Publications
100 found
Show per page
Tabataba-Vakili, F., Nguyen, H. P. G., Rupp, A., Mosina, K., Papavasileiou, A., Watanabe, K., Taniguchi, T., Maletinsky, P., Glazov, M. M., Sofer, Z., Baimuratov, A. S., & Högele, A. (2024). Doping-control of excitons and magnetism in few-layer CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49048-9
Tabataba-Vakili, F., Nguyen, H. P. G., Rupp, A., Mosina, K., Papavasileiou, A., Watanabe, K., Taniguchi, T., Maletinsky, P., Glazov, M. M., Sofer, Z., Baimuratov, A. S., & Högele, A. (2024). Doping-control of excitons and magnetism in few-layer CrSBr. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49048-9
Rovny, Jared, Gopalakrishnan, Sarang, Jayich, Ania C. Bleszynski, Nature Reviews Physics, 6, 753–768. https://doi.org/10.1038/s42254-024-00775-4
, Demler, Eugene, & de Leon, Nathalie P. (2024). Nanoscale diamond quantum sensors for many-body physics [Journal-article].
Rovny, Jared, Gopalakrishnan, Sarang, Jayich, Ania C. Bleszynski, Nature Reviews Physics, 6, 753–768. https://doi.org/10.1038/s42254-024-00775-4
, Demler, Eugene, & de Leon, Nathalie P. (2024). Nanoscale diamond quantum sensors for many-body physics [Journal-article].
Yurgens, Viktoria, Fontana, Yannik, Corazza, Andrea, Shields, Brendan J., npj Quantum Information, 10. https://doi.org/10.1038/s41534-024-00915-9
, & Warburton, Richard J. (2024). Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond [Journal-article].
Yurgens, Viktoria, Fontana, Yannik, Corazza, Andrea, Shields, Brendan J., npj Quantum Information, 10. https://doi.org/10.1038/s41534-024-00915-9
, & Warburton, Richard J. (2024). Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond [Journal-article].
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
, & Poggio, Martino. (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article].
Bagani, Kousik, Vervelaki, Andriani, Jetter, Daniel, Devarakonda, Aravind, Tschudin, Märta A., Gross, Boris, Chica, Daniel G., Broadway, David A., Dean, Cory R., Roy, Xavier, Nano Letters, 24(41), 13068–13074. https://doi.org/10.1021/acs.nanolett.4c03919
, & Poggio, Martino. (2024). Imaging Strain-Controlled Magnetic Reversal in Thin CrSBr [Journal-article].
Chen, Shaowen, Park, Seunghyun, Vool, Uri, Maksimovic, Nikola, Broadway, David A., Flaks, Mykhailo, Zhou, Tony X., Nature Communications, 15. https://doi.org/10.1038/s41467-024-52271-z
, Stern, Ady, Halperin, Bertrand I., & Yacoby, Amir. (2024). Current induced hidden states in Josephson junctions [Journal-article].
Chen, Shaowen, Park, Seunghyun, Vool, Uri, Maksimovic, Nikola, Broadway, David A., Flaks, Mykhailo, Zhou, Tony X., Nature Communications, 15. https://doi.org/10.1038/s41467-024-52271-z
, Stern, Ady, Halperin, Bertrand I., & Yacoby, Amir. (2024). Current induced hidden states in Josephson junctions [Journal-article].
Clua-Provost, T., Mu, Z., Durand, A., Schrader, C., Happacher, J., Bocquel, J., Physical Review B, 110(1). https://doi.org/10.1103/physrevb.110.014104
, Fraunié, J., Marie, X., Robert, C., Seine, G., Janzen, E., Edgar, J. H., Gil, B., Cassabois, G., & Jacques, V. (2024). Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride [Journal-article].
Clua-Provost, T., Mu, Z., Durand, A., Schrader, C., Happacher, J., Bocquel, J., Physical Review B, 110(1). https://doi.org/10.1103/physrevb.110.014104
, Fraunié, J., Marie, X., Robert, C., Seine, G., Janzen, E., Edgar, J. H., Gil, B., Cassabois, G., & Jacques, V. (2024). Spin-dependent photodynamics of boron-vacancy centers in hexagonal boron nitride [Journal-article].
Zuber, J. A., Li, M., Grimau Puigibert, Marcel. l., Happacher, J., Reiser, P., Shields, B. J., & Maletinsky, P. (2023). Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures. Nano Letters, 23(23), 10901–10907. https://doi.org/10.1021/acs.nanolett.3c03145
Zuber, J. A., Li, M., Grimau Puigibert, Marcel. l., Happacher, J., Reiser, P., Shields, B. J., & Maletinsky, P. (2023). Shallow Silicon Vacancy Centers with Lifetime-Limited Optical Linewidths in Diamond Nanostructures. Nano Letters, 23(23), 10901–10907. https://doi.org/10.1021/acs.nanolett.3c03145
Bürgler, B., Sjolander, T.F., Brinza, O., Tallaire, A., Achard, J., & Npj Quantum Information, 9(1). https://doi.org/10.1038/s41534-023-00724-6
(2023). All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond.
Bürgler, B., Sjolander, T.F., Brinza, O., Tallaire, A., Achard, J., & Npj Quantum Information, 9(1). https://doi.org/10.1038/s41534-023-00724-6
(2023). All-optical nuclear quantum sensing using nitrogen-vacancy centers in diamond.
Happacher, J., Bocquel, J., Dinani, H. T., Tschudin, M. A., Reiser, P., Broadway, D. A., Maze, J. R., & Maletinsky, P. (2023). Temperature-Dependent Photophysics of Single NV Centers in Diamond. Physical Review Letters, 131(8). https://doi.org/10.1103/physrevlett.131.086904
Happacher, J., Bocquel, J., Dinani, H. T., Tschudin, M. A., Reiser, P., Broadway, D. A., Maze, J. R., & Maletinsky, P. (2023). Temperature-Dependent Photophysics of Single NV Centers in Diamond. Physical Review Letters, 131(8). https://doi.org/10.1103/physrevlett.131.086904
Pylypovskyi, O. V., Hedrich, N., Tomilo, A. V., Kosub, T., Wagner, K., Hübner, R., Shields, B., Sheka, D. D., Fassbender, J., Maletinsky, P., & Makarov, D. (2023). Interaction of Domain Walls with Grain Boundaries in Uniaxial Insulating Antiferromagnets. Physical Review Applied, 20(1). https://doi.org/10.1103/physrevapplied.20.014020
Pylypovskyi, O. V., Hedrich, N., Tomilo, A. V., Kosub, T., Wagner, K., Hübner, R., Shields, B., Sheka, D. D., Fassbender, J., Maletinsky, P., & Makarov, D. (2023). Interaction of Domain Walls with Grain Boundaries in Uniaxial Insulating Antiferromagnets. Physical Review Applied, 20(1). https://doi.org/10.1103/physrevapplied.20.014020
Li, Ruofan, Riddiford, Lauren J., Chai, Yahong, Dai, Minyi, Zhong, Hai, Li, Bo, Li, Peng, Yi, Di, Zhang, Yuejie, Broadway, David A., Dubois, Adrien E. E., Nature Communications, 14. https://doi.org/10.1038/s41467-023-38095-3
, Hu, Jiamian, Suzuki, Yuri, Ralph, Daniel C., & Nan, Tianxiang. (2023). A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls.
Li, Ruofan, Riddiford, Lauren J., Chai, Yahong, Dai, Minyi, Zhong, Hai, Li, Bo, Li, Peng, Yi, Di, Zhang, Yuejie, Broadway, David A., Dubois, Adrien E. E., Nature Communications, 14. https://doi.org/10.1038/s41467-023-38095-3
, Hu, Jiamian, Suzuki, Yuri, Ralph, Daniel C., & Nan, Tianxiang. (2023). A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls.
Li, Xiangzhi, Jones, Andrew C., Choi, Junho, Zhao, Huan, Chandrasekaran, Vigneshwaran, Pettes, Michael T., Piryatinski, Andrei, Tschudin, Märta A., Reiser, Patrick, Broadway, David A., Nature Materials, 22, 1311–1316. https://doi.org/10.1038/s41563-023-01645-7
, Sinitsyn, Nikolai, Crooker, Scott A., & Htoon, Han. (2023). Proximity-induced chiral quantum light generation in strain-engineered WSe<inf>2</inf>/NiPS<inf>3</inf> heterostructures.
Li, Xiangzhi, Jones, Andrew C., Choi, Junho, Zhao, Huan, Chandrasekaran, Vigneshwaran, Pettes, Michael T., Piryatinski, Andrei, Tschudin, Märta A., Reiser, Patrick, Broadway, David A., Nature Materials, 22, 1311–1316. https://doi.org/10.1038/s41563-023-01645-7
, Sinitsyn, Nikolai, Crooker, Scott A., & Htoon, Han. (2023). Proximity-induced chiral quantum light generation in strain-engineered WSe<inf>2</inf>/NiPS<inf>3</inf> heterostructures.
Zhang, Zi-Huai, Zuber, Josh A., Rodgers, Lila V. H., Gui, Xin, Stevenson, Paul, Li, Minghao, Batzer, Marietta, Grimau Puigibert, Marcel.Li, Shields, Brendan J., Edmonds, Andrew M., Palmer, Nicola, Markham, Matthew L., Cava, Robert J., Physical Review Letters, 13. https://doi.org/10.1103/physrevlett.130.166902
, & De Leon, Nathalie P. (2023). Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control.
Zhang, Zi-Huai, Zuber, Josh A., Rodgers, Lila V. H., Gui, Xin, Stevenson, Paul, Li, Minghao, Batzer, Marietta, Grimau Puigibert, Marcel.Li, Shields, Brendan J., Edmonds, Andrew M., Palmer, Nicola, Markham, Matthew L., Cava, Robert J., Physical Review Letters, 13. https://doi.org/10.1103/physrevlett.130.166902
, & De Leon, Nathalie P. (2023). Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control.
Yurgens, V., Corazza, A., Zuber, J.A., Gruet, M., Kasperczyk, M., Shields, B.J., Warburton, R.J., Fontana, Y., & Applied Physics Letters, 121(23). https://doi.org/10.1063/5.0126669
(2022). Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures.
Yurgens, V., Corazza, A., Zuber, J.A., Gruet, M., Kasperczyk, M., Shields, B.J., Warburton, R.J., Fontana, Y., & Applied Physics Letters, 121(23). https://doi.org/10.1063/5.0126669
(2022). Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures.
Dubois, A.E.E., Broadway, D.A., Stark, A., Tschudin, M.A., Healey, A.J., Huber, S.D., Tetienne, J.-P., Greplova, E., & Physical Review Applied, 18(6). https://doi.org/10.1103/physrevapplied.18.064076
(2022). Untrained Physically Informed Neural Network for Image Reconstruction of Magnetic Field Sources.
Dubois, A.E.E., Broadway, D.A., Stark, A., Tschudin, M.A., Healey, A.J., Huber, S.D., Tetienne, J.-P., Greplova, E., & Physical Review Applied, 18(6). https://doi.org/10.1103/physrevapplied.18.064076
(2022). Untrained Physically Informed Neural Network for Image Reconstruction of Magnetic Field Sources.
Flågan, Sigurd, Optica, 9(10), 1197–1209. https://doi.org/10.1364/optica.466003
, Warburton, Richard J., & Riedel, Daniel. (2022). Microcavity platform for widely tunable optical double resonance.
Flågan, Sigurd, Optica, 9(10), 1197–1209. https://doi.org/10.1364/optica.466003
, Warburton, Richard J., & Riedel, Daniel. (2022). Microcavity platform for widely tunable optical double resonance.
Flågan, Sigurd, Riedel, Daniel, Javadi, Alisa, Jakubczyk, Tomasz, Journal of Applied Physics, 131(11), 113102. https://doi.org/10.1063/5.0081577
, & Warburton, Richard J. (2022). A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume.
Flågan, Sigurd, Riedel, Daniel, Javadi, Alisa, Jakubczyk, Tomasz, Journal of Applied Physics, 131(11), 113102. https://doi.org/10.1063/5.0081577
, & Warburton, Richard J. (2022). A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume.
Happacher, Jodok, Broadway, David A., Bocquel, Juanita, Reiser, Patrick, Jimenéz, Alejandro, Tschudin, Märta A., Thiel, Lucas, Rohner, Dominik, Puigibert, Marcel. Li Grimau, Shields, Brendan, Maze, Jeronimo R., Jacques, Vincent, & Physical Review Letters, 128. https://doi.org/10.1103/physrevlett.128.177401
. (2022). Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond.
Happacher, Jodok, Broadway, David A., Bocquel, Juanita, Reiser, Patrick, Jimenéz, Alejandro, Tschudin, Märta A., Thiel, Lucas, Rohner, Dominik, Puigibert, Marcel. Li Grimau, Shields, Brendan, Maze, Jeronimo R., Jacques, Vincent, & Physical Review Letters, 128. https://doi.org/10.1103/physrevlett.128.177401
. (2022). Low-Temperature Photophysics of Single Nitrogen-Vacancy Centers in Diamond.
Makushko, Pavlo, Kosub, Tobias, Pylypovskyi, Oleksandr V., Hedrich, Natascha, Li, Jiang, Pashkin, Alexej, Avdoshenko, Stanislav, Hübner, René, Ganss, Fabian, Wolf, Daniel, Lubk, Axel, Liedke, Maciej Oskar, Butterling, Maik, Wagner, Andreas, Wagner, Kai, Shields, Brendan J., Lehmann, Paul, Veremchuk, Igor, Fassbender, Jürgen, et al. (2022). Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr<inf>2</inf>O<inf>3</inf> thin films. Nature Communications, 13. https://doi.org/10.1038/s41467-022-34233-5
Makushko, Pavlo, Kosub, Tobias, Pylypovskyi, Oleksandr V., Hedrich, Natascha, Li, Jiang, Pashkin, Alexej, Avdoshenko, Stanislav, Hübner, René, Ganss, Fabian, Wolf, Daniel, Lubk, Axel, Liedke, Maciej Oskar, Butterling, Maik, Wagner, Andreas, Wagner, Kai, Shields, Brendan J., Lehmann, Paul, Veremchuk, Igor, Fassbender, Jürgen, et al. (2022). Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr<inf>2</inf>O<inf>3</inf> thin films. Nature Communications, 13. https://doi.org/10.1038/s41467-022-34233-5
Rickhaus, Peter, & Electronic Device Failure Analysis, 24, 29–32.
. (2022). SCANNING NITROGEN VACANCY MAGNETOMETRY: A QUANTUM TECHNOLOGY FOR DEVICE FAILURE ANALYSIS.
Rickhaus, Peter, & Electronic Device Failure Analysis, 24, 29–32.
. (2022). SCANNING NITROGEN VACANCY MAGNETOMETRY: A QUANTUM TECHNOLOGY FOR DEVICE FAILURE ANALYSIS.
Seniutinas, Gediminas, Gonzalez, Marcelo, Shields, Brendan, De Oliveira, Felipe Favaro, & Versatile, All-Diamond Scanning Probes for High-Performance Nanoscale Magnetometry. null.
. (2022).
Seniutinas, Gediminas, Gonzalez, Marcelo, Shields, Brendan, De Oliveira, Felipe Favaro, & Versatile, All-Diamond Scanning Probes for High-Performance Nanoscale Magnetometry. null.
. (2022).
Veremchuk, Igor, Liedke, Maciej Oskar, Makushko, Pavlo, Kosub, Tobias, Hedrich, Natascha, Pylypovskyi, Oleksandr V., Ganss, Fabian, Butterling, Maik, Hübner, René, Hirschmann, Eric, Attallah, Ahmed G., Wagner, Andreas, Wagner, Kai, Shields, Brendan, Small, 18. https://doi.org/10.1002/smll.202201228
, Fassbender, Jürgen, & Makarov, Denys. (2022). Defect Nanostructure and its Impact on Magnetism of α-Cr<inf>2</inf>O<inf>3</inf> Thin Films.
Veremchuk, Igor, Liedke, Maciej Oskar, Makushko, Pavlo, Kosub, Tobias, Hedrich, Natascha, Pylypovskyi, Oleksandr V., Ganss, Fabian, Butterling, Maik, Hübner, René, Hirschmann, Eric, Attallah, Ahmed G., Wagner, Andreas, Wagner, Kai, Shields, Brendan, Small, 18. https://doi.org/10.1002/smll.202201228
, Fassbender, Jürgen, & Makarov, Denys. (2022). Defect Nanostructure and its Impact on Magnetism of α-Cr<inf>2</inf>O<inf>3</inf> Thin Films.
Veremchuk, Igor, Makushko, Pavlo, Hedrich, Natascha, Zabila, Yevhen, Kosub, Tobias, Liedke, Maciej Oskar, Butterling, Maik, Attallah, Ahmed G., Wagner, Andreas, Burkhardt, Ulrich, Pylypovskyi, Oleksandr V., Hübner, René, Fassbender, Juergen, ACS Applied Electronic Materials, 4, 2943–2952. https://doi.org/10.1021/acsaelm.2c00398
, & Makarov, Denys. (2022). Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr<inf>2</inf>O<inf>3</inf>Sintered in Conditions Far out of Equilibrium.
Veremchuk, Igor, Makushko, Pavlo, Hedrich, Natascha, Zabila, Yevhen, Kosub, Tobias, Liedke, Maciej Oskar, Butterling, Maik, Attallah, Ahmed G., Wagner, Andreas, Burkhardt, Ulrich, Pylypovskyi, Oleksandr V., Hübner, René, Fassbender, Juergen, ACS Applied Electronic Materials, 4, 2943–2952. https://doi.org/10.1021/acsaelm.2c00398
, & Makarov, Denys. (2022). Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr<inf>2</inf>O<inf>3</inf>Sintered in Conditions Far out of Equilibrium.
Zhong, Hai, Finco, Aurore, Fischer, Johanna, Haykal, Angela, Bouzehouane, Karim, Carrétéro, Cécile, Godel, Florian, Physical Review Applied, 17. https://doi.org/10.1103/physrevapplied.17.044051
, Munsch, Mathieu, Fusil, Stéphane, Jacques, Vincent, & Garcia, Vincent. (2022). Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFe O3 Thin Films.
Zhong, Hai, Finco, Aurore, Fischer, Johanna, Haykal, Angela, Bouzehouane, Karim, Carrétéro, Cécile, Godel, Florian, Physical Review Applied, 17. https://doi.org/10.1103/physrevapplied.17.044051
, Munsch, Mathieu, Fusil, Stéphane, Jacques, Vincent, & Garcia, Vincent. (2022). Quantitative Imaging of Exotic Antiferromagnetic Spin Cycloids in BiFe O3 Thin Films.
Celano, Umberto, Zhong, Hai, Ciubotaru, Florin, Stoleriu, Laurentiu, Stark, Alexander, Rickhaus, Peter, de Oliveira, Felipe Fávaro, Munsch, Mathieu, Favia, Paola, Korytov, Maxim, Van Marcke, Patricia, Nano Letters, 21(24), 10409–10415. https://doi.org/10.1021/acs.nanolett.1c03723
, Adelmann, Christoph, & van der Heide, Paul. (2021). Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond.
Celano, Umberto, Zhong, Hai, Ciubotaru, Florin, Stoleriu, Laurentiu, Stark, Alexander, Rickhaus, Peter, de Oliveira, Felipe Fávaro, Munsch, Mathieu, Favia, Paola, Korytov, Maxim, Van Marcke, Patricia, Nano Letters, 21(24), 10409–10415. https://doi.org/10.1021/acs.nanolett.1c03723
, Adelmann, Christoph, & van der Heide, Paul. (2021). Probing Magnetic Defects in Ultra-Scaled Nanowires with Optically Detected Spin Resonance in Nitrogen-Vacancy Center in Diamond.
Hedrich, Natascha, Wagner, Kai, Pylypovskyi, Oleksandr V., Shields, Brendan J., Kosub, Tobias, Sheka, Denis D., Makarov, Denys, & Nature Physics, 17(5), 574–577. https://doi.org/10.1038/s41567-020-01157-0
. (2021). Nanoscale mechanics of antiferromagnetic domain walls.
Hedrich, Natascha, Wagner, Kai, Pylypovskyi, Oleksandr V., Shields, Brendan J., Kosub, Tobias, Sheka, Denis D., Makarov, Denys, & Nature Physics, 17(5), 574–577. https://doi.org/10.1038/s41567-020-01157-0
. (2021). Nanoscale mechanics of antiferromagnetic domain walls.
Hedrich, Natascha, Wagner, Kai, Pylypovskyi, Oleksandr V., Shields, Brendan J., Kosub, Tobias, Sheka, Denis D., Makarov, Denys, & Nature Physics, 17, 659. https://doi.org/10.1038/s41567-021-01205-3
. (2021). Publisher Correction: Nanoscale mechanics of antiferromagnetic domain walls (Nature Physics, (2021), 17, 5, (574-577), 10.1038/s41567-020-01157-0).
Hedrich, Natascha, Wagner, Kai, Pylypovskyi, Oleksandr V., Shields, Brendan J., Kosub, Tobias, Sheka, Denis D., Makarov, Denys, & Nature Physics, 17, 659. https://doi.org/10.1038/s41567-021-01205-3
. (2021). Publisher Correction: Nanoscale mechanics of antiferromagnetic domain walls (Nature Physics, (2021), 17, 5, (574-577), 10.1038/s41567-020-01157-0).
Yurgens, Viktoria, Zuber, Josh A., Flagan, Sigurd, De Luca, Marta, Shields, Brendan J., Zardo, Ilaria, ACS Photonics, 8(6), 1726–1734. https://doi.org/10.1021/acsphotonics.1c00274
, Warburton, Richard J., & Jakubczyk, Tomasz. (2021). Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens.
Yurgens, Viktoria, Zuber, Josh A., Flagan, Sigurd, De Luca, Marta, Shields, Brendan J., Zardo, Ilaria, ACS Photonics, 8(6), 1726–1734. https://doi.org/10.1021/acsphotonics.1c00274
, Warburton, Richard J., & Jakubczyk, Tomasz. (2021). Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens.
Zhang, Jianyu, Chen, Mingfeng, Chen, Jilei, Yamamoto, Kei, Wang, Hanchen, Hamdi, Mohammad, Sun, Yuanwei, Wagner, Kai, He, Wenqing, Zhang, Yu, Ma, Ji, Gao, Peng, Han, Xiufeng, Yu, Dapeng, Nature Communications, 12(1), ARTN 7258. https://doi.org/10.1038/s41467-021-27405-2
, Ansermet, Jean-Philippe, Maekawa, Sadamichi, Grundler, Dirk, Nan, Ce-Wen, & Yu, Haiming. (2021). Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures.
Zhang, Jianyu, Chen, Mingfeng, Chen, Jilei, Yamamoto, Kei, Wang, Hanchen, Hamdi, Mohammad, Sun, Yuanwei, Wagner, Kai, He, Wenqing, Zhang, Yu, Ma, Ji, Gao, Peng, Han, Xiufeng, Yu, Dapeng, Nature Communications, 12(1), ARTN 7258. https://doi.org/10.1038/s41467-021-27405-2
, Ansermet, Jean-Philippe, Maekawa, Sadamichi, Grundler, Dirk, Nan, Ce-Wen, & Yu, Haiming. (2021). Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures.
Batzer, Marietta, Shields, Brendan, Neu, Elke, Widmann, Claudia, Giese, Christian, Nebel, Christoph, & Optical Materials Express, 10(2), 492–500. https://doi.org/10.1364/ome.380362
. (2020). Single crystal diamond pyramids for applications in nanoscale quantum sensing.
Batzer, Marietta, Shields, Brendan, Neu, Elke, Widmann, Claudia, Giese, Christian, Nebel, Christoph, & Optical Materials Express, 10(2), 492–500. https://doi.org/10.1364/ome.380362
. (2020). Single crystal diamond pyramids for applications in nanoscale quantum sensing.
Broadway, D. A., Lillie, S. E., Scholten, S. C., Rohner, D., Dontschuk, N., Physical Review Applied, 14(2), 24076. https://doi.org/10.1103/physrevapplied.14.024076
, Tetienne, J. -P., & Hollenberg, L. C. L. (2020). Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements.
Broadway, D. A., Lillie, S. E., Scholten, S. C., Rohner, D., Dontschuk, N., Physical Review Applied, 14(2), 24076. https://doi.org/10.1103/physrevapplied.14.024076
, Tetienne, J. -P., & Hollenberg, L. C. L. (2020). Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements.
Hanlon, Liam, Gautam, Vini, Wood, James D. A., Reddy, Prithvi, Barson, Michael S. J., Niihori, Marika, Silalahi, Alexander R. J., Corry, Ben, Wrachtrup, Joerg, Sellars, Matthew J., Daria, Vincent R., Neurophotonics, 7(3), 35002. https://doi.org/10.1117/1.nph.7.3.035002
, Stuart, Gregory J., & Doherty, Marcus W. (2020). Diamond nanopillar arrays for quantum microscopy of neuronal signals.
Hanlon, Liam, Gautam, Vini, Wood, James D. A., Reddy, Prithvi, Barson, Michael S. J., Niihori, Marika, Silalahi, Alexander R. J., Corry, Ben, Wrachtrup, Joerg, Sellars, Matthew J., Daria, Vincent R., Neurophotonics, 7(3), 35002. https://doi.org/10.1117/1.nph.7.3.035002
, Stuart, Gregory J., & Doherty, Marcus W. (2020). Diamond nanopillar arrays for quantum microscopy of neuronal signals.
Hedrich, Natascha, Rohner, Dominik, Batzer, Marietta, Physical Review Applied, 14(6), 64007. https://doi.org/10.1103/physrevapplied.14.064007
, & Shields, Brendan J. (2020). Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging.
Hedrich, Natascha, Rohner, Dominik, Batzer, Marietta, Physical Review Applied, 14(6), 64007. https://doi.org/10.1103/physrevapplied.14.064007
, & Shields, Brendan J. (2020). Parabolic Diamond Scanning Probes for Single-Spin Magnetic Field Imaging.
Kasperczyk, M., Zuber, J. A., Barfuss, A., Koelbl, J., Yurgens, V., Flagan, S., Jakubczyk, T., Shields, B., Warburton, R. J., & Physical Review B, 102(7), 75312. https://doi.org/10.1103/physrevb.102.075312
(2020). Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures.
Kasperczyk, M., Zuber, J. A., Barfuss, A., Koelbl, J., Yurgens, V., Flagan, S., Jakubczyk, T., Shields, B., Warburton, R. J., & Physical Review B, 102(7), 75312. https://doi.org/10.1103/physrevb.102.075312
(2020). Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures.
Riedel, Daniel, Flagan, Sigurd, Physical Review Applied, 13(1), 14036. https://doi.org/10.1103/physrevapplied.13.014036
, & Warburton, Richard J. (2020). Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities.
Riedel, Daniel, Flagan, Sigurd, Physical Review Applied, 13(1), 14036. https://doi.org/10.1103/physrevapplied.13.014036
, & Warburton, Richard J. (2020). Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities.
Tanos, R., Akhtar, W., Monneret, S., de Oliveira, F. Favaro, Seniutinas, G., Munsch, M., AIP Advances, 10(2), 25027. https://doi.org/10.1063/1.5140030
, le Gratiet, L., Sagnes, I., Dreau, A., Gergely, C., Jacques, V., Baffou, G., & Robert-Philip, I. (2020). Optimal architecture for diamond-based wide-field thermal imaging.
Tanos, R., Akhtar, W., Monneret, S., de Oliveira, F. Favaro, Seniutinas, G., Munsch, M., AIP Advances, 10(2), 25027. https://doi.org/10.1063/1.5140030
, le Gratiet, L., Sagnes, I., Dreau, A., Gergely, C., Jacques, V., Baffou, G., & Robert-Philip, I. (2020). Optimal architecture for diamond-based wide-field thermal imaging.
Waasem, Niklas, Fedder, Helmut, & Photonics Spectra, 54, 48–52.
. (2020). New Tools Promise the Next Big Thing for Quantum Sensing.
Waasem, Niklas, Fedder, Helmut, & Photonics Spectra, 54, 48–52.
. (2020). New Tools Promise the Next Big Thing for Quantum Sensing.
Acosta, Victor M., Bouchard, Louis S., Budker, Dmitry, Folman, Ron, Lenz, Till, Journal of Superconductivity and Novel Magnetism, 32(1), 85–95. https://doi.org/10.1007/s10948-018-4877-3
, Rohner, Dominik, Schlussel, Yechezkel, & Thiel, Lucas. (2019). Color Centers in Diamond as Novel Probes of Superconductivity.
Acosta, Victor M., Bouchard, Louis S., Budker, Dmitry, Folman, Ron, Lenz, Till, Journal of Superconductivity and Novel Magnetism, 32(1), 85–95. https://doi.org/10.1007/s10948-018-4877-3
, Rohner, Dominik, Schlussel, Yechezkel, & Thiel, Lucas. (2019). Color Centers in Diamond as Novel Probes of Superconductivity.
Akhtar, W., Hrabec, A., Chouaieb, S., Haykal, A., Gross, I., Belmeguenai, M., Gabor, M. S., Shields, B., Physical Review Applied, 11(3), 34066. https://doi.org/10.1103/physrevapplied.11.034066
, Thiaville, A., Rohart, S., & Jacques, V. (2019). Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy.
Akhtar, W., Hrabec, A., Chouaieb, S., Haykal, A., Gross, I., Belmeguenai, M., Gabor, M. S., Shields, B., Physical Review Applied, 11(3), 34066. https://doi.org/10.1103/physrevapplied.11.034066
, Thiaville, A., Rohart, S., & Jacques, V. (2019). Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy.
Appel, Patrick, Shields, Brendan J., Kosub, Tobias, Hedrich, Natascha, Huebner, Rene, Fassbender, Juergen, Makarov, Denys, & Nano Letters, 19(3), 1682–1687. https://doi.org/10.1021/acs.nanolett.8b04681
. (2019). Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets.
Appel, Patrick, Shields, Brendan J., Kosub, Tobias, Hedrich, Natascha, Huebner, Rene, Fassbender, Juergen, Makarov, Denys, & Nano Letters, 19(3), 1682–1687. https://doi.org/10.1021/acs.nanolett.8b04681
. (2019). Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets.
Barfuss, A., Kasperczyk, M., Kolbl, J., & Physical Revciew B, 99(17), 174102. https://doi.org/10.1103/physrevb.99.174102
(2019). Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems.
Barfuss, A., Kasperczyk, M., Kolbl, J., & Physical Revciew B, 99(17), 174102. https://doi.org/10.1103/physrevb.99.174102
(2019). Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems.
D`Amico, I., Angelakis, D. G., Bussieres, F., Caglayan, H., Couteau, C., Durt, T., Kolaric, B., Rivista Del Nuovo Cimento, 42(4), 153–195. https://doi.org/10.1393/ncr/i2019-10158-0
, Pfeiffer, W., Rabl, P., Xuereb, A., & Agio, M. (2019). Nanoscale quantum optics.
D`Amico, I., Angelakis, D. G., Bussieres, F., Caglayan, H., Couteau, C., Durt, T., Kolaric, B., Rivista Del Nuovo Cimento, 42(4), 153–195. https://doi.org/10.1393/ncr/i2019-10158-0
, Pfeiffer, W., Rabl, P., Xuereb, A., & Agio, M. (2019). Nanoscale quantum optics.
Flågan, Sigurd, Riedel, Daniel, Shields, Brendan J., Jakubczyk, Tomasz, A tunable Fabry-Pérot cavity for diamond-based photonics. null, 107–108.
, & Warburton, Richard J. (2019).
Flågan, Sigurd, Riedel, Daniel, Shields, Brendan J., Jakubczyk, Tomasz, A tunable Fabry-Pérot cavity for diamond-based photonics. null, 107–108.
, & Warburton, Richard J. (2019).
Hedrich, Natascha, Appel, Patrick, Shields, Brendan, Kosub, Tobias, Makarov, Denys, & Nanomagnetism of Cr<inf>2</inf>O<inf>3</inf>investigated using parabolic diamond pillars. null, 114–115.
. (2019).
Hedrich, Natascha, Appel, Patrick, Shields, Brendan, Kosub, Tobias, Makarov, Denys, & Nanomagnetism of Cr<inf>2</inf>O<inf>3</inf>investigated using parabolic diamond pillars. null, 114–115.
. (2019).
Kasperczyk, Mark, Kolbl, Johannes, Barfuss, Arne, & Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin. null. https://doi.org/10.23919/cleo.2019.8749498
. (2019).
Kasperczyk, Mark, Kolbl, Johannes, Barfuss, Arne, & Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin. null. https://doi.org/10.23919/cleo.2019.8749498
. (2019).
Kasperczyk, Mark, Kölbl, Johannes, Barfuss, Arne, & Toward novel coherence protection and sensing techniques: Closed counter interaction using a single spin. Part F127-CLEO_AT 2019. https://doi.org/10.1364/cleo_at.2019.jw3a.1
. (2019).
Kasperczyk, Mark, Kölbl, Johannes, Barfuss, Arne, & Toward novel coherence protection and sensing techniques: Closed counter interaction using a single spin. Part F127-CLEO_AT 2019. https://doi.org/10.1364/cleo_at.2019.jw3a.1
. (2019).
Koelbl, J., Kasperczyk, M., Buergler, B., Barfuss, A., & New Journal of Physics, 21(11), 113039. https://doi.org/10.1088/1367-2630/ab54a8
(2019). Determination of intrinsic effective fields and microwave polarizations by high-resolution spectroscopy of single nitrogen-vacancy center spins.
Koelbl, J., Kasperczyk, M., Buergler, B., Barfuss, A., & New Journal of Physics, 21(11), 113039. https://doi.org/10.1088/1367-2630/ab54a8
(2019). Determination of intrinsic effective fields and microwave polarizations by high-resolution spectroscopy of single nitrogen-vacancy center spins.
Kolbl, J., Barfuss, A., Kasperczyk, M. S., Thiel, L., Clerk, A. A., Ribeiro, H., & Physical Review Letters, 122(9), 90502. https://doi.org/10.1103/physrevlett.122.090502
(2019). Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity.
Kolbl, J., Barfuss, A., Kasperczyk, M. S., Thiel, L., Clerk, A. A., Ribeiro, H., & Physical Review Letters, 122(9), 90502. https://doi.org/10.1103/physrevlett.122.090502
(2019). Initialization of Single Spin Dressed States using Shortcuts to Adiabaticity.
Waveguides, cavities and optical antennas for diamond quantum sensing. null, 87.
. (2019).
Waveguides, cavities and optical antennas for diamond quantum sensing. null, 87.
. (2019).
Rohner, D., Happacher, J., Reiser, P., Tschudin, M. A., Tallaire, A., Achard, J., Shields, B., & Applied Physics Letters, 115(19), 192401. https://doi.org/10.1063/1.5127101
(2019). (111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields.
Rohner, D., Happacher, J., Reiser, P., Tschudin, M. A., Tallaire, A., Achard, J., Shields, B., & Applied Physics Letters, 115(19), 192401. https://doi.org/10.1063/1.5127101
(2019). (111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields.
Rohner, D., Thiel, L., Wang, Z., Tschudin, M.A., Morpurgo, A.F., & Nanoscale Magnetometry with Single Spins in Diamond at Low Temperature. null, 63–64.
(2019).
Rohner, D., Thiel, L., Wang, Z., Tschudin, M.A., Morpurgo, A.F., & Nanoscale Magnetometry with Single Spins in Diamond at Low Temperature. null, 63–64.
(2019).
Thiel, L., Wang, Z., Tschudin, M. A., Rohner, D., Gutierrez-Lezama, I., Ubrig, N., Gibertini, M., Giannini, E., Morpurgo, A. F., & Science, 364(6444), 973–976. https://doi.org/10.1126/science.aav6926
(2019). Probing magnetism in 2D materials at the nanoscale with single-spin microscopy.
Thiel, L., Wang, Z., Tschudin, M. A., Rohner, D., Gutierrez-Lezama, I., Ubrig, N., Gibertini, M., Giannini, E., Morpurgo, A. F., & Science, 364(6444), 973–976. https://doi.org/10.1126/science.aav6926
(2019). Probing magnetism in 2D materials at the nanoscale with single-spin microscopy.
Barfuss, Arne, Kölbl, Johannes, Thiel, Lucas, Teissier, Jean, Kasperczyk, Mark, & Nature physics, 14(11), 1087–1091. https://doi.org/10.1038/s41567-018-0231-8
. (2018). Phase-controlled coherent dynamics of a single spin under closed-contour interaction.
Barfuss, Arne, Kölbl, Johannes, Thiel, Lucas, Teissier, Jean, Kasperczyk, Mark, & Nature physics, 14(11), 1087–1091. https://doi.org/10.1038/s41567-018-0231-8
. (2018). Phase-controlled coherent dynamics of a single spin under closed-contour interaction.
Challier, Michel, Sonusen, Selda, Barfuss, Arne, Rohner, Dominik, Riedel, Daniel, Koelbl, Johannes, Ganzhorn, Marc, Appel, Patrick, Micromachines, 9(4). https://doi.org/10.3390/mi9040148
, & Neu, Elke. (2018). Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies.
Challier, Michel, Sonusen, Selda, Barfuss, Arne, Rohner, Dominik, Riedel, Daniel, Koelbl, Johannes, Ganzhorn, Marc, Appel, Patrick, Micromachines, 9(4). https://doi.org/10.3390/mi9040148
, & Neu, Elke. (2018). Advanced Fabrication of Single-Crystal Diamond Membranes for Quantum Technologies.
Gross, I., Akhtar, W., Hrabec, A., Sampaio, J., Martinez, L. J., Chouaieb, S., Shields, B. J., Physical Review Materials, 2(2), 24406. https://doi.org/10.1103/physrevmaterials.2.024406
, Thiaville, A., Rohart, S., & Jacques, V. (2018). Skyrmion morphology in ultrathin magnetic films.
Gross, I., Akhtar, W., Hrabec, A., Sampaio, J., Martinez, L. J., Chouaieb, S., Shields, B. J., Physical Review Materials, 2(2), 24406. https://doi.org/10.1103/physrevmaterials.2.024406
, Thiaville, A., Rohart, S., & Jacques, V. (2018). Skyrmion morphology in ultrathin magnetic films.
Horsley, Andrew, Appel, Patrick, Wolters, Janik, Achard, Jocelyn, Tallaire, Alexandre, Physical Review Applied, 10(4). https://doi.org/10.1103/physrevapplied.10.044039
, & Treutlein, Philipp. (2018). Microwave Device Characterization Using a Widefield Diamond Microscope.
Horsley, Andrew, Appel, Patrick, Wolters, Janik, Achard, Jocelyn, Tallaire, Alexandre, Physical Review Applied, 10(4). https://doi.org/10.1103/physrevapplied.10.044039
, & Treutlein, Philipp. (2018). Microwave Device Characterization Using a Widefield Diamond Microscope.
Nanoscale Magnetometry Using Single Spin Quantum Sensors. https://doi.org/10.1109/cpem.2018.8500790
. (2018, January 1).
Nanoscale Magnetometry Using Single Spin Quantum Sensors. https://doi.org/10.1109/cpem.2018.8500790
. (2018, January 1).
Norambuena, A., Munoz, E., Dinani, H. T., Jarmola, A., Physical Review B, 97(9). https://doi.org/10.1103/physrevb.97.094304
, Budker, Dmitry, & Maze, J. R. (2018). Spin-lattice relaxation of individual solid-state spins.
Norambuena, A., Munoz, E., Dinani, H. T., Jarmola, A., Physical Review B, 97(9). https://doi.org/10.1103/physrevb.97.094304
, Budker, Dmitry, & Maze, J. R. (2018). Spin-lattice relaxation of individual solid-state spins.
Rohner, Dominik, Thiel, Lucas, Müller, Benedikt, Kasperczyk, Mark, Kleiner, Reinhold, Koelle, Dieter, & Sensors, 18(11). https://doi.org/10.3390/s18113790
. (2018). Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry.
Rohner, Dominik, Thiel, Lucas, Müller, Benedikt, Kasperczyk, Mark, Kleiner, Reinhold, Koelle, Dieter, & Sensors, 18(11). https://doi.org/10.3390/s18113790
. (2018). Real-Space Probing of the Local Magnetic Response of Thin-Film Superconductors Using Single Spin Magnetometry.
Schlussel, Yechezkel, Lenz, Till, Rohner, Dominik, Bar-Haim, Yaniv, Bougas, Lykourgos, Groswasser, David, Kieschnick, Michael, Rozenberg, Evgeny, Thiel, Lucas, Waxman, Amir, Meijer, Jan, Physical Review Applied, 10(3). https://doi.org/10.1103/physrevapplied.10.034032
, Budker, Dmitry, & Folman, Ron. (2018). Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond.
Schlussel, Yechezkel, Lenz, Till, Rohner, Dominik, Bar-Haim, Yaniv, Bougas, Lykourgos, Groswasser, David, Kieschnick, Michael, Rozenberg, Evgeny, Thiel, Lucas, Waxman, Amir, Meijer, Jan, Physical Review Applied, 10(3). https://doi.org/10.1103/physrevapplied.10.034032
, Budker, Dmitry, & Folman, Ron. (2018). Wide-Field Imaging of Superconductor Vortices with Electron Spins in Diamond.
Gross, Isabell, Akhtar, W., Garcia, V., Martínez, L. J., Chouaieb, Saddem, Garcia, K., Carrétéro, C., Barthélémy, A., Appel, P., & Nature, 549(7671), 252–256. https://doi.org/10.1038/nature23656
(2017). Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer.
Gross, Isabell, Akhtar, W., Garcia, V., Martínez, L. J., Chouaieb, Saddem, Garcia, K., Carrétéro, C., Barthélémy, A., Appel, P., & Nature, 549(7671), 252–256. https://doi.org/10.1038/nature23656
(2017). Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer.
Horsley, Andrew, Wolters, Janik, Appel, Patrick, Wood, James, Achard, Jocelyn, Tallaire, Alexandre, Widefield microwave imaging using NV centres. https://doi.org/10.1109/cleoe-eqec.2017.8087309
, & Treutlein, Philipp. (2017, January 1).
Horsley, Andrew, Wolters, Janik, Appel, Patrick, Wood, James, Achard, Jocelyn, Tallaire, Alexandre, Widefield microwave imaging using NV centres. https://doi.org/10.1109/cleoe-eqec.2017.8087309
, & Treutlein, Philipp. (2017, January 1).
Horsley, Andrew, Wolters, Janik, Appe, Patrick, Wood, James, Achard, Jocelyn, Tallaire, Alexandre, Widefield microwave imaging using NV centres. Part F81-EQEC 2017.
, & Treutlein, Philipp. (2017).
Horsley, Andrew, Wolters, Janik, Appe, Patrick, Wood, James, Achard, Jocelyn, Tallaire, Alexandre, Widefield microwave imaging using NV centres. Part F81-EQEC 2017.
, & Treutlein, Philipp. (2017).
Kosub, Tobias, Kopte, Martin, Hühne, Ruben, Appel, Patrick, Shields, Brendan, Nature Communications, 8, 13985. https://doi.org/10.1038/ncomms13985
, Hübner, René, Liedke, Maciej Oskar, Fassbender, Jürgen, & Schmidt, Oliver G. (2017). Purely antiferromagnetic magnetoelectric random access memory.
Kosub, Tobias, Kopte, Martin, Hühne, Ruben, Appel, Patrick, Shields, Brendan, Nature Communications, 8, 13985. https://doi.org/10.1038/ncomms13985
, Hübner, René, Liedke, Maciej Oskar, Fassbender, Jürgen, & Schmidt, Oliver G. (2017). Purely antiferromagnetic magnetoelectric random access memory.
Riedel, Daniel, Sollner, Immo, Shields, Brendan J., Starosielec, Sebastian, Appel, Patrick, Neu, Elke, Physical review X, 7(3), 31040. https://doi.org/10.1103/physrevx.7.031040
, & Warburton, Richard J. (2017). Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond.
Riedel, Daniel, Sollner, Immo, Shields, Brendan J., Starosielec, Sebastian, Appel, Patrick, Neu, Elke, Physical review X, 7(3), 31040. https://doi.org/10.1103/physrevx.7.031040
, & Warburton, Richard J. (2017). Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond.
Teissier, Jean, Barfuss, Arne, & Journal of Optics, 19(4), 44003. https://doi.org/10.1088/2040-8986/aa5f62
. (2017). Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin.
Teissier, Jean, Barfuss, Arne, & Journal of Optics, 19(4), 44003. https://doi.org/10.1088/2040-8986/aa5f62
. (2017). Hybrid continuous dynamical decoupling: a photon-phonon doubly dressed spin.
Appel, Patrick, Neu, Elke, Ganzhorn, Marc, Barfuss, Arne, Batzer, Marietta, Gratz, Micha, Tschoepe, Andreas, & Review of Scientific Instruments, 87(6), 63703. https://doi.org/10.1063/1.4952953
. (2016). Fabrication of all diamond scanning probes for nanoscale magnetometry.
Appel, Patrick, Neu, Elke, Ganzhorn, Marc, Barfuss, Arne, Batzer, Marietta, Gratz, Micha, Tschoepe, Andreas, & Review of Scientific Instruments, 87(6), 63703. https://doi.org/10.1063/1.4952953
. (2016). Fabrication of all diamond scanning probes for nanoscale magnetometry.
Arend, Carsten, Appel, Patrick, Becker, Jonas Nils, Schmidt, Marcel, Fischer, Martin, Gsell, Stefan, Schreck, Matthias, Becher, Christoph, Applied Physics Letters, 108(6), 63111. https://doi.org/10.1063/1.4941804
, & Neu, Elke. (2016). Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers.
Arend, Carsten, Appel, Patrick, Becker, Jonas Nils, Schmidt, Marcel, Fischer, Martin, Gsell, Stefan, Schreck, Matthias, Becher, Christoph, Applied Physics Letters, 108(6), 63111. https://doi.org/10.1063/1.4941804
, & Neu, Elke. (2016). Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers.
Thiel, L., Rohner, D., Ganzhorn, M., Appel, P., Neu, E., Müller, B., Kleiner, R., Koelle, D., & Nature Nanotechnology, 11(8), 677–681. https://doi.org/10.1038/nnano.2016.63
(2016). Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.
Thiel, L., Rohner, D., Ganzhorn, M., Appel, P., Neu, E., Müller, B., Kleiner, R., Koelle, D., & Nature Nanotechnology, 11(8), 677–681. https://doi.org/10.1038/nnano.2016.63
(2016). Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.
Appel, Patrick, Ganzhorn, Marc, Neu, Elke, & New Journal of Physics, 17, 112001. https://doi.org/10.1088/1367-2630/17/11/112001
. (2015). Nanoscale microwave imaging with a single electron spin in diamond.
Appel, Patrick, Ganzhorn, Marc, Neu, Elke, & New Journal of Physics, 17, 112001. https://doi.org/10.1088/1367-2630/17/11/112001
. (2015). Nanoscale microwave imaging with a single electron spin in diamond.
Barfuss, Arne, Teissier, Jean, Neu, Elke, Nunnenkamp, Andreas, & Nature Physics, 11(10), 820–U185. https://doi.org/10.1038/nphys3411
. (2015). Strong mechanical driving of a single electron spin.
Barfuss, Arne, Teissier, Jean, Neu, Elke, Nunnenkamp, Andreas, & Nature Physics, 11(10), 820–U185. https://doi.org/10.1038/nphys3411
. (2015). Strong mechanical driving of a single electron spin.
Jorio, Ado, Kasperczyk, Mark, Clark, Nick, Neu, Elke, physica status solidi (b), 252(11), 2380–2384. https://doi.org/10.1002/pssb.201552224
, Vijayaraghavan, Aravind, & Novotny, Lukas. (2015). Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond.
Jorio, Ado, Kasperczyk, Mark, Clark, Nick, Neu, Elke, physica status solidi (b), 252(11), 2380–2384. https://doi.org/10.1002/pssb.201552224
, Vijayaraghavan, Aravind, & Novotny, Lukas. (2015). Stokes and anti-Stokes Raman spectra of the high-energy C-C stretching modes in graphene and diamond.
Kasperczyk, Mark, Jorio, Ado, Neu, Elke, Optics Letters, 40(10), 2393–2396. https://doi.org/10.1364/ol.40.002393
, & Novotny, Lukas. (2015). Stokes-anti-Stokes correlations in diamond.
Kasperczyk, Mark, Jorio, Ado, Neu, Elke, Optics Letters, 40(10), 2393–2396. https://doi.org/10.1364/ol.40.002393
, & Novotny, Lukas. (2015). Stokes-anti-Stokes correlations in diamond.
Luan, Lan, Grinolds, Michael S., Hong, Sungkun, Scientific Reports, 5(8119), 8119. https://doi.org/10.1038/srep08119
, Walsworth, Ronald L., & Yacoby, Amir. (2015). Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond.
Luan, Lan, Grinolds, Michael S., Hong, Sungkun, Scientific Reports, 5(8119), 8119. https://doi.org/10.1038/srep08119
, Walsworth, Ronald L., & Yacoby, Amir. (2015). Decoherence imaging of spin ensembles using a scanning single-electron spin in diamond.
Trifunovic, Luka, Pedrocchi, Fabio L., Hoffman, Silas, Nature Nanotechnology, 10(6), 541–546. https://doi.org/10.1038/nnano.2015.74
, Yacoby, Amir, & Loss, Daniel. (2015). High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature.
Trifunovic, Luka, Pedrocchi, Fabio L., Hoffman, Silas, Nature Nanotechnology, 10(6), 541–546. https://doi.org/10.1038/nnano.2015.74
, Yacoby, Amir, & Loss, Daniel. (2015). High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature.
Chu, Y., de Leon, N. P., Shields, B. J., Hausmann, B., Evans, R., Togan, E., Burek, M. J., Markham, M., Stacey, A., Zibrov, A. S., Yacoby, A., Twitchen, D. J., Loncar, M., Park, H., Nano Letters, 14(4), 1982–1986. https://doi.org/10.1021/nl404836p
, & Lukin, M. D. (2014). Coherent optical transitions in implanted nitrogen vacancy centers.
Chu, Y., de Leon, N. P., Shields, B. J., Hausmann, B., Evans, R., Togan, E., Burek, M. J., Markham, M., Stacey, A., Zibrov, A. S., Yacoby, A., Twitchen, D. J., Loncar, M., Park, H., Nano Letters, 14(4), 1982–1986. https://doi.org/10.1021/nl404836p
, & Lukin, M. D. (2014). Coherent optical transitions in implanted nitrogen vacancy centers.
Grinolds, M S, Warner, M, De Greve, K, Dovzhenko, Y, Thiel, L, Walsworth, R L, Hong, S, Nature nanotechnology, 9(4), 279–284. https://doi.org/10.1038/nnano.2014.30
, & Yacoby, A. (2014). Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins.
Grinolds, M S, Warner, M, De Greve, K, Dovzhenko, Y, Thiel, L, Walsworth, R L, Hong, S, Nature nanotechnology, 9(4), 279–284. https://doi.org/10.1038/nnano.2014.30
, & Yacoby, A. (2014). Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins.
Jorio, Ado, Kasperczyk, Mark, Clark, Nick, Neu, Elke, Nano Letters, 14(10), 5687–5692. https://doi.org/10.1021/nl502412g
, Vijayaraghavan, Aravind, & Novotny, Lukas. (2014). Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene.
Jorio, Ado, Kasperczyk, Mark, Clark, Nick, Neu, Elke, Nano Letters, 14(10), 5687–5692. https://doi.org/10.1021/nl502412g
, Vijayaraghavan, Aravind, & Novotny, Lukas. (2014). Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene.
Neu, Elke, Appel, Patrick, Ganzhorn, Marc, Miguel-Sanchez, Javier, Lesik, Margarita, Mille, Vianney, Jacques, Vincent, Tallaire, Alexandre, Achard, Jocelyn, & Applied Physics Letters, 104(15), 153108. https://doi.org/10.1063/1.4871580
. (2014). Photonic nano-structures on (111)-oriented diamond.
Neu, Elke, Appel, Patrick, Ganzhorn, Marc, Miguel-Sanchez, Javier, Lesik, Margarita, Mille, Vianney, Jacques, Vincent, Tallaire, Alexandre, Achard, Jocelyn, & Applied Physics Letters, 104(15), 153108. https://doi.org/10.1063/1.4871580
. (2014). Photonic nano-structures on (111)-oriented diamond.
Riedel, Daniel, Rohner, Dominik, Ganzhorn, Marc, Kaldewey, Timo, Appel, Patrick, Neu, Elke, Warburton, Richard J., & Physical review applied, 2(6). https://doi.org/10.1103/physrevapplied.2.064011
(2014). Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond.
Riedel, Daniel, Rohner, Dominik, Ganzhorn, Marc, Kaldewey, Timo, Appel, Patrick, Neu, Elke, Warburton, Richard J., & Physical review applied, 2(6). https://doi.org/10.1103/physrevapplied.2.064011
(2014). Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond.
Rondin, L, Tetienne, J-P, Hingant, T, Roch, J-F, Reports on progress in physics, 77(5), 56503. https://doi.org/10.1088/0034-4885/77/5/056503
, & Jacques, V. (2014). Magnetometry with nitrogen-vacancy defects in diamond.
Rondin, L, Tetienne, J-P, Hingant, T, Roch, J-F, Reports on progress in physics, 77(5), 56503. https://doi.org/10.1088/0034-4885/77/5/056503
, & Jacques, V. (2014). Magnetometry with nitrogen-vacancy defects in diamond.
Teissier, J, Barfuss, A, Appel, P, Neu, E, & Physical review letters, 113(2), 20503. https://doi.org/10.1103/physrevlett.113.020503
. (2014). Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator.
Teissier, J, Barfuss, A, Appel, P, Neu, E, & Physical review letters, 113(2), 20503. https://doi.org/10.1103/physrevlett.113.020503
. (2014). Strain cupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator.
Quantum information processing with diamond (pp. 240–263). Elsevier. https://doi.org/10.1533/9780857096685.2.240
, & Jacques, V. (2014). Diamond magnetic sensors. In
Quantum information processing with diamond (pp. 240–263). Elsevier. https://doi.org/10.1533/9780857096685.2.240
, & Jacques, V. (2014). Diamond magnetic sensors. In
Grinolds, M. S., Hong, S., Nature physics, 9(4), 215–219. https://doi.org/10.1038/nphys2543
, Luan, L., Lukin, M. D., Walsworth, R. L., & Yacoby, A. (2013). Nanoscale magnetic imaging of a single electron spin under ambient conditions.
Grinolds, M. S., Hong, S., Nature physics, 9(4), 215–219. https://doi.org/10.1038/nphys2543
, Luan, L., Lukin, M. D., Walsworth, R. L., & Yacoby, A. (2013). Nanoscale magnetic imaging of a single electron spin under ambient conditions.
Urbaszek, Bernhard, Marie, Xavier, Amand, Thierry, Krebs, Olivier, Voisin, Paul, Reviews of Modern Physics, 85(1), 79–133. https://doi.org/10.1103/revmodphys.85.79
, H`ogele, Alexander, & Imamoglu, Atac. (2013). Nuclear spin physics in quantum dots : an optical investigation.
Urbaszek, Bernhard, Marie, Xavier, Amand, Thierry, Krebs, Olivier, Voisin, Paul, Reviews of Modern Physics, 85(1), 79–133. https://doi.org/10.1103/revmodphys.85.79
, H`ogele, Alexander, & Imamoglu, Atac. (2013). Nuclear spin physics in quantum dots : an optical investigation.
Hausmann, Birgit J M, Shields, Brendan, Quan, Qimin, Nano Letters, 12(3), 1578–1582. https://doi.org/10.1021/nl204449n
, McCutcheon, Murray, Choy, Jennifer T, Babinec, Tom M, Kubanek, Alexander, Yacoby, Amir, Lukin, Mikhail D, & Loncar, Marko. (2012). Integrated diamond networks for quantum nanophotonics.
Hausmann, Birgit J M, Shields, Brendan, Quan, Qimin, Nano Letters, 12(3), 1578–1582. https://doi.org/10.1021/nl204449n
, McCutcheon, Murray, Choy, Jennifer T, Babinec, Tom M, Kubanek, Alexander, Yacoby, Amir, Lukin, Mikhail D, & Loncar, Marko. (2012). Integrated diamond networks for quantum nanophotonics.
Hong, Sungkun, Grinolds, Michael S., Nano Letters, 12(8), 3920–3924. https://doi.org/10.1021/nl300775c
, Walsworth, Ronald L., Lukin, Mikhail D., & Yacoby, Amir. (2012). Coherent, Mechanical Control of a Single Electronic Spin.
Hong, Sungkun, Grinolds, Michael S., Nano Letters, 12(8), 3920–3924. https://doi.org/10.1021/nl300775c
, Walsworth, Ronald L., Lukin, Mikhail D., & Yacoby, Amir. (2012). Coherent, Mechanical Control of a Single Electronic Spin.
Nature Nanotechnology, 7(5), 320–324. https://doi.org/10.1038/nnano.2012.50
, Hong, Sungkun, Grinolds, Mike, Hausmann, Birgit, Lukin, Micha, Walsworth, Ronald, Loncar, Marco, & Yacoby, Amir. (2012). A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres.
Nature Nanotechnology, 7(5), 320–324. https://doi.org/10.1038/nnano.2012.50
, Hong, Sungkun, Grinolds, Mike, Hausmann, Birgit, Lukin, Micha, Walsworth, Ronald, Loncar, Marco, & Yacoby, Amir. (2012). A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres.
Choy, J. T., Hausmann, B. J. M., Babinec, T. M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., & Loňar, M. (2011). Enhanced single-photon emission from a diamond-Silver aperture. Nature Photonics, 5(12), 738–743. https://doi.org/10.1038/nphoton.2011.249
Choy, J. T., Hausmann, B. J. M., Babinec, T. M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., & Loňar, M. (2011). Enhanced single-photon emission from a diamond-Silver aperture. Nature Photonics, 5(12), 738–743. https://doi.org/10.1038/nphoton.2011.249
Leanhardt, A.E., Bohn, J.L., Loh, H., Journal of Molecular Spectroscopy, 270(1), 1–25. https://doi.org/10.1016/j.jms.2011.06.007
, Meyer, E.R., Sinclair, L.C., Stutz, R.P., & Cornell, E.A. (2011). High-resolution spectroscopy on trapped molecular ions in rotating electric fields: A new approach for measuring the electron electric dipole moment.
Leanhardt, A.E., Bohn, J.L., Loh, H., Journal of Molecular Spectroscopy, 270(1), 1–25. https://doi.org/10.1016/j.jms.2011.06.007
, Meyer, E.R., Sinclair, L.C., Stutz, R.P., & Cornell, E.A. (2011). High-resolution spectroscopy on trapped molecular ions in rotating electric fields: A new approach for measuring the electron electric dipole moment.
Grinolds, M.S., Nature Physics, 7(9), 687–692. https://doi.org/10.1038/nphys1999
, Hong, S., Lukin, M.D., Walsworth, R.L., & Yacoby, A. (2011). Quantum control of proximal spins using nanoscale magnetic resonance imaging.
Grinolds, M.S., Nature Physics, 7(9), 687–692. https://doi.org/10.1038/nphys1999
, Hong, S., Lukin, M.D., Walsworth, R.L., & Yacoby, A. (2011). Quantum control of proximal spins using nanoscale magnetic resonance imaging.
Krebs, O., Physical Review Letters, 104(5). https://doi.org/10.1103/PhysRevLett.104.056603
, Amand, T., Urbaszek, B., Lemaître, A., Voisin, P., Marie, X., & Imamoglu, A. (2010). Anomalous hanle effect due to optically created transverse overhauser field in single InAs/GaAs quantum dots.
Krebs, O., Physical Review Letters, 104(5). https://doi.org/10.1103/PhysRevLett.104.056603
, Amand, T., Urbaszek, B., Lemaître, A., Voisin, P., Marie, X., & Imamoglu, A. (2010). Anomalous hanle effect due to optically created transverse overhauser field in single InAs/GaAs quantum dots.
Latta, C., Högele, A., Zhao, Y., Vamivakas, A.N., Nature Physics, 5(10), 758–763. https://doi.org/10.1038/nphys1363
, Kroner, M., Dreiser, J., Carusotto, I., Badolato, A., Schuh, D., Wegscheider, W., Atature, M., & Imamoglu, A. (2009). Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization.
Latta, C., Högele, A., Zhao, Y., Vamivakas, A.N., Nature Physics, 5(10), 758–763. https://doi.org/10.1038/nphys1363
, Kroner, M., Dreiser, J., Carusotto, I., Badolato, A., Schuh, D., Wegscheider, W., Atature, M., & Imamoglu, A. (2009). Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization.
Nature Physics, 5(6), 407–411. https://doi.org/10.1038/nphys1273
, Kroner, M., & Imamoglu, A. (2009). Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments.
Nature Physics, 5(6), 407–411. https://doi.org/10.1038/nphys1273
, Kroner, M., & Imamoglu, A. (2009). Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments.
Maletinsky, P., & Imamoglu, A. (2009). Quantum Dot Nuclear Spin Polarization (pp. 145–184). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-87446-1_5
Maletinsky, P., & Imamoglu, A. (2009). Quantum Dot Nuclear Spin Polarization (pp. 145–184). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-87446-1_5
Physical Review Letters, 99(5). https://doi.org/10.1103/PhysRevLett.99.056804
, Badolato, A., & Imamoglu, A. (2007). Dynamics of quantum dot nuclear spin polarization controlled by a single electron.
Physical Review Letters, 99(5). https://doi.org/10.1103/PhysRevLett.99.056804
, Badolato, A., & Imamoglu, A. (2007). Dynamics of quantum dot nuclear spin polarization controlled by a single electron.
Physical Review B - Condensed Matter and Materials Physics, 75(3). https://doi.org/10.1103/PhysRevB.75.035409
, Lai, C.W., Badolato, A., & Imamoglu, A. (2007). Nonlinear dynamics of quantum dot nuclear spins.
Physical Review B - Condensed Matter and Materials Physics, 75(3). https://doi.org/10.1103/PhysRevB.75.035409
, Lai, C.W., Badolato, A., & Imamoglu, A. (2007). Nonlinear dynamics of quantum dot nuclear spins.
Lai, C.W., Dynamic nuclear polarization in the absence of external magnetic fields. https://doi.org/10.1109/CLEO.2006.4629026
, Badolato, A., & Imamoglu, A. (2006, December 1).
Lai, C.W., Dynamic nuclear polarization in the absence of external magnetic fields. https://doi.org/10.1109/CLEO.2006.4629026
, Badolato, A., & Imamoglu, A. (2006, December 1).
Lai, C.W., Physical Review Letters, 96(16). https://doi.org/10.1103/PhysRevLett.96.167403
, Badolato, A., & Imamoglu, A. (2006). Knight-field-enabled nuclear spin polarization in aingle quantum dots.
Lai, C.W., Physical Review Letters, 96(16). https://doi.org/10.1103/PhysRevLett.96.167403
, Badolato, A., & Imamoglu, A. (2006). Knight-field-enabled nuclear spin polarization in aingle quantum dots.
Krainer, L., Maletinsky, P. M., Moser, M., Paschotta, R., & Keller, U. (2002, January 1). Mode-locked Nd:YVO/sub 4/ laser with 157 GHz repetition rate. Lasers and Electro-Optics. CLEO ’02. Technical Diges. https://doi.org/10.1109/cleo.2002.1034064
Krainer, L., Maletinsky, P. M., Moser, M., Paschotta, R., & Keller, U. (2002, January 1). Mode-locked Nd:YVO/sub 4/ laser with 157 GHz repetition rate. Lasers and Electro-Optics. CLEO ’02. Technical Diges. https://doi.org/10.1109/cleo.2002.1034064