Publications
62 found
Show per page
Reid, G., Cerino, G., Melly, L., Fusco, D., Zhang, C., Reuthebuch, O., Milan, G., & Marsano, A. (2025). Harnessing the angiogenic potential of adipose-derived stromal vascular fraction cells with perfusion cell seeding [Journal-article]. Stem Cell Research and Therapy , 16(1). https://doi.org/10.1186/s13287-025-04286-6
Reid, G., Cerino, G., Melly, L., Fusco, D., Zhang, C., Reuthebuch, O., Milan, G., & Marsano, A. (2025). Harnessing the angiogenic potential of adipose-derived stromal vascular fraction cells with perfusion cell seeding [Journal-article]. Stem Cell Research and Therapy , 16(1). https://doi.org/10.1186/s13287-025-04286-6
Wittner, R., Holub, P., Mascia, C., Frexia, F., Müller, H., Plass, M., Allocca, C., Betsou, F., Burdett, T., Cancio, I., Chapman, A., Chapman, M., Courtot, M., Curcin, V., Eder, J., Elliot, M., Exter, K., Goble, C., Golebiewski, M., et al. (2024). Toward a common standard for data and specimen provenance in life sciences. Learning Health Systems, 8(1). https://doi.org/10.1002/lrh2.10365
Wittner, R., Holub, P., Mascia, C., Frexia, F., Müller, H., Plass, M., Allocca, C., Betsou, F., Burdett, T., Cancio, I., Chapman, A., Chapman, M., Courtot, M., Curcin, V., Eder, J., Elliot, M., Exter, K., Goble, C., Golebiewski, M., et al. (2024). Toward a common standard for data and specimen provenance in life sciences. Learning Health Systems, 8(1). https://doi.org/10.1002/lrh2.10365
Borisov, Vladislav, Gili Sole, Laia, Reid, Gregory, Milan, Giulia, Hutter, Gregor, Grapow, Martin, Eckstein, Friedrich Stefan, Isu, Giuseppe, & . (2023). Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential. Bioengineering, 10(7). https://doi.org/10.3390/bioengineering10070800
Borisov, Vladislav, Gili Sole, Laia, Reid, Gregory, Milan, Giulia, Hutter, Gregor, Grapow, Martin, Eckstein, Friedrich Stefan, Isu, Giuseppe, & . (2023). Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential. Bioengineering, 10(7). https://doi.org/10.3390/bioengineering10070800
Gabetti, S., Sileo, A., Montrone, F., Putame, G., Audenino, A. L., Marsano, A., & Massai, D. (2023). Versatile electrical stimulator for cardiac tissue engineering—Investigation of charge-balanced monophasic and biphasic electrical stimulations. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1031183
Gabetti, S., Sileo, A., Montrone, F., Putame, G., Audenino, A. L., Marsano, A., & Massai, D. (2023). Versatile electrical stimulator for cardiac tissue engineering—Investigation of charge-balanced monophasic and biphasic electrical stimulations. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1031183
Fusco D, Meissner F, Podesser BK, , Grapow M, Eckstein F, & Winkler B. (2022). Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model. Frontiers in Cardiovascular Medicine, 9, 881557. https://doi.org/10.3389/fcvm.2022.881557
Fusco D, Meissner F, Podesser BK, , Grapow M, Eckstein F, & Winkler B. (2022). Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model. Frontiers in Cardiovascular Medicine, 9, 881557. https://doi.org/10.3389/fcvm.2022.881557
Pisanu A., Reid G., Fusco D., Sileo A., Robles Diaz D., Tarhini H., Putame G., Massai D., Isu G., & (2022). Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. iScience, 25(5). https://doi.org/10.1016/j.isci.2022.104297
Pisanu A., Reid G., Fusco D., Sileo A., Robles Diaz D., Tarhini H., Putame G., Massai D., Isu G., & (2022). Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor. iScience, 25(5). https://doi.org/10.1016/j.isci.2022.104297
. (2022). Towards a Common Standard for Data and Specimen Provenance in Life Sciences. Learning Health Systems.
. (2022). Towards a Common Standard for Data and Specimen Provenance in Life Sciences. Learning Health Systems.
Züger, Fabian, , Poggio, Martino, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
Züger, Fabian, , Poggio, Martino, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue. Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
Mainardi, Andrea, Carminati, Francesca, Ugolini, Giovanni Stefano, Occhetta, Paola, Isu, Giuseppe, Robles Diaz, Diana, Reid, Gregory, Visone, Roberta, Rasponi, Marco, & . (2021). A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab on a Chip, 21(21), 4177–4195. https://doi.org/10.1039/d1lc00092f
Mainardi, Andrea, Carminati, Francesca, Ugolini, Giovanni Stefano, Occhetta, Paola, Isu, Giuseppe, Robles Diaz, Diana, Reid, Gregory, Visone, Roberta, Rasponi, Marco, & . (2021). A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab on a Chip, 21(21), 4177–4195. https://doi.org/10.1039/d1lc00092f
Mytsyk M, Cerino G., Reid G, Sole LG, Eckstein F.S., Santer D, & . (2021). Long-term severe in vitro hypoxia exposure enhances the vascularization potential of human adipose tissue-derived stromal vascular fraction cell engineered tissues. International Journal of Molecular Sciences, 22(15). https://doi.org/10.3390/ijms22157920
Mytsyk M, Cerino G., Reid G, Sole LG, Eckstein F.S., Santer D, & . (2021). Long-term severe in vitro hypoxia exposure enhances the vascularization potential of human adipose tissue-derived stromal vascular fraction cell engineered tissues. International Journal of Molecular Sciences, 22(15). https://doi.org/10.3390/ijms22157920
Koechlin L, Isu G, Borisov V, Robles Diaz D, Eckstein FS, , & Reuthebuch O. (2021). Impact on mechanical properties of 10 versus 20 minute treatment of human pericardium with glutaraldehyde in ozaki procedure. Annals of Thoracic and Cardiovascular Surgery, 27(4), 273–277. https://doi.org/10.5761/atcs.nm.20-00125
Koechlin L, Isu G, Borisov V, Robles Diaz D, Eckstein FS, , & Reuthebuch O. (2021). Impact on mechanical properties of 10 versus 20 minute treatment of human pericardium with glutaraldehyde in ozaki procedure. Annals of Thoracic and Cardiovascular Surgery, 27(4), 273–277. https://doi.org/10.5761/atcs.nm.20-00125
Luca Koechlin, Giuseppe Isu, Vladislav Borisov, Diana Robles Diaz, Friedrich Eckstein, , & Oliver Reuthebuch. (2020). Impact on mechanical properties of 10 versus 20 minutes treatment of human pericardium with gluteraldehde in OZAKY procedure. Annals of Thoracic and Cardiovascular Surgery.
Luca Koechlin, Giuseppe Isu, Vladislav Borisov, Diana Robles Diaz, Friedrich Eckstein, , & Oliver Reuthebuch. (2020). Impact on mechanical properties of 10 versus 20 minutes treatment of human pericardium with gluteraldehde in OZAKY procedure. Annals of Thoracic and Cardiovascular Surgery.
Reid G, Magarotto F, , & Pozzobon M. (2020). Next stage approach to tissue engineering skeletal muscle. Bioengineering, 7(4), 1–30. https://doi.org/10.3390/bioengineering7040118
Reid G, Magarotto F, , & Pozzobon M. (2020). Next stage approach to tissue engineering skeletal muscle. Bioengineering, 7(4), 1–30. https://doi.org/10.3390/bioengineering7040118
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, , & Morbiducci U. (2020). Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Frontiers in Bioengineering and Biotechnology, 8, 733. https://doi.org/10.3389/fbioe.2020.00733
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, , & Morbiducci U. (2020). Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Frontiers in Bioengineering and Biotechnology, 8, 733. https://doi.org/10.3389/fbioe.2020.00733
Isu G, Robles Diaz D, Grussenmeyer T, Gaudiello E, Eckstein F., Brink M, & . (2020). Fatty acid-based monolayer culture to promote in vitro neonatal rat cardiomyocyte maturation. Biochimica et Biophysica Acta - Molecular Cell Research, 1867(3). https://doi.org/10.1016/j.bbamcr.2019.118561
Isu G, Robles Diaz D, Grussenmeyer T, Gaudiello E, Eckstein F., Brink M, & . (2020). Fatty acid-based monolayer culture to promote in vitro neonatal rat cardiomyocyte maturation. Biochimica et Biophysica Acta - Molecular Cell Research, 1867(3). https://doi.org/10.1016/j.bbamcr.2019.118561
Melly, Ludovic, Grosso, Andrea, Stanciu Pop, Claudia, Yu-Hsuan, Chu, Nollevaux, Marie-Cécile, Schachtrup, Christian, , Di Maggio, Nunzia, Rondelet, Benoît, & Banfi, Andrea. (2020). Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of tissue engineering and regenerative medicine, 14(10), 1513–1523. https://doi.org/10.1002/term.3118
Melly, Ludovic, Grosso, Andrea, Stanciu Pop, Claudia, Yu-Hsuan, Chu, Nollevaux, Marie-Cécile, Schachtrup, Christian, , Di Maggio, Nunzia, Rondelet, Benoît, & Banfi, Andrea. (2020). Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of tissue engineering and regenerative medicine, 14(10), 1513–1523. https://doi.org/10.1002/term.3118
Isu G, Morbiducci U, De Nisco G, Kropp C, , Deriu MA, Zweigerdt R, Audenino A, & Massai D. (2019). Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture. Journal of Biomechanics, 94, 99–106. https://doi.org/10.1016/j.jbiomech.2019.07.021
Isu G, Morbiducci U, De Nisco G, Kropp C, , Deriu MA, Zweigerdt R, Audenino A, & Massai D. (2019). Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture. Journal of Biomechanics, 94, 99–106. https://doi.org/10.1016/j.jbiomech.2019.07.021
Mytsyk, Myroslava, Isu, Giuseppe, Cerino, Giulia, Grapow, Martin T. R., Eckstein, Friedrich S., & . (2019). Paracrine potential of adipose stromal vascular fraction cells to recover hypoxia-induced loss of cardiomyocyte function. Biotechnology and Bioengineering, 116(1), 132–142. https://doi.org/10.1002/bit.26824
Mytsyk, Myroslava, Isu, Giuseppe, Cerino, Giulia, Grapow, Martin T. R., Eckstein, Friedrich S., & . (2019). Paracrine potential of adipose stromal vascular fraction cells to recover hypoxia-induced loss of cardiomyocyte function. Biotechnology and Bioengineering, 116(1), 132–142. https://doi.org/10.1002/bit.26824
Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, Visone R, Cerino G, Plodinec M, Rasponi M, & . (2018). A three-dimensional: In vitro dynamic micro-tissue model of cardiac scar formation. Integrative Biology (United Kingdom), 10(3), 174–183. https://doi.org/10.1039/c7ib00199a
Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, Visone R, Cerino G, Plodinec M, Rasponi M, & . (2018). A three-dimensional: In vitro dynamic micro-tissue model of cardiac scar formation. Integrative Biology (United Kingdom), 10(3), 174–183. https://doi.org/10.1039/c7ib00199a
Melly, Ludovic, Cerino, Giulia, Frobert, Aurélien, Cook, Stéphane, Giraud, Marie-Noëlle, Carrel, Thierry, Tevaearai Stahel, Hendrik T., Eckstein, Friedrich, Rondelet, Benoît, , & Banfi, Andrea. (2018). Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels. Journal of cellular and molecular medicine, 22(5), 2580–2591. https://doi.org/10.1111/jcmm.13511
Melly, Ludovic, Cerino, Giulia, Frobert, Aurélien, Cook, Stéphane, Giraud, Marie-Noëlle, Carrel, Thierry, Tevaearai Stahel, Hendrik T., Eckstein, Friedrich, Rondelet, Benoît, , & Banfi, Andrea. (2018). Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels. Journal of cellular and molecular medicine, 22(5), 2580–2591. https://doi.org/10.1111/jcmm.13511
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, & . (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, & . (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
Staubli, Sebastian Manuel, Cerino, Giulia, Gonzalez De Torre, Israel, Alonso, Matilde, Oertli, Daniel, Eckstein, Friedrich, Glatz, Katharina, Rodríguez Cabello, José Carlos, & . (2017). Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials, 135, 30–41. https://doi.org/10.1016/j.biomaterials.2017.04.047
Staubli, Sebastian Manuel, Cerino, Giulia, Gonzalez De Torre, Israel, Alonso, Matilde, Oertli, Daniel, Eckstein, Friedrich, Glatz, Katharina, Rodríguez Cabello, José Carlos, & . (2017). Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials, 135, 30–41. https://doi.org/10.1016/j.biomaterials.2017.04.047
Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Boccardo, Stefano, Jalili-Firoozinezhad, Sasan, Xu, Lifen, Eckstein, Friedrich, Martin, Ivan, Kaufmann, Beat A., Banfi, Andrea, & . (2017). Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Advanced healthcare materials, 6(24), 1700600. https://doi.org/10.1002/adhm.201700600
Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Boccardo, Stefano, Jalili-Firoozinezhad, Sasan, Xu, Lifen, Eckstein, Friedrich, Martin, Ivan, Kaufmann, Beat A., Banfi, Andrea, & . (2017). Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Advanced healthcare materials, 6(24), 1700600. https://doi.org/10.1002/adhm.201700600
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, Barbero, Andrea, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & . (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, Barbero, Andrea, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & . (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
Mochizuki, Michika, Lorenz, Vera, Ivanek, Robert, Della Verde, Giacomo, Gaudiello, Emanuele, , Pfister, Otmar, & Kuster, Gabriela M. (2017). Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells. Journal of the American Heart Association, 6(10), e005920. https://doi.org/10.1161/jaha.117.005920
Mochizuki, Michika, Lorenz, Vera, Ivanek, Robert, Della Verde, Giacomo, Gaudiello, Emanuele, , Pfister, Otmar, & Kuster, Gabriela M. (2017). Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells. Journal of the American Heart Association, 6(10), e005920. https://doi.org/10.1161/jaha.117.005920
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, , Aghdami, Nasser, & Baharvand, Hossein. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, , Aghdami, Nasser, & Baharvand, Hossein. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
Boccardo, Stefano, Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Ricci, Davide, Martin, Ivan, Eckstein, Friedrich, Banfi, Andrea, & . (2016). Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 42, 127–135. https://doi.org/10.1016/j.actbio.2016.07.041
Boccardo, Stefano, Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Ricci, Davide, Martin, Ivan, Eckstein, Friedrich, Banfi, Andrea, & . (2016). Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 42, 127–135. https://doi.org/10.1016/j.actbio.2016.07.041
Cerino, Giulia, Gaudiello, Emanuele, Grussenmeyer, Thomas, Melly, Ludovic, Massai, Diana, Banfi, Andrea, Martin, Ivan, Eckstein, Friedrich, Grapow, Martin, & . (2016). Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnology and Bioengineering, 113(1), 36–226. https://doi.org/10.1002/bit.25688
Cerino, Giulia, Gaudiello, Emanuele, Grussenmeyer, Thomas, Melly, Ludovic, Massai, Diana, Banfi, Andrea, Martin, Ivan, Eckstein, Friedrich, Grapow, Martin, & . (2016). Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnology and Bioengineering, 113(1), 36–226. https://doi.org/10.1002/bit.25688
, Conficconi, Chiara, Lemme, Marta, Occhetta, Paola, Gaudiello, Emanuele, Votta, Emiliano, Cerino, Giulia, Redaelli, Alberto, & Rasponi, Marco. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on a Chip, 16(3), 599–610. https://doi.org/10.1039/c5lc01356a
, Conficconi, Chiara, Lemme, Marta, Occhetta, Paola, Gaudiello, Emanuele, Votta, Emiliano, Cerino, Giulia, Redaelli, Alberto, & Rasponi, Marco. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on a Chip, 16(3), 599–610. https://doi.org/10.1039/c5lc01356a
, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Barbero, Andrea, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Barbero, Andrea, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
Visone, Roberta, Gilardi, Mara, , Rasponi, Marco, Bersini, Simone, & Moretti, Matteo. (2016). Cardiac Meets Skeletal: What’s New in Microfluidic Models for Muscle Tissue Engineering. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 21(9), 1128–1149. https://doi.org/10.3390/molecules21091128
Visone, Roberta, Gilardi, Mara, , Rasponi, Marco, Bersini, Simone, & Moretti, Matteo. (2016). Cardiac Meets Skeletal: What’s New in Microfluidic Models for Muscle Tissue Engineering. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 21(9), 1128–1149. https://doi.org/10.3390/molecules21091128
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, , Aghdami, Nasser, Scherberich, Arnaud, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration. Advanced Healthcare Materials, 4(15), 90–2281. https://doi.org/10.1002/adhm.201500482
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, , Aghdami, Nasser, Scherberich, Arnaud, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration. Advanced Healthcare Materials, 4(15), 90–2281. https://doi.org/10.1002/adhm.201500482
Dohle, E., Bischoff, I., Böse, T., , Banfi, A., Unger, R. E., & Kirkpatrick, C. J. (2014). Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts. European Cells and Materials, 27, 149–64; discussion 164–5. https://doi.org/10.22203/ecm.v027a12
Dohle, E., Bischoff, I., Böse, T., , Banfi, A., Unger, R. E., & Kirkpatrick, C. J. (2014). Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts. European Cells and Materials, 27, 149–64; discussion 164–5. https://doi.org/10.22203/ecm.v027a12
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., Barbero, Andrea, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, , Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet, 384(9940), 46–337. https://doi.org/10.1016/s0140-6736(14)60544-4
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., Barbero, Andrea, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, , Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. The Lancet, 384(9940), 46–337. https://doi.org/10.1016/s0140-6736(14)60544-4
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Barbero, Andrea, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & . (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Engineering. Part A, 19(17-18), 71–1960. https://doi.org/10.1089/ten.tea.2012.0455
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Barbero, Andrea, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & . (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Engineering. Part A, 19(17-18), 71–1960. https://doi.org/10.1089/ten.tea.2012.0455
, Maidhof, Robert, Luo, Jianwen, Fujikara, Kana, Konofagou, Elisa E, Banfi, Andrea, & Vunjak-Novakovic, Gordana. (2013). The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 34(2), 393–401. https://doi.org/10.1016/j.biomaterials.2012.09.038
, Maidhof, Robert, Luo, Jianwen, Fujikara, Kana, Konofagou, Elisa E, Banfi, Andrea, & Vunjak-Novakovic, Gordana. (2013). The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 34(2), 393–401. https://doi.org/10.1016/j.biomaterials.2012.09.038
Xie, Lin, Zhang, Nan, , Vunjak-Novakovic, Gordana, Zhang, Yanru, & Lopez, Mandi J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Reviews and Reports, 9(6), 858–872. https://doi.org/10.1007/s12015-013-9456-1
Xie, Lin, Zhang, Nan, , Vunjak-Novakovic, Gordana, Zhang, Yanru, & Lopez, Mandi J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Reviews and Reports, 9(6), 858–872. https://doi.org/10.1007/s12015-013-9456-1
Melly, Ludovic, Boccardo, Stefano, Eckstein, Friedrich, Banfi, Andrea, & . (2012). Cell and gene therapy approaches for cardiac vascularization. Cells, 1(4), 961–975. https://doi.org/10.3390/cells1040961
Melly, Ludovic, Boccardo, Stefano, Eckstein, Friedrich, Banfi, Andrea, & . (2012). Cell and gene therapy approaches for cardiac vascularization. Cells, 1(4), 961–975. https://doi.org/10.3390/cells1040961
Melly, Ludovic F, , Frobert, Aurelien, Boccardo, Stefano, Helmrich, Uta, Heberer, Michael, Eckstein, Friedrich S, Carrel, Thierry P, Giraud, Marie-Noëlle, Tevaearai, Hendrik T, & Banfi, Andrea. (2012). Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels. Human Gene Therapy Methods, 23(5), 56–346. https://doi.org/10.1089/hgtb.2012.032
Melly, Ludovic F, , Frobert, Aurelien, Boccardo, Stefano, Helmrich, Uta, Heberer, Michael, Eckstein, Friedrich S, Carrel, Thierry P, Giraud, Marie-Noëlle, Tevaearai, Hendrik T, & Banfi, Andrea. (2012). Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels. Human Gene Therapy Methods, 23(5), 56–346. https://doi.org/10.1089/hgtb.2012.032
Miot S., , & Martin I. (2012). Cell-based tissue engineering approaches for disc regeneration. In Biomaterials for Spinal Surgery (pp. 493–509). Elsevier Ltd. https://doi.org/10.1533/9780857096197.4.493
Miot S., , & Martin I. (2012). Cell-based tissue engineering approaches for disc regeneration. In Biomaterials for Spinal Surgery (pp. 493–509). Elsevier Ltd. https://doi.org/10.1533/9780857096197.4.493
Zhang, T., Wan, L. Q., Xiong, Z., Marsano, A., Maidhof, R., Park, M., Yan, Y., & Vunjak-Novakovic, G. (2012). Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 6(9), 748–756. https://doi.org/10.1002/term.481
Zhang, T., Wan, L. Q., Xiong, Z., Marsano, A., Maidhof, R., Park, M., Yan, Y., & Vunjak-Novakovic, G. (2012). Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 6(9), 748–756. https://doi.org/10.1002/term.481
, Perugini V., Centola M., Guven S., Banfi A., Meikle S.T., Guildford A.L., Santin M., & Martin I. (2011, December 1). In vivo chondrogenesis by using anti-angiogenic peptides. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials.
, Perugini V., Centola M., Guven S., Banfi A., Meikle S.T., Guildford A.L., Santin M., & Martin I. (2011, December 1). In vivo chondrogenesis by using anti-angiogenic peptides. 24th European Conference on Biomaterials - Annual Conference of the European Society for Biomaterials.
Tandon N, , Maidhof R, Wan L, Park H, & Vunjak-Novakovic G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–25. https://doi.org/10.1002/term.377
Tandon N, , Maidhof R, Wan L, Park H, & Vunjak-Novakovic G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–25. https://doi.org/10.1002/term.377
Maidhof R, , Lee EJ, & Vunjak-Novakovic G. (2010). Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnology Progress, 26(2), 565–572. https://doi.org/10.1002/btpr.337
Maidhof R, , Lee EJ, & Vunjak-Novakovic G. (2010). Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnology Progress, 26(2), 565–572. https://doi.org/10.1002/btpr.337
, Bernegger P., Helmrich U., Schaeren S., Miot S., Barbero A., Martin I., & Banfi A. (2010). Generation of human nasal chondrocytes engineered to express soluble VEGF receptor-2 for cartilage tissue engineering. European Cells and Materials, 20, 48.
, Bernegger P., Helmrich U., Schaeren S., Miot S., Barbero A., Martin I., & Banfi A. (2010). Generation of human nasal chondrocytes engineered to express soluble VEGF receptor-2 for cartilage tissue engineering. European Cells and Materials, 20, 48.
, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, & Vunjak-Novakovic G. (2010). Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnology progress, 26(5), 1382–1390. https://doi.org/10.1002/btpr.435
, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, & Vunjak-Novakovic G. (2010). Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnology progress, 26(5), 1382–1390. https://doi.org/10.1002/btpr.435
Tandon N, , Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, & Vunjak-Novakovic G. (2010). Surface-patterned electrode bioreactor for electrical stimulation. Lab on a Chip, 10(6), 692–700. https://doi.org/10.1039/b917743d
Tandon N, , Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, & Vunjak-Novakovic G. (2010). Surface-patterned electrode bioreactor for electrical stimulation. Lab on a Chip, 10(6), 692–700. https://doi.org/10.1039/b917743d
Vunjak-Novakovic, Gordana, Tandon, Nina, Godier, Amandine, Maidhof, Robert, , Martens, Timothy P., & Radisic, Milica. (2010). Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352
Vunjak-Novakovic, Gordana, Tandon, Nina, Godier, Amandine, Maidhof, Robert, , Martens, Timothy P., & Radisic, Milica. (2010). Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352
Wan, L. Q., Zhang, T., Marsano, A., Maidhof, R., & Vunjak-Novakovic, G. (2009). Subpixel texture correlation for contractile behaviors of engineered cardiac tissue. Proceedings of the ASME Summer Bioengineering Conference 2009, SBC2009, 1275–1276. https://doi.org/10.1115/sbc2009-205851
Wan, L. Q., Zhang, T., Marsano, A., Maidhof, R., & Vunjak-Novakovic, G. (2009). Subpixel texture correlation for contractile behaviors of engineered cardiac tissue. Proceedings of the ASME Summer Bioengineering Conference 2009, SBC2009, 1275–1276. https://doi.org/10.1115/sbc2009-205851
Zhang, T., Wan, L. Q., Marsano, A., Maidhof, R., Yan, Y., Pan, J., & Vunjak-Novakovic, G. (2009). Chitosan-collagen based channeled scaffold for cardiac tissue engineering. Proceedings of the ASME Summer Bioengineering Conference 2009, SBC2009, 1191–1192. https://doi.org/10.1115/sbc2009-206639
Zhang, T., Wan, L. Q., Marsano, A., Maidhof, R., Yan, Y., Pan, J., & Vunjak-Novakovic, G. (2009). Chitosan-collagen based channeled scaffold for cardiac tissue engineering. Proceedings of the ASME Summer Bioengineering Conference 2009, SBC2009, 1191–1192. https://doi.org/10.1115/sbc2009-206639
Jacobs, Sharone’, Simhaee, David A., , Fomovsky, Gregory M., Niedt, George, & Wu, June K. (2009). Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model. Journal of Plastic, Reconstructive and Aesthetic Surgery, 62(10), 1331–1338. https://doi.org/10.1016/j.bjps.2008.03.024
Jacobs, Sharone’, Simhaee, David A., , Fomovsky, Gregory M., Niedt, George, & Wu, June K. (2009). Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model. Journal of Plastic, Reconstructive and Aesthetic Surgery, 62(10), 1331–1338. https://doi.org/10.1016/j.bjps.2008.03.024
Tandon N, Cannizzaro C, Chao PH, Maidhof R, , Au HT, Radisic M, & Vunjak-Novakovic G. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183
Tandon N, Cannizzaro C, Chao PH, Maidhof R, , Au HT, Radisic M, & Vunjak-Novakovic G. (2009). Electrical stimulation systems for cardiac tissue engineering. Nature Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183
Tandon N, Goh B, , Chao PH, Montouri-Sorrentino C, Gimble J, & Vunjak-Novakovic G. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2009, 6517–6521. https://doi.org/10.1109/IEMBS.2009.5333142
Tandon N, Goh B, , Chao PH, Montouri-Sorrentino C, Gimble J, & Vunjak-Novakovic G. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2009, 6517–6521. https://doi.org/10.1109/IEMBS.2009.5333142
Radisic M, , Maidhof R, Wang Y, & Vunjak-Novakovic G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3(4), 719–738. https://doi.org/10.1038/nprot.2008.40
Radisic M, , Maidhof R, Wang Y, & Vunjak-Novakovic G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3(4), 719–738. https://doi.org/10.1038/nprot.2008.40
, Maidhof, R., Tandon, N., Gao, J., Wang, Y., & Vunjak-Novakovic, G. (2008). Engineering of functional contractile cardiac tissues cultured in a perfusion system. unbekannt, 3590–+. https://doi.org/10.1109/iembs.2008.4649982
, Maidhof, R., Tandon, N., Gao, J., Wang, Y., & Vunjak-Novakovic, G. (2008). Engineering of functional contractile cardiac tissues cultured in a perfusion system. unbekannt, 3590–+. https://doi.org/10.1109/iembs.2008.4649982
Tandon, N., , Cannizzaro, C., Voldman, J., & Vunjak-Novakovic, G. (2008). Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering. unbekannt, 3594–+. https://doi.org/10.1109/iembs.2008.4649983
Tandon, N., , Cannizzaro, C., Voldman, J., & Vunjak-Novakovic, G. (2008). Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering. unbekannt, 3594–+. https://doi.org/10.1109/iembs.2008.4649983
, Millward-Sadler, S J, Salter, D M, Adesida, A, Hardingham, T, Tognana, E, Kon, E, Chiari-Grisar, C, Nehrer, S, Jakob, M, & Martin, I. (2007). Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis And Cartilage, 15(1), 48–58. https://doi.org/10.1016/j.joca.2006.06.009
, Millward-Sadler, S J, Salter, D M, Adesida, A, Hardingham, T, Tognana, E, Kon, E, Chiari-Grisar, C, Nehrer, S, Jakob, M, & Martin, I. (2007). Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis And Cartilage, 15(1), 48–58. https://doi.org/10.1016/j.joca.2006.06.009
, Vunjak-Novakovic G, & Martin I. (2006). Towards tissue engineering of meniscus substitutes: Selection of cell source and culture environment. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, 3656–3658. https://doi.org/10.1109/IEMBS.2006.259748
, Vunjak-Novakovic G, & Martin I. (2006). Towards tissue engineering of meniscus substitutes: Selection of cell source and culture environment. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, 3656–3658. https://doi.org/10.1109/IEMBS.2006.259748
, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, Heberer M, & Martin I. (2006). Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology, 43(3-4), 553–560.
, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, Heberer M, & Martin I. (2006). Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology, 43(3-4), 553–560.
, Wendt D., Raiteri R., Gottardi R., Dickinson S., Hollander A.P., Wirz D., Daniels A.U., Quinn T.M., Stolz M., & Martin I. (2006). Local compressive and tensile stiffness measured in tissues with regular patterns of hyaline-fibrocartilage regions. European Cells and Materials, 11, 27.
, Wendt D., Raiteri R., Gottardi R., Dickinson S., Hollander A.P., Wirz D., Daniels A.U., Quinn T.M., Stolz M., & Martin I. (2006). Local compressive and tensile stiffness measured in tissues with regular patterns of hyaline-fibrocartilage regions. European Cells and Materials, 11, 27.
, Wendt, David, Raiteri, Roberto, Gottardi, Riccardo, Stolz, Martin, Wirz, Dieter, Daniels, Alma U., Salter, Donald, Jakob, Marcel, Quinn, Thomas M., & Martin, Ivan. (2006). Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials, 27(35), 5927–5934. https://doi.org/10.1016/j.biomaterials.2006.08.020
, Wendt, David, Raiteri, Roberto, Gottardi, Riccardo, Stolz, Martin, Wirz, Dieter, Daniels, Alma U., Salter, Donald, Jakob, Marcel, Quinn, Thomas M., & Martin, Ivan. (2006). Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials, 27(35), 5927–5934. https://doi.org/10.1016/j.biomaterials.2006.08.020
Wendt D, , Jakob M, Heberer M, & Martin I. (2003). Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnology and Bioengineering, 84(2), 205–214. https://doi.org/10.1002/bit.10759
Wendt D, , Jakob M, Heberer M, & Martin I. (2003). Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnology and Bioengineering, 84(2), 205–214. https://doi.org/10.1002/bit.10759