Publications
62 found
Show per page
Reid, G., Cerino, G., Melly, L., Fusco, D., Zhang, C., Reuthebuch, O., Milan, G., & Marsano, A. (2025). Harnessing the angiogenic potential of adipose-derived stromal vascular fraction cells with perfusion cell seeding [Journal-article]. Stem Cell Research &Amp; Therapy, 16(1). https://doi.org/10.1186/s13287-025-04286-6
Reid, G., Cerino, G., Melly, L., Fusco, D., Zhang, C., Reuthebuch, O., Milan, G., & Marsano, A. (2025). Harnessing the angiogenic potential of adipose-derived stromal vascular fraction cells with perfusion cell seeding [Journal-article]. Stem Cell Research &Amp; Therapy, 16(1). https://doi.org/10.1186/s13287-025-04286-6
Wittner, R., Holub, P., Mascia, C., Frexia, F., Müller, H., Plass, M., Allocca, C., Betsou, F., Burdett, T., Cancio, I., Chapman, A., Chapman, M., Courtot, M., Curcin, V., Eder, J., Elliot, M., Exter, K., Goble, C., Golebiewski, M., et al. (2024). Toward a common standard for data and specimen provenance in life sciences. Learning Health Systems, 8(1). https://doi.org/10.1002/lrh2.10365
Wittner, R., Holub, P., Mascia, C., Frexia, F., Müller, H., Plass, M., Allocca, C., Betsou, F., Burdett, T., Cancio, I., Chapman, A., Chapman, M., Courtot, M., Curcin, V., Eder, J., Elliot, M., Exter, K., Goble, C., Golebiewski, M., et al. (2024). Toward a common standard for data and specimen provenance in life sciences. Learning Health Systems, 8(1). https://doi.org/10.1002/lrh2.10365
Borisov, Vladislav, Gili Sole, Laia, Reid, Gregory, Milan, Giulia, Hutter, Gregor, Grapow, Martin, Eckstein, Friedrich Stefan, Isu, Giuseppe, & Bioengineering, 10(7). https://doi.org/10.3390/bioengineering10070800
. (2023). Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential.
Borisov, Vladislav, Gili Sole, Laia, Reid, Gregory, Milan, Giulia, Hutter, Gregor, Grapow, Martin, Eckstein, Friedrich Stefan, Isu, Giuseppe, & Bioengineering, 10(7). https://doi.org/10.3390/bioengineering10070800
. (2023). Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential.
Gabetti, S., Sileo, A., Montrone, F., Putame, G., Audenino, A. L., Marsano, A., & Massai, D. (2023). Versatile electrical stimulator for cardiac tissue engineering—Investigation of charge-balanced monophasic and biphasic electrical stimulations. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1031183
Gabetti, S., Sileo, A., Montrone, F., Putame, G., Audenino, A. L., Marsano, A., & Massai, D. (2023). Versatile electrical stimulator for cardiac tissue engineering—Investigation of charge-balanced monophasic and biphasic electrical stimulations. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.1031183
Fusco D, Meissner F, Podesser BK, Frontiers in Cardiovascular Medicine, 9, 881557. https://doi.org/10.3389/fcvm.2022.881557
, Grapow M, Eckstein F, & Winkler B. (2022). Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model.
Fusco D, Meissner F, Podesser BK, Frontiers in Cardiovascular Medicine, 9, 881557. https://doi.org/10.3389/fcvm.2022.881557
, Grapow M, Eckstein F, & Winkler B. (2022). Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model.
Pisanu A., Reid G., Fusco D., Sileo A., Robles Diaz D., Tarhini H., Putame G., Massai D., Isu G., & iScience, 25(5). https://doi.org/10.1016/j.isci.2022.104297
(2022). Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor.
Pisanu A., Reid G., Fusco D., Sileo A., Robles Diaz D., Tarhini H., Putame G., Massai D., Isu G., & iScience, 25(5). https://doi.org/10.1016/j.isci.2022.104297
(2022). Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor.
Learning Health Systems.
. (2022). Towards a Common Standard for Data and Specimen Provenance in Life Sciences.
Learning Health Systems.
. (2022). Towards a Common Standard for Data and Specimen Provenance in Life Sciences.
Züger, Fabian, Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
, Poggio, Martino, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue.
Züger, Fabian, Advanced NanoBiomed Research, 2(2), 2100108. https://doi.org/10.1002/anbr.202100108
, Poggio, Martino, & Gullo, Maurizio R. (2022). Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli-Responsive Constructs Mimicking Electrically Sensitive Tissue.
Mainardi, Andrea, Carminati, Francesca, Ugolini, Giovanni Stefano, Occhetta, Paola, Isu, Giuseppe, Robles Diaz, Diana, Reid, Gregory, Visone, Roberta, Rasponi, Marco, & Lab on a Chip, 21(21), 4177–4195. https://doi.org/10.1039/d1lc00092f
. (2021). A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts.
Mainardi, Andrea, Carminati, Francesca, Ugolini, Giovanni Stefano, Occhetta, Paola, Isu, Giuseppe, Robles Diaz, Diana, Reid, Gregory, Visone, Roberta, Rasponi, Marco, & Lab on a Chip, 21(21), 4177–4195. https://doi.org/10.1039/d1lc00092f
. (2021). A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts.
Mytsyk M, Cerino G., Reid G, Sole LG, Eckstein F.S., Santer D, & International Journal of Molecular Sciences, 22(15). https://doi.org/10.3390/ijms22157920
. (2021). Long-term severe in vitro hypoxia exposure enhances the vascularization potential of human adipose tissue-derived stromal vascular fraction cell engineered tissues.
Mytsyk M, Cerino G., Reid G, Sole LG, Eckstein F.S., Santer D, & International Journal of Molecular Sciences, 22(15). https://doi.org/10.3390/ijms22157920
. (2021). Long-term severe in vitro hypoxia exposure enhances the vascularization potential of human adipose tissue-derived stromal vascular fraction cell engineered tissues.
Koechlin L, Isu G, Borisov V, Robles Diaz D, Eckstein FS, Annals of Thoracic and Cardiovascular Surgery, 27(4), 273–277. https://doi.org/10.5761/atcs.nm.20-00125
, & Reuthebuch O. (2021). Impact on mechanical properties of 10 versus 20 minute treatment of human pericardium with glutaraldehyde in ozaki procedure.
Koechlin L, Isu G, Borisov V, Robles Diaz D, Eckstein FS, Annals of Thoracic and Cardiovascular Surgery, 27(4), 273–277. https://doi.org/10.5761/atcs.nm.20-00125
, & Reuthebuch O. (2021). Impact on mechanical properties of 10 versus 20 minute treatment of human pericardium with glutaraldehyde in ozaki procedure.
Reid G, Magarotto F, Bioengineering, 7(4), 1–30. https://doi.org/10.3390/bioengineering7040118
, & Pozzobon M. (2020). Next stage approach to tissue engineering skeletal muscle.
Reid G, Magarotto F, Bioengineering, 7(4), 1–30. https://doi.org/10.3390/bioengineering7040118
, & Pozzobon M. (2020). Next stage approach to tissue engineering skeletal muscle.
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, Frontiers in Bioengineering and Biotechnology, 8, 733. https://doi.org/10.3389/fbioe.2020.00733
, & Morbiducci U. (2020). Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue.
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, Frontiers in Bioengineering and Biotechnology, 8, 733. https://doi.org/10.3389/fbioe.2020.00733
, & Morbiducci U. (2020). Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue.
Isu G, Robles Diaz D, Grussenmeyer T, Gaudiello E, Eckstein F., Brink M, & Biochimica et Biophysica Acta - Molecular Cell Research, 1867(3). https://doi.org/10.1016/j.bbamcr.2019.118561
. (2020). Fatty acid-based monolayer culture to promote in vitro neonatal rat cardiomyocyte maturation.
Isu G, Robles Diaz D, Grussenmeyer T, Gaudiello E, Eckstein F., Brink M, & Biochimica et Biophysica Acta - Molecular Cell Research, 1867(3). https://doi.org/10.1016/j.bbamcr.2019.118561
. (2020). Fatty acid-based monolayer culture to promote in vitro neonatal rat cardiomyocyte maturation.
Melly, Ludovic, Grosso, Andrea, Stanciu Pop, Claudia, Yu-Hsuan, Chu, Nollevaux, Marie-Cécile, Schachtrup, Christian, Journal of tissue engineering and regenerative medicine, 14(10), 1513–1523. https://doi.org/10.1002/term.3118
, Di Maggio, Nunzia, Rondelet, Benoît, & Banfi, Andrea. (2020). Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart.
Melly, Ludovic, Grosso, Andrea, Stanciu Pop, Claudia, Yu-Hsuan, Chu, Nollevaux, Marie-Cécile, Schachtrup, Christian, Journal of tissue engineering and regenerative medicine, 14(10), 1513–1523. https://doi.org/10.1002/term.3118
, Di Maggio, Nunzia, Rondelet, Benoît, & Banfi, Andrea. (2020). Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart.
Luca Koechlin, Giuseppe Isu, Vladislav Borisov, Diana Robles Diaz, Friedrich Eckstein, Annals of Thoracic and Cardiovascular Surgery.
, & Oliver Reuthebuch. (2020). Impact on mechanical properties of 10 versus 20 minutes treatment of human pericardium with gluteraldehde in OZAKY procedure.
Luca Koechlin, Giuseppe Isu, Vladislav Borisov, Diana Robles Diaz, Friedrich Eckstein, Annals of Thoracic and Cardiovascular Surgery.
, & Oliver Reuthebuch. (2020). Impact on mechanical properties of 10 versus 20 minutes treatment of human pericardium with gluteraldehde in OZAKY procedure.
Isu G, Morbiducci U, De Nisco G, Kropp C, Journal of Biomechanics, 94, 99–106. https://doi.org/10.1016/j.jbiomech.2019.07.021
, Deriu MA, Zweigerdt R, Audenino A, & Massai D. (2019). Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture.
Isu G, Morbiducci U, De Nisco G, Kropp C, Journal of Biomechanics, 94, 99–106. https://doi.org/10.1016/j.jbiomech.2019.07.021
, Deriu MA, Zweigerdt R, Audenino A, & Massai D. (2019). Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture.
Mytsyk, Myroslava, Isu, Giuseppe, Cerino, Giulia, Grapow, Martin T. R., Eckstein, Friedrich S., & Biotechnology and Bioengineering, 116(1), 132–142. https://doi.org/10.1002/bit.26824
. (2019). Paracrine potential of adipose stromal vascular fraction cells to recover hypoxia-induced loss of cardiomyocyte function.
Mytsyk, Myroslava, Isu, Giuseppe, Cerino, Giulia, Grapow, Martin T. R., Eckstein, Friedrich S., & Biotechnology and Bioengineering, 116(1), 132–142. https://doi.org/10.1002/bit.26824
. (2019). Paracrine potential of adipose stromal vascular fraction cells to recover hypoxia-induced loss of cardiomyocyte function.
Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, Visone R, Cerino G, Plodinec M, Rasponi M, & Integrative Biology (United Kingdom), 10(3), 174–183. https://doi.org/10.1039/c7ib00199a
. (2018). A three-dimensional: In vitro dynamic micro-tissue model of cardiac scar formation.
Occhetta P, Isu G, Lemme M, Conficconi C, Oertle P, Räz C, Visone R, Cerino G, Plodinec M, Rasponi M, & Integrative Biology (United Kingdom), 10(3), 174–183. https://doi.org/10.1039/c7ib00199a
. (2018). A three-dimensional: In vitro dynamic micro-tissue model of cardiac scar formation.
Melly, Ludovic, Cerino, Giulia, Frobert, Aurélien, Cook, Stéphane, Giraud, Marie-Noëlle, Carrel, Thierry, Tevaearai Stahel, Hendrik T., Eckstein, Friedrich, Rondelet, Benoît, Journal of cellular and molecular medicine, 22(5), 2580–2591. https://doi.org/10.1111/jcmm.13511
, & Banfi, Andrea. (2018). Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels.
Melly, Ludovic, Cerino, Giulia, Frobert, Aurélien, Cook, Stéphane, Giraud, Marie-Noëlle, Carrel, Thierry, Tevaearai Stahel, Hendrik T., Eckstein, Friedrich, Rondelet, Benoît, Journal of cellular and molecular medicine, 22(5), 2580–2591. https://doi.org/10.1111/jcmm.13511
, & Banfi, Andrea. (2018). Myocardial infarction stabilization by cell-based expression of controlled Vascular Endothelial Growth Factor levels.
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, & Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, & Scientific Reports, 7(1), 14252. https://doi.org/10.1038/s41598-017-13882-3
. (2017). Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells.
Staubli, Sebastian Manuel, Cerino, Giulia, Gonzalez De Torre, Israel, Alonso, Matilde, Oertli, Daniel, Eckstein, Friedrich, Glatz, Katharina, Rodríguez Cabello, José Carlos, & Biomaterials, 135, 30–41. https://doi.org/10.1016/j.biomaterials.2017.04.047
. (2017). Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel.
Staubli, Sebastian Manuel, Cerino, Giulia, Gonzalez De Torre, Israel, Alonso, Matilde, Oertli, Daniel, Eckstein, Friedrich, Glatz, Katharina, Rodríguez Cabello, José Carlos, & Biomaterials, 135, 30–41. https://doi.org/10.1016/j.biomaterials.2017.04.047
. (2017). Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel.
Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Boccardo, Stefano, Jalili-Firoozinezhad, Sasan, Xu, Lifen, Eckstein, Friedrich, Martin, Ivan, Kaufmann, Beat A., Banfi, Andrea, & Advanced healthcare materials, 6(24), 1700600. https://doi.org/10.1002/adhm.201700600
. (2017). Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution.
Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Boccardo, Stefano, Jalili-Firoozinezhad, Sasan, Xu, Lifen, Eckstein, Friedrich, Martin, Ivan, Kaufmann, Beat A., Banfi, Andrea, & Advanced healthcare materials, 6(24), 1700600. https://doi.org/10.1002/adhm.201700600
. (2017). Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution.
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, Barbero, Andrea, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation.
Medeiros Da Cunha, Carolina M., Perugini, Valeria, Bernegger, Petra, Centola, Matteo, Barbero, Andrea, Guildford, Anna L., Santin, Matteo, Banfi, Andrea, Martin, Ivan, & International journal of molecular sciences, 18(11), 2478. https://doi.org/10.3390/ijms18112478
. (2017). Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation.
Mochizuki, Michika, Lorenz, Vera, Ivanek, Robert, Della Verde, Giacomo, Gaudiello, Emanuele, Journal of the American Heart Association, 6(10), e005920. https://doi.org/10.1161/jaha.117.005920
, Pfister, Otmar, & Kuster, Gabriela M. (2017). Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.
Mochizuki, Michika, Lorenz, Vera, Ivanek, Robert, Della Verde, Giacomo, Gaudiello, Emanuele, Journal of the American Heart Association, 6(10), e005920. https://doi.org/10.1161/jaha.117.005920
, Pfister, Otmar, & Kuster, Gabriela M. (2017). Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
, Aghdami, Nasser, & Baharvand, Hossein. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
, Aghdami, Nasser, & Baharvand, Hossein. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors.
Boccardo, Stefano, Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Ricci, Davide, Martin, Ivan, Eckstein, Friedrich, Banfi, Andrea, & Acta Biomaterialia, 42, 127–135. https://doi.org/10.1016/j.actbio.2016.07.041
. (2016). Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis.
Boccardo, Stefano, Gaudiello, Emanuele, Melly, Ludovic, Cerino, Giulia, Ricci, Davide, Martin, Ivan, Eckstein, Friedrich, Banfi, Andrea, & Acta Biomaterialia, 42, 127–135. https://doi.org/10.1016/j.actbio.2016.07.041
. (2016). Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis.
Cerino, Giulia, Gaudiello, Emanuele, Grussenmeyer, Thomas, Melly, Ludovic, Massai, Diana, Banfi, Andrea, Martin, Ivan, Eckstein, Friedrich, Grapow, Martin, & Biotechnology and Bioengineering, 113(1), 226–236. https://doi.org/10.1002/bit.25688
. (2016). Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
Cerino, Giulia, Gaudiello, Emanuele, Grussenmeyer, Thomas, Melly, Ludovic, Massai, Diana, Banfi, Andrea, Martin, Ivan, Eckstein, Friedrich, Grapow, Martin, & Biotechnology and Bioengineering, 113(1), 226–236. https://doi.org/10.1002/bit.25688
. (2016). Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors.
Lab on a Chip, 16(3), 599–610. https://doi.org/10.1039/c5lc01356a
, Conficconi, Chiara, Lemme, Marta, Occhetta, Paola, Gaudiello, Emanuele, Votta, Emiliano, Cerino, Giulia, Redaelli, Alberto, & Rasponi, Marco. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.
Lab on a Chip, 16(3), 599–610. https://doi.org/10.1039/c5lc01356a
, Conficconi, Chiara, Lemme, Marta, Occhetta, Paola, Gaudiello, Emanuele, Votta, Emiliano, Cerino, Giulia, Redaelli, Alberto, & Rasponi, Marco. (2016). Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues.
Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Barbero, Andrea, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
Stem Cells Translational Medicine, 5(12), 1730–1738. https://doi.org/10.5966/sctm.2015-0321
, Medeiros da Cunha, Carolina M., Ghanaati, Shahram, Gueven, Sinan, Centola, Matteo, Tsaryk, Roman, Barbeck, Mike, Stuedle, Chiara, Barbero, Andrea, Helmrich, Uta, Schaeren, Stefan, Kirkpatrick, James C., Banfi, Andrea, & Martin, Ivan. (2016). Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
Visone, Roberta, Gilardi, Mara, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 21(9), 1128–1149. https://doi.org/10.3390/molecules21091128
, Rasponi, Marco, Bersini, Simone, & Moretti, Matteo. (2016). Cardiac Meets Skeletal: What’s New in Microfluidic Models for Muscle Tissue Engineering.
Visone, Roberta, Gilardi, Mara, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 21(9), 1128–1149. https://doi.org/10.3390/molecules21091128
, Rasponi, Marco, Bersini, Simone, & Moretti, Matteo. (2016). Cardiac Meets Skeletal: What’s New in Microfluidic Models for Muscle Tissue Engineering.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Advanced Healthcare Materials, 4(15), 2281–2290. https://doi.org/10.1002/adhm.201500482
, Aghdami, Nasser, Scherberich, Arnaud, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration.
Jalili-Firoozinezhad, Sasan, Rajabi-Zeleti, Sareh, Mohammadi, Parvaneh, Gaudiello, Emanuele, Bonakdar, Shahin, Solati-Hashjin, Mehran, Advanced Healthcare Materials, 4(15), 2281–2290. https://doi.org/10.1002/adhm.201500482
, Aghdami, Nasser, Scherberich, Arnaud, Baharvand, Hossein, & Martin, Ivan. (2015). Facile fabrication of egg white macroporous sponges for tissue regeneration.
Dohle, E., Bischoff, I., Böse, T., European Cells and Materials, 27, 149–64; discussion 164–5. https://doi.org/10.22203/ecm.v027a12
, Banfi, A., Unger, R. E., & Kirkpatrick, C. J. (2014). Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts.
Dohle, E., Bischoff, I., Böse, T., European Cells and Materials, 27, 149–64; discussion 164–5. https://doi.org/10.22203/ecm.v027a12
, Banfi, A., Unger, R. E., & Kirkpatrick, C. J. (2014). Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts.
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., Barbero, Andrea, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, The Lancet, 384(9940), 337–346. https://doi.org/10.1016/s0140-6736(14)60544-4
, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial.
Fulco, Ilario, Fulco, Ilario, Miot, Sylvie, Haug, Martin D., Barbero, Andrea, Wixmerten, Anke, Feliciano, Sandra, Wolf, Francine, Jundt, Gernot, The Lancet, 384(9940), 337–346. https://doi.org/10.1016/s0140-6736(14)60544-4
, Farhadi, Jian, Heberer, Michael, Jakob, Marcel, Schaefer, Dirk J., & Martin, Ivan. (2014). Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial.
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Barbero, Andrea, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Tissue Engineering. Part A, 19(17-18), 1960–1971. https://doi.org/10.1089/ten.tea.2012.0455
. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage.
Centola, Matteo, Abbruzzese, Franca, Scotti, Celeste, Barbero, Andrea, Vadalà, Gianluca, Denaro, Vincenzo, Martin, Ivan, Trombetta, Marcella, Rainer, Alberto, & Tissue Engineering. Part A, 19(17-18), 1960–1971. https://doi.org/10.1089/ten.tea.2012.0455
. (2013). Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage.
Biomaterials, 34(2), 393–401. https://doi.org/10.1016/j.biomaterials.2012.09.038
, Maidhof, Robert, Luo, Jianwen, Fujikara, Kana, Konofagou, Elisa E, Banfi, Andrea, & Vunjak-Novakovic, Gordana. (2013). The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction.
Biomaterials, 34(2), 393–401. https://doi.org/10.1016/j.biomaterials.2012.09.038
, Maidhof, Robert, Luo, Jianwen, Fujikara, Kana, Konofagou, Elisa E, Banfi, Andrea, & Vunjak-Novakovic, Gordana. (2013). The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction.
Xie, Lin, Zhang, Nan, Stem Cell Reviews and Reports, 9(6), 858–872. https://doi.org/10.1007/s12015-013-9456-1
, Vunjak-Novakovic, Gordana, Zhang, Yanru, & Lopez, Mandi J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.
Xie, Lin, Zhang, Nan, Stem Cell Reviews and Reports, 9(6), 858–872. https://doi.org/10.1007/s12015-013-9456-1
, Vunjak-Novakovic, Gordana, Zhang, Yanru, & Lopez, Mandi J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.
Melly, Ludovic, Boccardo, Stefano, Eckstein, Friedrich, Banfi, Andrea, & Cells, 1(4), 961–975. https://doi.org/10.3390/cells1040961
. (2012). Cell and gene therapy approaches for cardiac vascularization.
Melly, Ludovic, Boccardo, Stefano, Eckstein, Friedrich, Banfi, Andrea, & Cells, 1(4), 961–975. https://doi.org/10.3390/cells1040961
. (2012). Cell and gene therapy approaches for cardiac vascularization.
Miot S., Cell-based tissue engineering approaches for disc regeneration (pp. 493–509). Elsevier Ltd. https://doi.org/10.1016/b978-1-84569-986-4.50016-7
, & Martin I. (2012).
Miot S., Cell-based tissue engineering approaches for disc regeneration (pp. 493–509). Elsevier Ltd. https://doi.org/10.1016/b978-1-84569-986-4.50016-7
, & Martin I. (2012).
Melly, Ludovic F, Human Gene Therapy Methods, 23(5), 346–356. https://doi.org/10.1089/hgtb.2012.032
, Frobert, Aurelien, Boccardo, Stefano, Helmrich, Uta, Heberer, Michael, Eckstein, Friedrich S, Carrel, Thierry P, Giraud, Marie-Noëlle, Tevaearai, Hendrik T, & Banfi, Andrea. (2012). Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels.
Melly, Ludovic F, Human Gene Therapy Methods, 23(5), 346–356. https://doi.org/10.1089/hgtb.2012.032
, Frobert, Aurelien, Boccardo, Stefano, Helmrich, Uta, Heberer, Michael, Eckstein, Friedrich S, Carrel, Thierry P, Giraud, Marie-Noëlle, Tevaearai, Hendrik T, & Banfi, Andrea. (2012). Controlled angiogenesis in the heart by cell-based expression of specific vascular endothelial growth factor levels.
Zhang, T., Wan, L. Q., Xiong, Z., Marsano, A., Maidhof, R., Park, M., Yan, Y., & Vunjak-Novakovic, G. (2012). Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 6(9), 748–756. https://doi.org/10.1002/term.481
Zhang, T., Wan, L. Q., Xiong, Z., Marsano, A., Maidhof, R., Park, M., Yan, Y., & Vunjak-Novakovic, G. (2012). Channelled scaffolds for engineering myocardium with mechanical stimulation. Journal of Tissue Engineering and Regenerative Medicine, 6(9), 748–756. https://doi.org/10.1002/term.481
In vivo chondrogenesis by using anti-angiogenic peptides.
, Perugini V., Centola M., Guven S., Banfi A., Meikle S.T., Guildford A.L., Santin M., & Martin I. (2011, December 1).
In vivo chondrogenesis by using anti-angiogenic peptides.
, Perugini V., Centola M., Guven S., Banfi A., Meikle S.T., Guildford A.L., Santin M., & Martin I. (2011, December 1).
Tandon N, Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–25. https://doi.org/10.1002/term.377
, Maidhof R, Wan L, Park H, & Vunjak-Novakovic G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering.
Tandon N, Journal of Tissue Engineering and Regenerative Medicine, 5(6), e115–25. https://doi.org/10.1002/term.377
, Maidhof R, Wan L, Park H, & Vunjak-Novakovic G. (2011). Optimization of electrical stimulation parameters for cardiac tissue engineering.
Maidhof R, Biotechnology Progress, 26(2), 565–572. https://doi.org/10.1002/btpr.337
, Lee EJ, & Vunjak-Novakovic G. (2010). Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering.
Maidhof R, Biotechnology Progress, 26(2), 565–572. https://doi.org/10.1002/btpr.337
, Lee EJ, & Vunjak-Novakovic G. (2010). Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering.
Generation of human nasal chondrocytes engineered to express soluble VEGF receptor-2 for cartilage tissue engineering. 20, 48.
, Bernegger P., Helmrich U., Schaeren S., Miot S., Barbero A., Martin I., & Banfi A. (2010).
Generation of human nasal chondrocytes engineered to express soluble VEGF receptor-2 for cartilage tissue engineering. 20, 48.
, Bernegger P., Helmrich U., Schaeren S., Miot S., Barbero A., Martin I., & Banfi A. (2010).
Biotechnology progress, 26(5), 1382–1390. https://doi.org/10.1002/btpr.435
, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, & Vunjak-Novakovic G. (2010). Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs.
Biotechnology progress, 26(5), 1382–1390. https://doi.org/10.1002/btpr.435
, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, & Vunjak-Novakovic G. (2010). Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs.
Tandon N, Lab on a Chip, 10(6), 692–700. https://doi.org/10.1039/b917743d
, Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, & Vunjak-Novakovic G. (2010). Surface-patterned electrode bioreactor for electrical stimulation.
Tandon N, Lab on a Chip, 10(6), 692–700. https://doi.org/10.1039/b917743d
, Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, & Vunjak-Novakovic G. (2010). Surface-patterned electrode bioreactor for electrical stimulation.
Vunjak-Novakovic, Gordana, Tandon, Nina, Godier, Amandine, Maidhof, Robert, Tissue engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352
, Martens, Timothy P., & Radisic, Milica. (2010). Challenges in cardiac tissue engineering.
Vunjak-Novakovic, Gordana, Tandon, Nina, Godier, Amandine, Maidhof, Robert, Tissue engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352
, Martens, Timothy P., & Radisic, Milica. (2010). Challenges in cardiac tissue engineering.
Wan, L. Q., Zhang, T., Marsano, A., Maidhof, R., & Vunjak-Novakovic, G. (2009). Subpixel texture correlation for contractile behaviors of engineered cardiac tissue. 1275–1276. https://doi.org/10.1115/SBC2009-205851
Wan, L. Q., Zhang, T., Marsano, A., Maidhof, R., & Vunjak-Novakovic, G. (2009). Subpixel texture correlation for contractile behaviors of engineered cardiac tissue. 1275–1276. https://doi.org/10.1115/SBC2009-205851
Zhang, T., Wan, L. Q., Marsano, A., Maidhof, R., Yan, Y., Pan, J., & Vunjak-Novakovic, G. (2009). Chitosan-collagen based channeled scaffold for cardiac tissue engineering. 1191–1192. https://doi.org/10.1115/SBC2009-206639
Zhang, T., Wan, L. Q., Marsano, A., Maidhof, R., Yan, Y., Pan, J., & Vunjak-Novakovic, G. (2009). Chitosan-collagen based channeled scaffold for cardiac tissue engineering. 1191–1192. https://doi.org/10.1115/SBC2009-206639
Tandon N, Cannizzaro C, Chao PH, Maidhof R, Nature Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183
, Au HT, Radisic M, & Vunjak-Novakovic G. (2009). Electrical stimulation systems for cardiac tissue engineering.
Tandon N, Cannizzaro C, Chao PH, Maidhof R, Nature Protocols, 4(2), 155–173. https://doi.org/10.1038/nprot.2008.183
, Au HT, Radisic M, & Vunjak-Novakovic G. (2009). Electrical stimulation systems for cardiac tissue engineering.
Jacobs, Sharone’, Simhaee, David A., Journal of Plastic, Reconstructive and Aesthetic Surgery, 62, 1331–1338. https://doi.org/10.1016/j.bjps.2008.03.024
, Fomovsky, Gregory M., Niedt, George, & Wu, June K. (2009). Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model.
Jacobs, Sharone’, Simhaee, David A., Journal of Plastic, Reconstructive and Aesthetic Surgery, 62, 1331–1338. https://doi.org/10.1016/j.bjps.2008.03.024
, Fomovsky, Gregory M., Niedt, George, & Wu, June K. (2009). Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model.
Tandon N, Goh B, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2009, 6517–6521. https://doi.org/10.1109/IEMBS.2009.5333142
, Chao PH, Montouri-Sorrentino C, Gimble J, & Vunjak-Novakovic G. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation.
Tandon N, Goh B, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2009, 6517–6521. https://doi.org/10.1109/IEMBS.2009.5333142
, Chao PH, Montouri-Sorrentino C, Gimble J, & Vunjak-Novakovic G. (2009). Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation.
Radisic M, Nature Protocols, 3(4), 719–738. https://doi.org/10.1038/nprot.2008.40
, Maidhof R, Wang Y, & Vunjak-Novakovic G. (2008). Cardiac tissue engineering using perfusion bioreactor systems.
Radisic M, Nature Protocols, 3(4), 719–738. https://doi.org/10.1038/nprot.2008.40
, Maidhof R, Wang Y, & Vunjak-Novakovic G. (2008). Cardiac tissue engineering using perfusion bioreactor systems.
Engineering of functional contractile cardiac tissues cultured in a perfusion system. 3590–+.
, Maidhof, R., Tandon, N., Gao, J., Wang, Y., & Vunjak-Novakovic, G. (2008).
Engineering of functional contractile cardiac tissues cultured in a perfusion system. 3590–+.
, Maidhof, R., Tandon, N., Gao, J., Wang, Y., & Vunjak-Novakovic, G. (2008).
Tandon, N., Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering. 3594–+.
, Cannizzaro, C., Voldman, J., & Vunjak-Novakovic, G. (2008).
Tandon, N., Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering. 3594–+.
, Cannizzaro, C., Voldman, J., & Vunjak-Novakovic, G. (2008).
Osteoarthritis And Cartilage, 15(1), 48–58. https://doi.org/10.1016/j.joca.2006.06.009
, Millward-Sadler, S J, Salter, D M, Adesida, A, Hardingham, T, Tognana, E, Kon, E, Chiari-Grisar, C, Nehrer, S, Jakob, M, & Martin, I. (2007). Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes.
Osteoarthritis And Cartilage, 15(1), 48–58. https://doi.org/10.1016/j.joca.2006.06.009
, Millward-Sadler, S J, Salter, D M, Adesida, A, Hardingham, T, Tognana, E, Kon, E, Chiari-Grisar, C, Nehrer, S, Jakob, M, & Martin, I. (2007). Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes.
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, 3656–3658. https://doi.org/10.1109/IEMBS.2006.259748
, Vunjak-Novakovic G, & Martin I. (2006). Towards tissue engineering of meniscus substitutes: Selection of cell source and culture environment.
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 2006, 3656–3658. https://doi.org/10.1109/IEMBS.2006.259748
, Vunjak-Novakovic G, & Martin I. (2006). Towards tissue engineering of meniscus substitutes: Selection of cell source and culture environment.
Biorheology, 43(3-4), 553–560.
, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, Heberer M, & Martin I. (2006). Bi-zonal cartilaginous tissues engineered in a rotary cell culture system.
Biorheology, 43(3-4), 553–560.
, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, Heberer M, & Martin I. (2006). Bi-zonal cartilaginous tissues engineered in a rotary cell culture system.
Local compressive and tensile stiffness measured in tissues with regular patterns of hyaline-fibrocartilage regions. 11, 27.
, Wendt D., Raiteri R., Gottardi R., Dickinson S., Hollander A.P., Wirz D., Daniels A.U., Quinn T.M., Stolz M., & Martin I. (2006).
Local compressive and tensile stiffness measured in tissues with regular patterns of hyaline-fibrocartilage regions. 11, 27.
, Wendt D., Raiteri R., Gottardi R., Dickinson S., Hollander A.P., Wirz D., Daniels A.U., Quinn T.M., Stolz M., & Martin I. (2006).
Biomaterials, 27(35), 5927–5934. https://doi.org/10.1016/j.biomaterials.2006.08.020
, Wendt, David, Raiteri, Roberto, Gottardi, Riccardo, Stolz, Martin, Wirz, Dieter, Daniels, Alma U., Salter, Donald, Jakob, Marcel, Quinn, Thomas M., & Martin, Ivan. (2006). Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus.
Biomaterials, 27(35), 5927–5934. https://doi.org/10.1016/j.biomaterials.2006.08.020
, Wendt, David, Raiteri, Roberto, Gottardi, Riccardo, Stolz, Martin, Wirz, Dieter, Daniels, Alma U., Salter, Donald, Jakob, Marcel, Quinn, Thomas M., & Martin, Ivan. (2006). Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus.
Wendt D, Biotechnology and Bioengineering, 84(2), 205–214. https://doi.org/10.1002/bit.10759
, Jakob M, Heberer M, & Martin I. (2003). Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity.
Wendt D, Biotechnology and Bioengineering, 84(2), 205–214. https://doi.org/10.1002/bit.10759
, Jakob M, Heberer M, & Martin I. (2003). Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity.