American Diabetes Association, 34(10), e158. https://doi.org/10.2337/dc11-1196
, Furrer, Romana, Keller, Cornelia, Babians-Brunner, Andrea, Solinger, Alan M, Gast, H, Fontana, A, Donath, Marc Y, & Penner, Iris K. (2011). Inhibition of IL-1beta improves fatigue in type 2 diabetes.
Pavik I, Jaeger P, Kistler AD, Poster D, Krauer F, Kidney international, 79(2), 234–240. https://doi.org/10.1038/ki.2010.375
, Rentsch KM, Wüthrich RP, & Serra AL. (2011). Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate.
Pavik I, Jaeger P, Kistler AD, Poster D, Krauer F, Kidney international, 79(2), 234–240. https://doi.org/10.1038/ki.2010.375
, Rentsch KM, Wüthrich RP, & Serra AL. (2011). Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate.
Orphanet journal of rare diseases, 4, 15. https://doi.org/10.1186/1750-1172-4-15
, & Schneemann,Markus. (2009). Triptans and troponin: a case report.
Orphanet journal of rare diseases, 4, 15. https://doi.org/10.1186/1750-1172-4-15
, & Schneemann,Markus. (2009). Triptans and troponin: a case report.
European journal of neurology, 12(11), 869–878. https://doi.org/10.1111/j.1468-1331.2005.01084.x
, Baltariu GM, Wyler KA, Gober HJ, Lienert C, Schluep M, Radü EW, De Libero G, Kappos L, & Duda PW. (2005). Clinical and immune responses correlate in glatiramer acetate therapy of multiple sclerosis.
European journal of neurology, 12(11), 869–878. https://doi.org/10.1111/j.1468-1331.2005.01084.x
, Baltariu GM, Wyler KA, Gober HJ, Lienert C, Schluep M, Radü EW, De Libero G, Kappos L, & Duda PW. (2005). Clinical and immune responses correlate in glatiramer acetate therapy of multiple sclerosis.