Publications
84 found
Show per page
Romkes, Jacqueline, Bracht-Schweizer, Katrin, Widmer, Michèle, Clinical Biomechanics, 122. https://doi.org/10.1016/j.clinbiomech.2024.106402
, & Viehweger, Elke. (2025). Upper body gait deviations in children with Duchenne muscular dystrophy.
Romkes, Jacqueline, Bracht-Schweizer, Katrin, Widmer, Michèle, Clinical Biomechanics, 122. https://doi.org/10.1016/j.clinbiomech.2024.106402
, & Viehweger, Elke. (2025). Upper body gait deviations in children with Duchenne muscular dystrophy.
Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Martin Keller, Ramon Gysin, Cornelia Neuhaus, Bastian Widmer, Developmental Neurorehabilitation, 7(27), 235–242. https://doi.org/10.1080/17518423.2024.2398151
, & Elke Viehweger. (2024). Group-based progressive functional, high-intensity training in adolescents and young adults with unilateral cerebral palsy – a tool to improve gross motor function, endurance and gait? – a pilot study.
Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Martin Keller, Ramon Gysin, Cornelia Neuhaus, Bastian Widmer, Developmental Neurorehabilitation, 7(27), 235–242. https://doi.org/10.1080/17518423.2024.2398151
, & Elke Viehweger. (2024). Group-based progressive functional, high-intensity training in adolescents and young adults with unilateral cerebral palsy – a tool to improve gross motor function, endurance and gait? – a pilot study.
Widmer, Michèle, Staganello, Monica, Journal of Children’s Orthopaedics, 18(4), 441–449. https://doi.org/10.1177/18632521241244624
, Odorizzi, Marco, Brunner, Reinald, & Viehweger, Elke. (2024). Single procedure tibialis anterior tendon shortening in combination with Achilles tendon lengthening in unilateral cerebral palsy improves swing phase dorsiflexion in gait [Journal-article].
Widmer, Michèle, Staganello, Monica, Journal of Children’s Orthopaedics, 18(4), 441–449. https://doi.org/10.1177/18632521241244624
, Odorizzi, Marco, Brunner, Reinald, & Viehweger, Elke. (2024). Single procedure tibialis anterior tendon shortening in combination with Achilles tendon lengthening in unilateral cerebral palsy improves swing phase dorsiflexion in gait [Journal-article].
Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-3900116/v1
, Viehweger, Elke, Romkes, Jacqueline, & Bracht-Schweizer, Katrin. (2024). On the clinical interpretation of overground gait stability indices in children with cerebral palsy [Posted-content].
Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-3900116/v1
, Viehweger, Elke, Romkes, Jacqueline, & Bracht-Schweizer, Katrin. (2024). On the clinical interpretation of overground gait stability indices in children with cerebral palsy [Posted-content].
Armand, Stéphane, Sawacha, Zimi, Goudriaan, Marije, Horsak, Brian, van der Krogt, Marjolein, Huenaerts, Catherine, Daly, Colm, Kranzl, Andreas, Boehm, Harald, Petrarca, Maurizio, Guiotto, Anna, Merlo, Andrea, Spolaor, Fabiola, Campanini, Isabella, Cosma, Michela, Hallemans, Ann, Horemans, Herwin, Gasq, David, Moissenet, Florent, et al. (2024). Current practices in clinical gait analysis in Europe: A comprehensive survey-based study from the European society for movement analysis in adults and children (ESMAC) standard initiative. Gait and Posture, 111, 65–74. https://doi.org/10.1016/j.gaitpost.2024.04.014
Armand, Stéphane, Sawacha, Zimi, Goudriaan, Marije, Horsak, Brian, van der Krogt, Marjolein, Huenaerts, Catherine, Daly, Colm, Kranzl, Andreas, Boehm, Harald, Petrarca, Maurizio, Guiotto, Anna, Merlo, Andrea, Spolaor, Fabiola, Campanini, Isabella, Cosma, Michela, Hallemans, Ann, Horemans, Herwin, Gasq, David, Moissenet, Florent, et al. (2024). Current practices in clinical gait analysis in Europe: A comprehensive survey-based study from the European society for movement analysis in adults and children (ESMAC) standard initiative. Gait and Posture, 111, 65–74. https://doi.org/10.1016/j.gaitpost.2024.04.014
Louey, Melissa Gar Yee, Harvey, Adrienne, Passmore, Elyse, Grayden, David, & Clinical Biomechanics, 117. https://doi.org/10.1016/j.clinbiomech.2024.106295
. (2024). Kinematic upper limb analysis outperforms electromyography at grading the severity of dystonia in children with cerebral palsy.
Louey, Melissa Gar Yee, Harvey, Adrienne, Passmore, Elyse, Grayden, David, & Clinical Biomechanics, 117. https://doi.org/10.1016/j.clinbiomech.2024.106295
. (2024). Kinematic upper limb analysis outperforms electromyography at grading the severity of dystonia in children with cerebral palsy.
Scientific Reports, 14. https://doi.org/10.1038/s41598-024-76598-1
, Viehweger, Elke, Romkes, Jacqueline, & Bracht-Schweizer, Katrin. (2024). On the clinical interpretation of overground gait stability indices in children with cerebral palsy.
Scientific Reports, 14. https://doi.org/10.1038/s41598-024-76598-1
, Viehweger, Elke, Romkes, Jacqueline, & Bracht-Schweizer, Katrin. (2024). On the clinical interpretation of overground gait stability indices in children with cerebral palsy.
Widmer, Michèle, Minghetti, Alice, Romkes, Jacqueline, Gait & Posture, 106, S224. https://doi.org/10.1016/j.gaitpost.2023.07.267
, Neuhaus, Cornelia, Widmer, Bastian, & Viehweger, Elke. (2023). CrossFit® to improve gross motor function and gait in adolescents and young adults with unilateral cerebral palsy: a pilot study [Journal-article].
Widmer, Michèle, Minghetti, Alice, Romkes, Jacqueline, Gait & Posture, 106, S224. https://doi.org/10.1016/j.gaitpost.2023.07.267
, Neuhaus, Cornelia, Widmer, Bastian, & Viehweger, Elke. (2023). CrossFit® to improve gross motor function and gait in adolescents and young adults with unilateral cerebral palsy: a pilot study [Journal-article].
Boulay, C., Sangeux, M., Authier, G., Jacquemier, M., Merlo, A., Chabrol, B., Jouve, J.-L., Gracies, J.-M., & Pesenti, S. (2023). Improved Gait and Radiological Measurements After injection of Botulinum Toxin Into Peroneus Longus in Young Children With USCP and Equinovalgus Gait. Pediatric Neurology, 142, 1–9. https://doi.org/10.1016/j.pediatrneurol.2023.01.019
Boulay, C., Sangeux, M., Authier, G., Jacquemier, M., Merlo, A., Chabrol, B., Jouve, J.-L., Gracies, J.-M., & Pesenti, S. (2023). Improved Gait and Radiological Measurements After injection of Botulinum Toxin Into Peroneus Longus in Young Children With USCP and Equinovalgus Gait. Pediatric Neurology, 142, 1–9. https://doi.org/10.1016/j.pediatrneurol.2023.01.019
Leboeuf, F., & Gait and Posture, 100, 243–246. https://doi.org/10.1016/j.gaitpost.2022.12.013
(2023). Wand-mounted lateral markers are less prone to misplacement and soft-tissue artefacts than skin-mounted markers when using the conventional gait model.
Leboeuf, F., & Gait and Posture, 100, 243–246. https://doi.org/10.1016/j.gaitpost.2022.12.013
(2023). Wand-mounted lateral markers are less prone to misplacement and soft-tissue artefacts than skin-mounted markers when using the conventional gait model.
Leboeuf, F., Barre, A., Aminian, K., & Journal of Biomechanics, 159. https://doi.org/10.1016/j.jbiomech.2023.111774
(2023). On the accuracy of the Conventional gait Model: Distinction between marker misplacement and soft tissue artefact errors.
Leboeuf, F., Barre, A., Aminian, K., & Journal of Biomechanics, 159. https://doi.org/10.1016/j.jbiomech.2023.111774
(2023). On the accuracy of the Conventional gait Model: Distinction between marker misplacement and soft tissue artefact errors.
Lohss, Regine, Developmental Neurorehabilitation, 26, 377–388. https://doi.org/10.1080/17518423.2023.2242930
, Sangeux, Morgan, Hasler, Carol-Claudius, & Viehweger, Elke. (2023). Consequences of Virtual Reality Experience on Biomechanical Gait Parameters in Children with Cerebral Palsy: A Scoping Review.
Lohss, Regine, Developmental Neurorehabilitation, 26, 377–388. https://doi.org/10.1080/17518423.2023.2242930
, Sangeux, Morgan, Hasler, Carol-Claudius, & Viehweger, Elke. (2023). Consequences of Virtual Reality Experience on Biomechanical Gait Parameters in Children with Cerebral Palsy: A Scoping Review.
Boulay C., Journal of Electromyography and Kinesiology, 65. https://doi.org/10.1016/j.jelekin.2022.102665
, Authier G., Jacquemier M., Merlo A., Chabrol B., Jouve J.-L., Gracies J.-M., & Pesenti S. (2022). Reduced plantar-flexors extensibility but improved selective motor control associated with age in young children with unilateral cerebral palsy and equinovalgus gait.
Boulay C., Journal of Electromyography and Kinesiology, 65. https://doi.org/10.1016/j.jelekin.2022.102665
, Authier G., Jacquemier M., Merlo A., Chabrol B., Jouve J.-L., Gracies J.-M., & Pesenti S. (2022). Reduced plantar-flexors extensibility but improved selective motor control associated with age in young children with unilateral cerebral palsy and equinovalgus gait.
Kraan C.M., Date P., Rattray A., Journal of Intellectual Disability Research, 66(8-9), 717–725. https://doi.org/10.1111/jir.12955
, Bui Q.M., Baker E.K., Morison J., Amor D.J., & Godler D.E. (2022). Feasibility of wearable technology for ‘real-world’ gait analysis in children with Prader–Willi and Angelman syndromes.
Kraan C.M., Date P., Rattray A., Journal of Intellectual Disability Research, 66(8-9), 717–725. https://doi.org/10.1111/jir.12955
, Bui Q.M., Baker E.K., Morison J., Amor D.J., & Godler D.E. (2022). Feasibility of wearable technology for ‘real-world’ gait analysis in children with Prader–Willi and Angelman syndromes.
Pagliazzi G, De Pieri E, Kläusler M, EFORT Open Reviews, 7(1), 26–34. https://doi.org/10.1530/eor-21-0092
, & Viehweger E. (2022). Torsional deformities and overuse injuries: what does the literature tell us.
Pagliazzi G, De Pieri E, Kläusler M, EFORT Open Reviews, 7(1), 26–34. https://doi.org/10.1530/eor-21-0092
, & Viehweger E. (2022). Torsional deformities and overuse injuries: what does the literature tell us.
Grigoriu AI, Brochard S, Journal of Electromyography and Kinesiology, 58, 102544. https://doi.org/10.1016/j.jelekin.2021.102544
, Padure L, & Lempereur M. (2021). Reliability and sources of variability of 3D kinematics and electromyography measurements to assess newly-acquired gait in toddlers with typical development and unilateral cerebral palsy.
Grigoriu AI, Brochard S, Journal of Electromyography and Kinesiology, 58, 102544. https://doi.org/10.1016/j.jelekin.2021.102544
, Padure L, & Lempereur M. (2021). Reliability and sources of variability of 3D kinematics and electromyography measurements to assess newly-acquired gait in toddlers with typical development and unilateral cerebral palsy.
Mackay J, Thomason P, Gait and Posture, 86, 144–149. https://doi.org/10.1016/j.gaitpost.2021.03.004
, Passmore E, Francis K, & Graham HK. (2021). The impact of symptomatic femoral neck anteversion and tibial torsion on gait, function and participation in children and adolescents.
Mackay J, Thomason P, Gait and Posture, 86, 144–149. https://doi.org/10.1016/j.gaitpost.2021.03.004
, Passmore E, Francis K, & Graham HK. (2021). The impact of symptomatic femoral neck anteversion and tibial torsion on gait, function and participation in children and adolescents.
Chia K, Fischer I, Thomason P, Graham HK, & Frontiers in Bioengineering and Biotechnology, 8, 529415. https://doi.org/10.3389/fbioe.2020.529415
. (2020). A Decision Support System to Facilitate Identification of Musculoskeletal Impairments and Propose Recommendations Using Gait Analysis in Children With Cerebral Palsy.
Chia K, Fischer I, Thomason P, Graham HK, & Frontiers in Bioengineering and Biotechnology, 8, 529415. https://doi.org/10.3389/fbioe.2020.529415
. (2020). A Decision Support System to Facilitate Identification of Musculoskeletal Impairments and Propose Recommendations Using Gait Analysis in Children With Cerebral Palsy.
Mudge AJ, Clinical Biomechanics, 71, 208–213. https://doi.org/10.1016/j.clinbiomech.2019.10.022
, Wojciechowski EA, Louey MG, McKay MJ, Baldwin JN, Dwan LN, Axt MW, & Burns J. (2020). Can pedobarography predict the occurrence of heel rocker in children with lower limb spasticity?
Mudge AJ, Clinical Biomechanics, 71, 208–213. https://doi.org/10.1016/j.clinbiomech.2019.10.022
, Wojciechowski EA, Louey MG, McKay MJ, Baldwin JN, Dwan LN, Axt MW, & Burns J. (2020). Can pedobarography predict the occurrence of heel rocker in children with lower limb spasticity?
Murphy AT, Kravtsov S, Gait and Posture, 74, 53–59. https://doi.org/10.1016/j.gaitpost.2019.08.001
, Rawicki B, & New PW. (2019). Utilizing three dimensional clinical gait analysis to optimize mobility outcomes in incomplete spinal cord damage.
Murphy AT, Kravtsov S, Gait and Posture, 74, 53–59. https://doi.org/10.1016/j.gaitpost.2019.08.001
, Rawicki B, & New PW. (2019). Utilizing three dimensional clinical gait analysis to optimize mobility outcomes in incomplete spinal cord damage.
Ackland DC, Wu W, Thomas R, Patel M, Page R, Journal of Orthopaedic Research, 37(9), 1988–2003. https://doi.org/10.1002/jor.24335
, & Richardson M. (2019). Muscle and Joint Function After Anatomic and Reverse Total Shoulder Arthroplasty Using a Modular Shoulder Prosthesis.
Ackland DC, Wu W, Thomas R, Patel M, Page R, Journal of Orthopaedic Research, 37(9), 1988–2003. https://doi.org/10.1002/jor.24335
, & Richardson M. (2019). Muscle and Joint Function After Anatomic and Reverse Total Shoulder Arthroplasty Using a Modular Shoulder Prosthesis.
Leboeuf F, Reay J, Jones R, & Journal of Biomechanics, 87, 167–171. https://doi.org/10.1016/j.jbiomech.2019.02.010
. (2019). The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait.
Leboeuf F, Reay J, Jones R, & Journal of Biomechanics, 87, 167–171. https://doi.org/10.1016/j.jbiomech.2019.02.010
. (2019). The effect on conventional gait model kinematics and kinetics of hip joint centre equations in adult healthy gait.
Leboeuf F, Baker R, Barré A, Reay J, Jones R, & Gait and Posture, 69, 126–129. https://doi.org/10.1016/j.gaitpost.2019.01.034
. (2019). The conventional gait model, an open-source implementation that reproduces the past but prepares for the future.
Leboeuf F, Baker R, Barré A, Reay J, Jones R, & Gait and Posture, 69, 126–129. https://doi.org/10.1016/j.gaitpost.2019.01.034
. (2019). The conventional gait model, an open-source implementation that reproduces the past but prepares for the future.
Leboeuf F, Baker R, Barré A, Reay J, Jones R, & Gait & Posture, 69, 235–241. https://doi.org/10.1016/j.gaitpost.2019.04.015
. (2019). The conventional gait model, an open-source implementation that reproduces the past but prepares for the future.
Leboeuf F, Baker R, Barré A, Reay J, Jones R, & Gait & Posture, 69, 235–241. https://doi.org/10.1016/j.gaitpost.2019.04.015
. (2019). The conventional gait model, an open-source implementation that reproduces the past but prepares for the future.
Sangeux, M. (2019). Biomechanics of the Hip During Gait (pp. 53–71). Springer International Publishing. https://doi.org/10.1007/978-3-030-12003-0_3
Sangeux, M. (2019). Biomechanics of the Hip During Gait (pp. 53–71). Springer International Publishing. https://doi.org/10.1007/978-3-030-12003-0_3
Sarcher A, Brochard S, Hug F, Letellier G, Raison M, Perrouin-Verbe B, Clinical Biomechanics (Bristol, Avon), 59, 85–93. https://doi.org/10.1016/j.clinbiomech.2018.09.005
, & Gross R. (2018). Patterns of upper limb muscle activation in children with unilateral spastic cerebral palsy: Variability and detection of deviations.
Sarcher A, Brochard S, Hug F, Letellier G, Raison M, Perrouin-Verbe B, Clinical Biomechanics (Bristol, Avon), 59, 85–93. https://doi.org/10.1016/j.clinbiomech.2018.09.005
, & Gross R. (2018). Patterns of upper limb muscle activation in children with unilateral spastic cerebral palsy: Variability and detection of deviations.
Thomas R, Richardson M, Patel M, Page R, Journal of Shoulder and Elbow Surgery, 27(11), 2085–2092. https://doi.org/10.1016/j.jse.2018.04.017
, & Ackland DC. (2018). Rotator cuff contact pressures at the tendon-implant interface after anatomic total shoulder arthroplasty using a metal-backed glenoid component.
Thomas R, Richardson M, Patel M, Page R, Journal of Shoulder and Elbow Surgery, 27(11), 2085–2092. https://doi.org/10.1016/j.jse.2018.04.017
, & Ackland DC. (2018). Rotator cuff contact pressures at the tendon-implant interface after anatomic total shoulder arthroplasty using a metal-backed glenoid component.
Leboeuf F., Barre A., & Gait and Posture, 65, 233–234. https://doi.org/10.1016/j.gaitpost.2018.06.146
(2018). O 111 - accuracy of the conventional gait model: preliminary results.
Leboeuf F., Barre A., & Gait and Posture, 65, 233–234. https://doi.org/10.1016/j.gaitpost.2018.06.146
(2018). O 111 - accuracy of the conventional gait model: preliminary results.
Leboeuf F., Gait and Posture, 65, 436–437. https://doi.org/10.1016/j.gaitpost.2018.07.043
, Reay J., Greuel H., Jones R., & Baker R. (2018). P 120 - CGM2 : Proposal of an evolved conventional gait model.
Leboeuf F., Gait and Posture, 65, 436–437. https://doi.org/10.1016/j.gaitpost.2018.07.043
, Reay J., Greuel H., Jones R., & Baker R. (2018). P 120 - CGM2 : Proposal of an evolved conventional gait model.
Passmore E., & Gait and Posture, 65, 3–4. https://doi.org/10.1016/j.gaitpost.2018.06.010
(2018). O 002- Is it the right moment to change how we report kinetics?
Passmore E., & Gait and Posture, 65, 3–4. https://doi.org/10.1016/j.gaitpost.2018.06.010
(2018). O 002- Is it the right moment to change how we report kinetics?
Gait and Posture, 65, 11–12. https://doi.org/10.1016/j.gaitpost.2018.06.014
(2018). O 006 - Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
Gait and Posture, 65, 11–12. https://doi.org/10.1016/j.gaitpost.2018.06.014
(2018). O 006 - Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
Hastings-Ison T, Journal of Children’s Orthopaedics, 12(4), 390–397. https://doi.org/10.1302/1863-2548.12.180044
, Thomason P, Rawicki B, Fahey M, & Graham HK. (2018). Onabotulinum toxin-A (Botox) for spastic equinus in cerebral palsy: a prospective kinematic study.
Hastings-Ison T, Journal of Children’s Orthopaedics, 12(4), 390–397. https://doi.org/10.1302/1863-2548.12.180044
, Thomason P, Rawicki B, Fahey M, & Graham HK. (2018). Onabotulinum toxin-A (Botox) for spastic equinus in cerebral palsy: a prospective kinematic study.
Passmore E, Graham HK, Pandy MG, & Gait & Posture, 63, 228–235. https://doi.org/10.1016/j.gaitpost.2018.05.003
. (2018). Hip- and patellofemoral-joint loading during gait are increased in children with idiopathic torsional deformities.
Passmore E, Graham HK, Pandy MG, & Gait & Posture, 63, 228–235. https://doi.org/10.1016/j.gaitpost.2018.05.003
. (2018). Hip- and patellofemoral-joint loading during gait are increased in children with idiopathic torsional deformities.
Gait & Posture, 63, 171–176. https://doi.org/10.1016/j.gaitpost.2018.05.011
. (2018). Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
Gait & Posture, 63, 171–176. https://doi.org/10.1016/j.gaitpost.2018.05.011
. (2018). Computation of hip rotation kinematics retrospectively using functional knee calibration during gait.
Baker R., Leboeuf F., Reay J., & The conventional gait model - success and limitations (Vol. 1-3, pp. 489–508). Springer International Publishing. https://doi.org/10.1007/978-3-319-14418-4_25
(2018).
Baker R., Leboeuf F., Reay J., & The conventional gait model - success and limitations (Vol. 1-3, pp. 489–508). Springer International Publishing. https://doi.org/10.1007/978-3-319-14418-4_25
(2018).
Passmore E, Graham HK, & Journal of Biomechanics, 69, 156–163. https://doi.org/10.1016/j.jbiomech.2018.01.018
. (2018). Defining the medial-lateral axis of the femur: Medical imaging, conventional and functional calibration methods lead to differences in hip rotation kinematics for children with torsional deformities.
Passmore E, Graham HK, & Journal of Biomechanics, 69, 156–163. https://doi.org/10.1016/j.jbiomech.2018.01.018
. (2018). Defining the medial-lateral axis of the femur: Medical imaging, conventional and functional calibration methods lead to differences in hip rotation kinematics for children with torsional deformities.
Graham HK, Thomason P, & Is the Knee the Key to Long-Term Gait Function in Cerebral Palsy?: Commentary on an article by Elizabeth R. Boyer, PhD, et al.: “Long-Term Outcomes of Distal Femoral Extension Osteotomy and Patellar Tendon Advancement in Individuals with Cerebral Palsy”. (Patent No. 1). 100(1), Article 1. https://doi.org/10.2106/jbjs.17.01357
. (2018).
Graham HK, Thomason P, & Is the Knee the Key to Long-Term Gait Function in Cerebral Palsy?: Commentary on an article by Elizabeth R. Boyer, PhD, et al.: “Long-Term Outcomes of Distal Femoral Extension Osteotomy and Patellar Tendon Advancement in Individuals with Cerebral Palsy”. (Patent No. 1). 100(1), Article 1. https://doi.org/10.2106/jbjs.17.01357
. (2018).
Dreher T, Thomason P, Švehlík M, Döderlein L, Wolf SI, Putz C, Uehlein O, Chia K, Steinwender G, Developmental Medicine and Child Neurology, 60(1), 88–93. https://doi.org/10.1111/dmcn.13618
, & Graham HK. (2018). Long-term development of gait after multilevel surgery in children with cerebral palsy: a multicentre cohort study.
Dreher T, Thomason P, Švehlík M, Döderlein L, Wolf SI, Putz C, Uehlein O, Chia K, Steinwender G, Developmental Medicine and Child Neurology, 60(1), 88–93. https://doi.org/10.1111/dmcn.13618
, & Graham HK. (2018). Long-term development of gait after multilevel surgery in children with cerebral palsy: a multicentre cohort study.
Journal of Biomechanics, 62, 53–59. https://doi.org/10.1016/j.jbiomech.2016.10.049
, Barré A, & Aminian K. (2017). Evaluation of knee functional calibration with and without the effect of soft tissue artefact.
Journal of Biomechanics, 62, 53–59. https://doi.org/10.1016/j.jbiomech.2016.10.049
, Barré A, & Aminian K. (2017). Evaluation of knee functional calibration with and without the effect of soft tissue artefact.
Louey MGY, Mudge A, Wojciechowski E, & Gait & Posture, 57, 147–153. https://doi.org/10.1016/j.gaitpost.2017.06.004
. (2017). A model to calculate the progression of the centre of pressure under the foot during gait analysis.
Louey MGY, Mudge A, Wojciechowski E, & Gait & Posture, 57, 147–153. https://doi.org/10.1016/j.gaitpost.2017.06.004
. (2017). A model to calculate the progression of the centre of pressure under the foot during gait analysis.
Chia K, & Gait & Posture, 56, 68–75. https://doi.org/10.1016/j.gaitpost.2017.04.040
. (2017). Quantifying sources of variability in gait analysis.
Chia K, & Gait & Posture, 56, 68–75. https://doi.org/10.1016/j.gaitpost.2017.04.040
. (2017). Quantifying sources of variability in gait analysis.
Chia K, & Gait & Posture, 55, 157–161. https://doi.org/10.1016/j.gaitpost.2017.04.014
. (2017). Undesirable properties of the dimensionless normalisation for spatio-temporal variables.
Chia K, & Gait & Posture, 55, 157–161. https://doi.org/10.1016/j.gaitpost.2017.04.014
. (2017). Undesirable properties of the dimensionless normalisation for spatio-temporal variables.
Passmore E., Lai A., Meccanica, 52(3), 665–676. https://doi.org/10.1007/s11012-016-0478-z
, Schache A.G., & Pandy M.G. (2017). Application of ultrasound imaging to subject-specific modelling of the human musculoskeletal system.
Passmore E., Lai A., Meccanica, 52(3), 665–676. https://doi.org/10.1007/s11012-016-0478-z
, Schache A.G., & Pandy M.G. (2017). Application of ultrasound imaging to subject-specific modelling of the human musculoskeletal system.
Baker, R., Leboeuf, F., Reay, J., & Sangeux, M. (2017). The Conventional Gait Model - Success and Limitations (pp. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-30808-1_25-2
Baker, R., Leboeuf, F., Reay, J., & Sangeux, M. (2017). The Conventional Gait Model - Success and Limitations (pp. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-30808-1_25-2
Hara R, McGinley J, Briggs C, Baker R, & Scientific Reports, 6, 37707. https://doi.org/10.1038/srep37707
. (2016). Predicting the location of the hip joint centres, impact of age group and sex.
Hara R, McGinley J, Briggs C, Baker R, & Scientific Reports, 6, 37707. https://doi.org/10.1038/srep37707
. (2016). Predicting the location of the hip joint centres, impact of age group and sex.
Leboeuf, F., Sangeux, M., Barre, A., & Baker, R. (2016). Influence de la position du centre articulaire de hanche sur le modèle conventionnel de marche [Journal-article]. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4-5), 265. https://doi.org/10.1016/j.neucli.2016.09.070
Leboeuf, F., Sangeux, M., Barre, A., & Baker, R. (2016). Influence de la position du centre articulaire de hanche sur le modèle conventionnel de marche [Journal-article]. Neurophysiologie Clinique/Clinical Neurophysiology, 46(4-5), 265. https://doi.org/10.1016/j.neucli.2016.09.070
Sauret C, Pillet H, Skalli W, & Gait & Posture, 50, 180–184. https://doi.org/10.1016/j.gaitpost.2016.09.008
. (2016). On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference.
Sauret C, Pillet H, Skalli W, & Gait & Posture, 50, 180–184. https://doi.org/10.1016/j.gaitpost.2016.09.008
. (2016). On the use of knee functional calibration to determine the medio-lateral axis of the femur in gait analysis: Comparison with EOS biplanar radiographs as reference.
Louey MGY, & Gait & Posture, 49, 144–147. https://doi.org/10.1016/j.gaitpost.2016.06.032
. (2016). Shod wear and foot alignment in clinical gait analysis.
Louey MGY, & Gait & Posture, 49, 144–147. https://doi.org/10.1016/j.gaitpost.2016.06.032
. (2016). Shod wear and foot alignment in clinical gait analysis.
Gait & Posture, 46, 194–200. https://doi.org/10.1016/j.gaitpost.2016.03.015
, Passmore E, Graham HK, & Tirosh O. (2016). The gait standard deviation, a single measure of kinematic variability.
Gait & Posture, 46, 194–200. https://doi.org/10.1016/j.gaitpost.2016.03.015
, Passmore E, Graham HK, & Tirosh O. (2016). The gait standard deviation, a single measure of kinematic variability.
Passmore E, & Gait & Posture, 45, 211–216. https://doi.org/10.1016/j.gaitpost.2016.02.006
. (2016). Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.
Passmore E, & Gait & Posture, 45, 211–216. https://doi.org/10.1016/j.gaitpost.2016.02.006
. (2016). Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.
Passmore E, Pandy MG, Graham HK, & Ultrasound in Medicine & Biology, 42(2), 619–623. https://doi.org/10.1016/j.ultrasmedbio.2015.10.014
. (2016). Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.
Passmore E, Pandy MG, Graham HK, & Ultrasound in Medicine & Biology, 42(2), 619–623. https://doi.org/10.1016/j.ultrasmedbio.2015.10.014
. (2016). Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.
Ridgewell, E., Rodda, J., Graham, H. K., & Gait & Posture, 42, S70–S71. https://doi.org/10.1016/j.gaitpost.2015.03.122
(2015). The effect of bilateral solid AFO on gait [Journal-article].
Ridgewell, E., Rodda, J., Graham, H. K., & Gait & Posture, 42, S70–S71. https://doi.org/10.1016/j.gaitpost.2015.03.122
(2015). The effect of bilateral solid AFO on gait [Journal-article].
Gait & Posture, 42(3), 402–405. https://doi.org/10.1016/j.gaitpost.2015.07.004
. (2015). On the implementation of predictive methods to locate the hip joint centres.
Gait & Posture, 42(3), 402–405. https://doi.org/10.1016/j.gaitpost.2015.07.004
. (2015). On the implementation of predictive methods to locate the hip joint centres.
Wahid F, Begg R, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, 5509–5512. https://doi.org/10.1109/embc.2015.7319639
, Halgamuge S, & Ackland DC. (2015). The effects of an ankle foot orthosis on cerebral palsy gait: A multiple regression analysis.
Wahid F, Begg R, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, 5509–5512. https://doi.org/10.1109/embc.2015.7319639
, Halgamuge S, & Ackland DC. (2015). The effects of an ankle foot orthosis on cerebral palsy gait: A multiple regression analysis.
Tinney A, Thomason P, The Bone & Joint Journal, 97-B(4), 564–571. https://doi.org/10.1302/0301-620x.97b4.34887
, Khot A, & Graham HK. (2015). The transverse Vulpius gastrocsoleus recession for equinus gait in children with cerebral palsy.
Tinney A, Thomason P, The Bone & Joint Journal, 97-B(4), 564–571. https://doi.org/10.1302/0301-620x.97b4.34887
, Khot A, & Graham HK. (2015). The transverse Vulpius gastrocsoleus recession for equinus gait in children with cerebral palsy.
Gait & Posture, 41(2), 726–730. https://doi.org/10.1016/j.gaitpost.2014.12.004
, & Polak J. (2015). A simple method to choose the most representative stride and detect outliers.
Gait & Posture, 41(2), 726–730. https://doi.org/10.1016/j.gaitpost.2014.12.004
, & Polak J. (2015). A simple method to choose the most representative stride and detect outliers.
Gait & Posture, 41(2), 586–591. https://doi.org/10.1016/j.gaitpost.2014.12.019
, Rodda J, & Graham HK. (2015). Sagittal gait patterns in cerebral palsy: the plantarflexor-knee extension couple index.
Gait & Posture, 41(2), 586–591. https://doi.org/10.1016/j.gaitpost.2014.12.019
, Rodda J, & Graham HK. (2015). Sagittal gait patterns in cerebral palsy: the plantarflexor-knee extension couple index.
Kinematic deviations in children with cerebral palsy (pp. 241–256). Nova Science Publishers, Inc.
, & Armand S. (2015).
Kinematic deviations in children with cerebral palsy (pp. 241–256). Nova Science Publishers, Inc.
, & Armand S. (2015).
Journal of Computer Assisted Tomography, 39(1), 83–85. https://doi.org/10.1097/rct.0000000000000161
, Pascoe J, Graham HK, Ramanauskas F, & Cain T. (2015). Three-dimensional measurement of femoral neck anteversion and neck shaft angle.
Journal of Computer Assisted Tomography, 39(1), 83–85. https://doi.org/10.1097/rct.0000000000000161
, Pascoe J, Graham HK, Ramanauskas F, & Cain T. (2015). Three-dimensional measurement of femoral neck anteversion and neck shaft angle.
Clinical Biomechanics (Bristol, Avon), 29(5), 523–530. https://doi.org/10.1016/j.clinbiomech.2014.03.012
, Passmore E, Gomez G, Balakumar J, & Graham HK. (2014). Slipped capital femoral epiphysis, fixation by single screw in situ: A kinematic and radiographic study.
Clinical Biomechanics (Bristol, Avon), 29(5), 523–530. https://doi.org/10.1016/j.clinbiomech.2014.03.012
, Passmore E, Gomez G, Balakumar J, & Graham HK. (2014). Slipped capital femoral epiphysis, fixation by single screw in situ: A kinematic and radiographic study.
Hara R, Gait & Posture, 39(2), 712–717. https://doi.org/10.1016/j.gaitpost.2013.10.001
, Baker R, & McGinley J. (2014). Quantification of pelvic soft tissue artifact in multiple static positions.
Hara R, Gait & Posture, 39(2), 712–717. https://doi.org/10.1016/j.gaitpost.2013.10.001
, Baker R, & McGinley J. (2014). Quantification of pelvic soft tissue artifact in multiple static positions.
Passmore E, & Gait & Posture, 39(2), 831–833. https://doi.org/10.1016/j.gaitpost.2013.11.002
. (2014). Improving repeatability of setting volume origin and coordinate system for 3D gait analysis.
Passmore E, & Gait & Posture, 39(2), 831–833. https://doi.org/10.1016/j.gaitpost.2013.11.002
. (2014). Improving repeatability of setting volume origin and coordinate system for 3D gait analysis.
Armand S, Gait & Posture, 39(1), 147–153. https://doi.org/10.1016/j.gaitpost.2013.06.016
, & Baker R. (2014). Optimal markers’ placement on the thorax for clinical gait analysis.
Armand S, Gait & Posture, 39(1), 147–153. https://doi.org/10.1016/j.gaitpost.2013.06.016
, & Baker R. (2014). Optimal markers’ placement on the thorax for clinical gait analysis.
Pillet H, Gait & Posture, 39(1), 655–658. https://doi.org/10.1016/j.gaitpost.2013.08.020
, Hausselle J, El Rachkidi R, & Skalli W. (2014). A reference method for the evaluation of femoral head joint center location technique based on external markers.
Pillet H, Gait & Posture, 39(1), 655–658. https://doi.org/10.1016/j.gaitpost.2013.08.020
, Hausselle J, El Rachkidi R, & Skalli W. (2014). A reference method for the evaluation of femoral head joint center location technique based on external markers.
Gait & Posture, 39(1), 12–16. https://doi.org/10.1016/j.gaitpost.2013.05.020
, Mahy J, & Graham HK. (2014). Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?
Gait & Posture, 39(1), 12–16. https://doi.org/10.1016/j.gaitpost.2013.05.020
, Mahy J, & Graham HK. (2014). Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?
Gait & Posture, 40(1), 20–25. https://doi.org/10.1016/j.gaitpost.2014.01.024
, Pillet H, & Skalli W. (2014). Which method of hip joint centre localisation should be used in gait analysis?
Gait & Posture, 40(1), 20–25. https://doi.org/10.1016/j.gaitpost.2014.01.024
, Pillet H, & Skalli W. (2014). Which method of hip joint centre localisation should be used in gait analysis?
Tirosh O, Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 23(6), 1451–1459. https://doi.org/10.1016/j.jelekin.2013.06.002
, Wong M, Thomason P, & Graham HK. (2013). Walking speed effects on the lower limb electromyographic variability of healthy children aged 7-16 years.
Tirosh O, Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 23(6), 1451–1459. https://doi.org/10.1016/j.jelekin.2013.06.002
, Wong M, Thomason P, & Graham HK. (2013). Walking speed effects on the lower limb electromyographic variability of healthy children aged 7-16 years.
Song Y., Zhang J., Cao L., & On discovering the correlated relationship between static and dynamic data in clinical gait analysis. 8190 LNAI, 563–578. https://doi.org/10.1007/978-3-642-40994-3_36
(2013).
Song Y., Zhang J., Cao L., & On discovering the correlated relationship between static and dynamic data in clinical gait analysis. 8190 LNAI, 563–578. https://doi.org/10.1007/978-3-642-40994-3_36
(2013).
Ridgewell E, Gait & Posture, 38(4), 1074–1076. https://doi.org/10.1016/j.gaitpost.2013.05.006
, Bach T, & Baker R. (2013). A new method for measuring AFO deformation, tibial and footwear movement in three dimensional gait analysis.
Ridgewell E, Gait & Posture, 38(4), 1074–1076. https://doi.org/10.1016/j.gaitpost.2013.05.006
, Bach T, & Baker R. (2013). A new method for measuring AFO deformation, tibial and footwear movement in three dimensional gait analysis.
Developmental Medicine and Child Neurology, 55(9), 786–787. https://doi.org/10.1111/dmcn.12230
, Wolfe R, & Graham HK. (2013). One side or two?
Developmental Medicine and Child Neurology, 55(9), 786–787. https://doi.org/10.1111/dmcn.12230
, Wolfe R, & Graham HK. (2013). One side or two?
Gait and Posture, 38(3), 552–554. https://doi.org/10.1016/j.gaitpost.2013.06.007
, Peters A., & Baker R. (2013). Corrigendum to “Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis” [Gait Posture 34 (3) (2011) 324-328].
Gait and Posture, 38(3), 552–554. https://doi.org/10.1016/j.gaitpost.2013.06.007
, Peters A., & Baker R. (2013). Corrigendum to “Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis” [Gait Posture 34 (3) (2011) 324-328].
Firth GB, Passmore E, The Journal of Bone and Joint Surgery. American Volume, 95(10), 931–938. https://doi.org/10.2106/jbjs.k.01542
, Thomason P, Rodda J, Donath S, Selber P, & Graham HK. (2013). Multilevel surgery for equinus gait in children with spastic diplegic cerebral palsy: medium-term follow-up with gait analysis.
Firth GB, Passmore E, The Journal of Bone and Joint Surgery. American Volume, 95(10), 931–938. https://doi.org/10.2106/jbjs.k.01542
, Thomason P, Rodda J, Donath S, Selber P, & Graham HK. (2013). Multilevel surgery for equinus gait in children with spastic diplegic cerebral palsy: medium-term follow-up with gait analysis.
Thomason P, Rodda J, Management of children with ambulatory cerebral palsy: an evidence-based review. Commentary by Hugh Williamson Gait Laboratory staff. 32 Suppl 2, S182–6. https://doi.org/10.1097/bpo.0b013e31825b6136
, Selber P, & Kerr Graham. (2012).
Thomason P, Rodda J, Management of children with ambulatory cerebral palsy: an evidence-based review. Commentary by Hugh Williamson Gait Laboratory staff. 32 Suppl 2, S182–6. https://doi.org/10.1097/bpo.0b013e31825b6136
, Selber P, & Kerr Graham. (2012).
Peters A, Baker R, Morris ME, & Gait & Posture, 36(2), 282–286. https://doi.org/10.1016/j.gaitpost.2012.03.011
. (2012). A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy.
Peters A, Baker R, Morris ME, & Gait & Posture, 36(2), 282–286. https://doi.org/10.1016/j.gaitpost.2012.03.011
. (2012). A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy.
Gait & Posture, 34(3), 324–328. https://doi.org/10.1016/j.gaitpost.2011.05.019
, Peters A, & Baker R. (2011). Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis.
Gait & Posture, 34(3), 324–328. https://doi.org/10.1016/j.gaitpost.2011.05.019
, Peters A, & Baker R. (2011). Hip joint centre localization: Evaluation on normal subjects in the context of gait analysis.
Peters A, Baker R, & Gait & Posture, 31(4), 530–532. https://doi.org/10.1016/j.gaitpost.2010.01.014
. (2010). Validation of 3-D freehand ultrasound for the determination of the hip joint centre.
Peters A, Baker R, & Gait & Posture, 31(4), 530–532. https://doi.org/10.1016/j.gaitpost.2010.01.014
. (2010). Validation of 3-D freehand ultrasound for the determination of the hip joint centre.
Wong AY, Gait & Posture, 31(2), 292–293. https://doi.org/10.1016/j.gaitpost.2009.11.004
, & Baker R. (2010). Calculation of joint moments following foot contact across two force plates.
Wong AY, Gait & Posture, 31(2), 292–293. https://doi.org/10.1016/j.gaitpost.2009.11.004
, & Baker R. (2010). Calculation of joint moments following foot contact across two force plates.
Peters A, Galna B, Gait & Posture, 31(1), 1–8. https://doi.org/10.1016/j.gaitpost.2009.09.004
, Morris M, & Baker R. (2010). Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review.
Peters A, Galna B, Gait & Posture, 31(1), 1–8. https://doi.org/10.1016/j.gaitpost.2009.09.004
, Morris M, & Baker R. (2010). Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review.
Peters A, Gait & Posture, 29(1), 42–48. https://doi.org/10.1016/j.gaitpost.2008.06.007
, Morris ME, & Baker R. (2009). Determination of the optimal locations of surface-mounted markers on the tibial segment.
Peters A, Gait & Posture, 29(1), 42–48. https://doi.org/10.1016/j.gaitpost.2008.06.007
, Morris ME, & Baker R. (2009). Determination of the optimal locations of surface-mounted markers on the tibial segment.
European Journal of Computational Mechanics, 18(1), 81–92. https://doi.org/10.3166/ejcm.18.81-92
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2009). In vivo personalized finite element modeling of the knee joint derived from MRI images: Methodology applied on one contact problem including bones, cartilages and menisci.
European Journal of Computational Mechanics, 18(1), 81–92. https://doi.org/10.3166/ejcm.18.81-92
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2009). In vivo personalized finite element modeling of the knee joint derived from MRI images: Methodology applied on one contact problem including bones, cartilages and menisci.
Computer Methods in Biomechanics and Biomedical Engineering, 10(SUPPL. 1), 97–98. https://doi.org/10.1080/10255840701478877
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2007). In vivo contact pressure in the knee during a flexion-extension movement.
Computer Methods in Biomechanics and Biomedical Engineering, 10(SUPPL. 1), 97–98. https://doi.org/10.1080/10255840701478877
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2007). In vivo contact pressure in the knee during a flexion-extension movement.
Computer Methods in Biomechanics and Biomedical Engineering, 10(SUPPL. 1), 35–36. https://doi.org/10.1080/10255840701479107
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2007). In vivo mechanical properties of the anterior cruciate ligament.
Computer Methods in Biomechanics and Biomedical Engineering, 10(SUPPL. 1), 35–36. https://doi.org/10.1080/10255840701479107
, Marin F., Charleux F., & Ho Ba Tho M.-C. (2007). In vivo mechanical properties of the anterior cruciate ligament.
Clinical Biomechanics (Bristol, Avon), 21(9), 984–991. https://doi.org/10.1016/j.clinbiomech.2006.05.006
, Marin F, Charleux F, Dürselen L, & Ho Ba Tho MC. (2006). Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
Clinical Biomechanics (Bristol, Avon), 21(9), 984–991. https://doi.org/10.1016/j.clinbiomech.2006.05.006
, Marin F, Charleux F, Dürselen L, & Ho Ba Tho MC. (2006). Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
Marin F, Journal of Biomechanics, 39(2), 359–363. https://doi.org/10.1016/j.jbiomech.2004.11.025
, Charleux F, Ho Ba Tho MC, & Dürselen L. (2006). Can a finite set of knee extension in supine position be used for a knee functional examination?
Marin F, Journal of Biomechanics, 39(2), 359–363. https://doi.org/10.1016/j.jbiomech.2004.11.025
, Charleux F, Ho Ba Tho MC, & Dürselen L. (2006). Can a finite set of knee extension in supine position be used for a knee functional examination?