Publications
15 found
Show per page
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2405.17088
, Holtorf,Flemming, Schäfer,Frank, & Lörch,Niels. (2024). Phase Transitions in the Output Distribution of Large Language Models. In
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2405.17088
, Holtorf,Flemming, Schäfer,Frank, & Lörch,Niels. (2024). Phase Transitions in the Output Distribution of Large Language Models. In
Physical Review Letters, 132. https://doi.org/10.1103/PhysRevLett.132.207301
, Schäfer, Frank, Edelman, Alan, & Bruder, Christoph. (2024). Mapping Out Phase Diagrams with Generative Classifiers.
Physical Review Letters, 132. https://doi.org/10.1103/PhysRevLett.132.207301
, Schäfer, Frank, Edelman, Alan, & Bruder, Christoph. (2024). Mapping Out Phase Diagrams with Generative Classifiers.
Holtorf, Flemming, Schafer, Frank, IEEE Transactions on Automatic Control, 69, 8057–8063. https://doi.org/10.1109/TAC.2024.3416008
, Rackauckas, Christopher V., & Edelman, Alan. (2024). Performance Bounds for Quantum Feedback Control.
Holtorf, Flemming, Schafer, Frank, IEEE Transactions on Automatic Control, 69, 8057–8063. https://doi.org/10.1109/TAC.2024.3416008
, Rackauckas, Christopher V., & Edelman, Alan. (2024). Performance Bounds for Quantum Feedback Control.
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2311.10710
, Lörch,Niels, Holtorf,Flemming, & Schäfer,Frank. (2023). Machine learning phase transitions: Connections to the Fisher information. In
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2311.10710
, Lörch,Niels, Holtorf,Flemming, & Schäfer,Frank. (2023). Machine learning phase transitions: Connections to the Fisher information. In
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2311.09128
, Schäfer, Frank, & Lörch, Niels. (2023). Fast Detection of Phase Transitions with Multi-Task Learning-by-Confusion. In
Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2311.09128
, Schäfer, Frank, & Lörch, Niels. (2023). Fast Detection of Phase Transitions with Multi-Task Learning-by-Confusion. In
Holtorf, Flemming, Schafer, Frank, Sum-of-Squares Bounds for Quantum Optimal Control. 2, 365–366. https://doi.org/10.1109/QCE57702.2023.10284
, Rackauckas, Christopher, & Edelman, Alan. (2023).
Holtorf, Flemming, Schafer, Frank, Sum-of-Squares Bounds for Quantum Optimal Control. 2, 365–366. https://doi.org/10.1109/QCE57702.2023.10284
, Rackauckas, Christopher, & Edelman, Alan. (2023).
Holtorf, Flemming, Schäfer, Frank, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2304.03366
, Rackauckas, Christopher, & Edelman, Alan. (2023). Performance Bounds for Quantum Control. In
Holtorf, Flemming, Schäfer, Frank, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2304.03366
, Rackauckas, Christopher, & Edelman, Alan. (2023). Performance Bounds for Quantum Control. In
Lode, A.U.J., Alon, O.E., Quantum simulators, phase transitions, resonant tunneling, and variances: A many-body perspective (pp. 35–59). https://doi.org/10.1007/978-3-031-17937-2_3
, Bhowmik, A., Büttner, M., Cederbaum, L.S., Chatterjee, B., Chitra, R., Dutta, S., Georges, C., Hemmerich, A., Keßler, H., Klinder, J., Lévêque, C., Lin, R., Molignini, P., Schäfer, F., Schmiedmayer, J., & Žonda, M. (2023).
Lode, A.U.J., Alon, O.E., Quantum simulators, phase transitions, resonant tunneling, and variances: A many-body perspective (pp. 35–59). https://doi.org/10.1007/978-3-031-17937-2_3
, Bhowmik, A., Büttner, M., Cederbaum, L.S., Chatterjee, B., Chitra, R., Dutta, S., Georges, C., Hemmerich, A., Keßler, H., Klinder, J., Lévêque, C., Lin, R., Molignini, P., Schäfer, F., Schmiedmayer, J., & Žonda, M. (2023).
Dawid, Anna, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2204.04198
, Requena, Borja, Gresch, Alexander, Płodzień, Marcin, Donatella, Kaelan, Nicoli, Kim A., Stornati, Paolo, Koch, Rouven, Büttner, Miriam, Okuła, Robert, Muñoz-Gil, Gorka, Vargas-Hernández, Rodrigo A., Cervera-Lierta, Alba, Carrasquilla, Juan, Dunjko, Vedran, Gabrié, Marylou, Huembeli, Patrick, van Nieuwenburg, Evert, et al. (2022). Modern applications of machine learning in quantum sciences. In
Dawid, Anna, Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2204.04198
, Requena, Borja, Gresch, Alexander, Płodzień, Marcin, Donatella, Kaelan, Nicoli, Kim A., Stornati, Paolo, Koch, Rouven, Büttner, Miriam, Okuła, Robert, Muñoz-Gil, Gorka, Vargas-Hernández, Rodrigo A., Cervera-Lierta, Alba, Carrasquilla, Juan, Dunjko, Vedran, Gabrié, Marylou, Huembeli, Patrick, van Nieuwenburg, Evert, et al. (2022). Modern applications of machine learning in quantum sciences. In
Physical Review X, 12(3), 31044. https://doi.org/10.1103/physrevx.12.031044
, & Schäfer, Frank. (2022). Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions.
Physical Review X, 12(3), 31044. https://doi.org/10.1103/physrevx.12.031044
, & Schäfer, Frank. (2022). Replacing Neural Networks by Optimal Analytical Predictors for the Detection of Phase Transitions.
Veliz, Juan Carlos San Vicente, Journal of Physical Chemistry A, 126(43), 7971–7980. https://doi.org/10.1021/acs.jpca.2c06267
, Bemish, Raymond J., & Meuwly, Markus. (2022). Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions.
Veliz, Juan Carlos San Vicente, Journal of Physical Chemistry A, 126(43), 7971–7980. https://doi.org/10.1021/acs.jpca.2c06267
, Bemish, Raymond J., & Meuwly, Markus. (2022). Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions.
Physical Review Research, 3(3), 33052. https://doi.org/10.1103/physrevresearch.3.033052
, Schäfer, F., Zonda, M., & Lode, A. U. J. (2021). Interpretable and unsupervised phase classification.
Physical Review Research, 3(3), 33052. https://doi.org/10.1103/physrevresearch.3.033052
, Schäfer, F., Zonda, M., & Lode, A. U. J. (2021). Interpretable and unsupervised phase classification.
Journal of Chemical Physics, 156(3), 34301. https://doi.org/10.1063/5.0078008
, San Vicente Veliz, Juan Carlos, Koner, Debasish, Singh, Narendra, Bemish, Raymond J., & Meuwly, Markus. (2021). Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System.
Journal of Chemical Physics, 156(3), 34301. https://doi.org/10.1063/5.0078008
, San Vicente Veliz, Juan Carlos, Koner, Debasish, Singh, Narendra, Bemish, Raymond J., & Meuwly, Markus. (2021). Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System.
APS March Meeting 2021.
, Schäfer, Frank, Zonda, Martin, & Lode, Axel. (2021, January 1). Interpretable and unsupervised phase classification based on averaged input features.
APS March Meeting 2021.
, Schäfer, Frank, Zonda, Martin, & Lode, Axel. (2021, January 1). Interpretable and unsupervised phase classification based on averaged input features.
Journal of Physical Chemistry A, 124(35), 7177–7190. https://doi.org/10.1021/acs.jpca.0c05173
, Koner, Debasish, Kaeser, Silvan, Singh, Narendra, Bemish, Raymond J., & Meuwly, Markus. (2020). Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions.
Journal of Physical Chemistry A, 124(35), 7177–7190. https://doi.org/10.1021/acs.jpca.0c05173
, Koner, Debasish, Kaeser, Silvan, Singh, Narendra, Bemish, Raymond J., & Meuwly, Markus. (2020). Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions.