[FG] Sinues Pablo
Publications
84 found
Show per page
Basler, S. et al. (2024) ‘Molecular breath profile of acute COPD exacerbations’, Journal of Breath Research [Preprint]. Available at: https://doi.org/10.1088/1752-7163/ad9ac4.
Basler, S. et al. (2024) ‘Molecular breath profile of acute COPD exacerbations’, Journal of Breath Research [Preprint]. Available at: https://doi.org/10.1088/1752-7163/ad9ac4.
Zeng, J. et al. (2024) ‘Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness’, iScience, p. 111446. Available at: https://doi.org/10.1016/j.isci.2024.111446.
Zeng, J. et al. (2024) ‘Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness’, iScience, p. 111446. Available at: https://doi.org/10.1016/j.isci.2024.111446.
Künstle, Noëmi et al. (2024) ‘Differences in autophagy marker levels at birth in preterm vs. term infants’, Pediatric Research [Preprint]. 29.05.2024. Available at: https://doi.org/10.1038/s41390-024-03273-6.
Künstle, Noëmi et al. (2024) ‘Differences in autophagy marker levels at birth in preterm vs. term infants’, Pediatric Research [Preprint]. 29.05.2024. Available at: https://doi.org/10.1038/s41390-024-03273-6.
Awchi, Mo et al. (2024) ‘Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis’, Frontiers in Endocrinology, 15. Available at: https://doi.org/10.3389/fendo.2024.1360989.
Awchi, Mo et al. (2024) ‘Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis’, Frontiers in Endocrinology, 15. Available at: https://doi.org/10.3389/fendo.2024.1360989.
Sola-Martínez, R.A. et al. (2024) ‘Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study’, Journal of Breath Research, 18(1). Available at: https://doi.org/10.1088/1752-7163/ad10e1.
Sola-Martínez, R.A. et al. (2024) ‘Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study’, Journal of Breath Research, 18(1). Available at: https://doi.org/10.1088/1752-7163/ad10e1.
Awchi M et al. (2023) ‘UHPLC-MS/MS-Based Identity Confirmation of Amino Acids Involved in Response to and Side Effects from Antiseizure Medications.’, Journal of proteome research, 22(3), pp. 990–995. Available at: https://doi.org/10.1021/acs.jproteome.2c00835.
Awchi M et al. (2023) ‘UHPLC-MS/MS-Based Identity Confirmation of Amino Acids Involved in Response to and Side Effects from Antiseizure Medications.’, Journal of proteome research, 22(3), pp. 990–995. Available at: https://doi.org/10.1021/acs.jproteome.2c00835.
Arnold, Kim et al. (2023) ‘Real-Time Volatile Metabolomics Analysis of Dendritic Cells’, Analytical Chemistry, 95, pp. 9415–9421. Available at: https://doi.org/10.1021/acs.analchem.3c00516.
Arnold, Kim et al. (2023) ‘Real-Time Volatile Metabolomics Analysis of Dendritic Cells’, Analytical Chemistry, 95, pp. 9415–9421. Available at: https://doi.org/10.1021/acs.analchem.3c00516.
Awchi, M. et al. (2023) ‘Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents’, Journal of Breath Research, 17. Available at: https://doi.org/10.1088/1752-7163/acf782.
Awchi, M. et al. (2023) ‘Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents’, Journal of Breath Research, 17. Available at: https://doi.org/10.1088/1752-7163/acf782.
Gisler A. et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12). Available at: https://doi.org/10.1016/j.isci.2022.105557.
Gisler A. et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12). Available at: https://doi.org/10.1016/j.isci.2022.105557.
Gomez-Mejia A. et al. (2022) ‘Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites’, iScience, 25(10). Available at: https://doi.org/10.1016/j.isci.2022.105080.
Gomez-Mejia A. et al. (2022) ‘Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites’, iScience, 25(10). Available at: https://doi.org/10.1016/j.isci.2022.105080.
Arnold K. et al. (2022) ‘In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O’, Journal of Bio-X Research, 5(2), pp. 81–89. Available at: https://doi.org/10.1097/jbr.0000000000000121.
Arnold K. et al. (2022) ‘In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O’, Journal of Bio-X Research, 5(2), pp. 81–89. Available at: https://doi.org/10.1097/jbr.0000000000000121.
Zeng J. et al. (2022) ‘Comparison of Plasma Ionization- and Secondary Electrospray IonizationHigh-resolution Mass Spectrometry for Real-time Breath Analysis’, Chimia, 76(1-2), pp. 127–132. Available at: https://doi.org/10.2533/chimia.2022.127.
Zeng J. et al. (2022) ‘Comparison of Plasma Ionization- and Secondary Electrospray IonizationHigh-resolution Mass Spectrometry for Real-time Breath Analysis’, Chimia, 76(1-2), pp. 127–132. Available at: https://doi.org/10.2533/chimia.2022.127.
Benitez B.K. et al. (2022) ‘Continuous circular closure in unilateral cleft lip and plate repair in one surgery’, Journal of Cranio-Maxillofacial Surgery, 50, pp. 76–85. Available at: https://doi.org/10.1016/j.jcms.2021.07.002.
Benitez B.K. et al. (2022) ‘Continuous circular closure in unilateral cleft lip and plate repair in one surgery’, Journal of Cranio-Maxillofacial Surgery, 50, pp. 76–85. Available at: https://doi.org/10.1016/j.jcms.2021.07.002.
Decrue, F. et al. (2022) ‘Increased impact of air pollution on lung function in preterm versus term infants: the BILD study’, Am J Respir Crit Care Med, 205(1), pp. 99–107. Available at: https://doi.org/10.1164/rccm.202102-0272oc.
Decrue, F. et al. (2022) ‘Increased impact of air pollution on lung function in preterm versus term infants: the BILD study’, Am J Respir Crit Care Med, 205(1), pp. 99–107. Available at: https://doi.org/10.1164/rccm.202102-0272oc.
Gorlanova, O. et al. (2022) ‘Ambient prenatal air pollution exposure is associated with low cord blood IL-17a in infants’, Pediatric allergy and immunology, 34, p. e13902. Available at: https://doi.org/10.1111/pai.13902.
Gorlanova, O. et al. (2022) ‘Ambient prenatal air pollution exposure is associated with low cord blood IL-17a in infants’, Pediatric allergy and immunology, 34, p. e13902. Available at: https://doi.org/10.1111/pai.13902.
Schmidt, F. et al. (2022) ‘Lung cancer diagnostics with real-time breath analysis: an innovative case-control study (LUCAbreath)’, Oncology research and treatment, 45, p. 270.
Schmidt, F. et al. (2022) ‘Lung cancer diagnostics with real-time breath analysis: an innovative case-control study (LUCAbreath)’, Oncology research and treatment, 45, p. 270.
Osswald M et al. (2021) ‘Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath.’, Metabolites, 11(12). Available at: https://doi.org/10.3390/metabo11120856.
Osswald M et al. (2021) ‘Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath.’, Metabolites, 11(12). Available at: https://doi.org/10.3390/metabo11120856.
Decrue F et al. (2021) ‘Combination of Exhaled Breath Analysis with Parallel Lung Function and FeNO Measurements in Infants.’, Analytical chemistry, 93(47), pp. 15579–15583. Available at: https://doi.org/10.1021/acs.analchem.1c02036.
Decrue F et al. (2021) ‘Combination of Exhaled Breath Analysis with Parallel Lung Function and FeNO Measurements in Infants.’, Analytical chemistry, 93(47), pp. 15579–15583. Available at: https://doi.org/10.1021/acs.analchem.1c02036.
Nowak N et al. (2021) ‘Rapid and reversible control of human metabolism by individual sleep states.’, Cell reports, 37(4), p. 109903. Available at: https://doi.org/10.1016/j.celrep.2021.109903.
Nowak N et al. (2021) ‘Rapid and reversible control of human metabolism by individual sleep states.’, Cell reports, 37(4), p. 109903. Available at: https://doi.org/10.1016/j.celrep.2021.109903.
López-Lorente CI et al. (2021) ‘Real-time pharmacokinetics via online analysis of exhaled breath.’, Journal of pharmaceutical and biomedical analysis, 205, p. 114311. Available at: https://doi.org/10.1016/j.jpba.2021.114311.
López-Lorente CI et al. (2021) ‘Real-time pharmacokinetics via online analysis of exhaled breath.’, Journal of pharmaceutical and biomedical analysis, 205, p. 114311. Available at: https://doi.org/10.1016/j.jpba.2021.114311.
Liu C et al. (2021) ‘Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry.’, Analytica chimica acta, 1180, p. 338876. Available at: https://doi.org/10.1016/j.aca.2021.338876.
Liu C et al. (2021) ‘Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry.’, Analytica chimica acta, 1180, p. 338876. Available at: https://doi.org/10.1016/j.aca.2021.338876.
Decrue, F. et al. (2021) ‘Increased impact of air pollution on lung function in preterm vs. term infants: the BILD study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.oa2958.
Decrue, F. et al. (2021) ‘Increased impact of air pollution on lung function in preterm vs. term infants: the BILD study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.oa2958.
Osswald, M. et al. (2021) ‘Exercise metabolism: the key to performance’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.pa3226.
Osswald, M. et al. (2021) ‘Exercise metabolism: the key to performance’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.pa3226.
Nowak N et al. (2021) ‘Validation of breath biomarkers for obstructive sleep apnea.’, Sleep medicine, 85, pp. 75–86. Available at: https://doi.org/10.1016/j.sleep.2021.06.040.
Nowak N et al. (2021) ‘Validation of breath biomarkers for obstructive sleep apnea.’, Sleep medicine, 85, pp. 75–86. Available at: https://doi.org/10.1016/j.sleep.2021.06.040.
Yin Z et al. (2021) ‘In vivo monitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection.’, Chemical communications (Cambridge, England), 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Yin Z et al. (2021) ‘In vivo monitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection.’, Chemical communications (Cambridge, England), 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Chen X et al. (2021) ‘Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath.’, Analytical chemistry, 93(12), pp. 5005–5008. Available at: https://doi.org/10.1021/acs.analchem.1c00509.
Chen X et al. (2021) ‘Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath.’, Analytical chemistry, 93(12), pp. 5005–5008. Available at: https://doi.org/10.1021/acs.analchem.1c00509.
Lan J et al. (2021) ‘Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry.’, Journal of breath research, 15(2). Available at: https://doi.org/10.1088/1752-7163/ab9f8a.
Lan J et al. (2021) ‘Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry.’, Journal of breath research, 15(2). Available at: https://doi.org/10.1088/1752-7163/ab9f8a.
Alexander S.P.H. et al. (2021) ‘THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors’, British Journal of Pharmacology, 178, pp. S27–S156. Available at: https://doi.org/10.1111/bph.15538.
Alexander S.P.H. et al. (2021) ‘THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors’, British Journal of Pharmacology, 178, pp. S27–S156. Available at: https://doi.org/10.1111/bph.15538.
Brown SA and Sinues P (2021) ‘Circadian Metabolomics from Breath.’, Methods in molecular biology (Clifton, N.J.), 2130, pp. 149–156. Available at: https://doi.org/10.1007/978-1-0716-0381-9_11.
Brown SA and Sinues P (2021) ‘Circadian Metabolomics from Breath.’, Methods in molecular biology (Clifton, N.J.), 2130, pp. 149–156. Available at: https://doi.org/10.1007/978-1-0716-0381-9_11.
Singh KD et al. (2021) ‘Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics.’, Communications medicine, 1, p. 21. Available at: https://doi.org/10.1038/s43856-021-00021-3.
Singh KD et al. (2021) ‘Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics.’, Communications medicine, 1, p. 21. Available at: https://doi.org/10.1038/s43856-021-00021-3.
Wilkinson M. et al. (2021) ‘The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/abd28c.
Wilkinson M. et al. (2021) ‘The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/abd28c.
Henderson B et al. (2020) ‘A benchmarking protocol for breath analysis: the peppermint experiment.’, Journal of breath research, 14(4), p. 046008. Available at: https://doi.org/10.1088/1752-7163/aba130.
Henderson B et al. (2020) ‘A benchmarking protocol for breath analysis: the peppermint experiment.’, Journal of breath research, 14(4), p. 046008. Available at: https://doi.org/10.1088/1752-7163/aba130.
Gisler, Amanda et al. (2020) ‘Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: technical aspects’, Journal of Breath Research, 14(4), p. 046001. Available at: https://doi.org/10.1088/1752-7163/ab9f8b.
Gisler, Amanda et al. (2020) ‘Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: technical aspects’, Journal of Breath Research, 14(4), p. 046001. Available at: https://doi.org/10.1088/1752-7163/ab9f8b.
Gaugg, Martin Thomas et al. (2019) ‘Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis’, Respirology (Carlton, Vic.), 24(5), pp. 437–444. Available at: https://doi.org/10.1111/resp.13465.
Gaugg, Martin Thomas et al. (2019) ‘Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis’, Respirology (Carlton, Vic.), 24(5), pp. 437–444. Available at: https://doi.org/10.1111/resp.13465.
Gaugg, Martin Thomas et al. (2019) ‘Real-Time Breath Analysis Reveals Specific Metabolic Signatures of COPD Exacerbations’, Chest, 156(2), pp. 269–276. Available at: https://doi.org/10.1016/j.chest.2018.12.023.
Gaugg, Martin Thomas et al. (2019) ‘Real-Time Breath Analysis Reveals Specific Metabolic Signatures of COPD Exacerbations’, Chest, 156(2), pp. 269–276. Available at: https://doi.org/10.1016/j.chest.2018.12.023.
Sendoel, Ataman et al. (2019) ‘MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans’, Cell Death & Differentiation subscription, 26(10), pp. 2157–2178. Available at: https://doi.org/10.1038/s41418-019-0291-z.
Sendoel, Ataman et al. (2019) ‘MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans’, Cell Death & Differentiation subscription, 26(10), pp. 2157–2178. Available at: https://doi.org/10.1038/s41418-019-0291-z.
Singh, Kapil Dev et al. (2019) ‘Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry’, Analytical and Bioanalytical Chemistry, 411(19), pp. 4883–4898. Available at: https://doi.org/10.1007/s00216-019-01764-8.
Singh, Kapil Dev et al. (2019) ‘Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry’, Analytical and Bioanalytical Chemistry, 411(19), pp. 4883–4898. Available at: https://doi.org/10.1007/s00216-019-01764-8.
Gaisl, Thomas et al. (2018) ‘Real-time exhaled breath analysis in patients with cystic fibrosis and controls.’, Journal of breath research. 30.04.2018, 12(3), p. 036013. Available at: https://doi.org/10.1088/1752-7163/aab7fd.
Gaisl, Thomas et al. (2018) ‘Real-time exhaled breath analysis in patients with cystic fibrosis and controls.’, Journal of breath research. 30.04.2018, 12(3), p. 036013. Available at: https://doi.org/10.1088/1752-7163/aab7fd.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Singh, Kapil Dev et al. (2018) ‘Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment’, Journal of Breath Research, 12(2), p. 027113. Available at: https://doi.org/10.1088/1752-7163/aa9ee3.
Singh, Kapil Dev et al. (2018) ‘Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment’, Journal of Breath Research, 12(2), p. 027113. Available at: https://doi.org/10.1088/1752-7163/aa9ee3.
Tejero Rioseras, Alberto et al. (2018) ‘Real-Time Monitoring of Tricarboxylic Acid Metabolites in Exhaled Breath’, Analytical chemistry, 90(11), pp. 6453–6460. Available at: https://doi.org/10.1021/acs.analchem.7b04600.
Tejero Rioseras, Alberto et al. (2018) ‘Real-Time Monitoring of Tricarboxylic Acid Metabolites in Exhaled Breath’, Analytical chemistry, 90(11), pp. 6453–6460. Available at: https://doi.org/10.1021/acs.analchem.7b04600.
Farrell, Ross R. et al. (2017) ‘Rapid fingerprinting of grape volatile composition using secondary electrospray ionization orbitrap mass spectrometry: A preliminary study of grape ripening’, Food Control, 81, pp. 107–112. Available at: https://doi.org/10.1016/j.foodcont.2017.04.041.
Farrell, Ross R. et al. (2017) ‘Rapid fingerprinting of grape volatile composition using secondary electrospray ionization orbitrap mass spectrometry: A preliminary study of grape ripening’, Food Control, 81, pp. 107–112. Available at: https://doi.org/10.1016/j.foodcont.2017.04.041.
Gaugg, Martin Thomas et al. (2017) ‘Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath.’, Analytical chemistry. 14.09.2017, 89(19), pp. 10329–10334. Available at: https://doi.org/10.1021/acs.analchem.7b02092.
Gaugg, Martin Thomas et al. (2017) ‘Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath.’, Analytical chemistry. 14.09.2017, 89(19), pp. 10329–10334. Available at: https://doi.org/10.1021/acs.analchem.7b02092.
Tejero Rioseras, Alberto, Thomas Gaugg, Martin and Martinez-Lozano Sinues, Pablo (2017) ‘Secondary electrospray ionization proceeds via gas-phase chemical ionization’, ANALYTICAL METHODS. WOS.SCI, 9, pp. 5052–5057. Available at: https://doi.org/10.1039/c7ay01121k.
Tejero Rioseras, Alberto, Thomas Gaugg, Martin and Martinez-Lozano Sinues, Pablo (2017) ‘Secondary electrospray ionization proceeds via gas-phase chemical ionization’, ANALYTICAL METHODS. WOS.SCI, 9, pp. 5052–5057. Available at: https://doi.org/10.1039/c7ay01121k.
Gaugg, Martin T et al. (2017) ‘Metabolic effects of inhaled salbutamol determined by exhaled breath analysis.’, Journal of breath research. 13.09.2017, 11(4), p. 046004. Available at: https://doi.org/10.1088/1752-7163/aa7caa.
Gaugg, Martin T et al. (2017) ‘Metabolic effects of inhaled salbutamol determined by exhaled breath analysis.’, Journal of breath research. 13.09.2017, 11(4), p. 046004. Available at: https://doi.org/10.1088/1752-7163/aa7caa.
Gaisl, T. et al. (2017) ‘P205 Real-time exhaled breath analysis identifies altered metabolic signature in cystic fibrosis’, Chest, 151(5), p. A104. Available at: https://doi.org/10.1016/j.chest.2017.04.110.
Gaisl, T. et al. (2017) ‘P205 Real-time exhaled breath analysis identifies altered metabolic signature in cystic fibrosis’, Chest, 151(5), p. A104. Available at: https://doi.org/10.1016/j.chest.2017.04.110.
Gaugg, M.T. et al. (2017) ‘110 On-line breath analysis with secondary electrospray ionization discriminates between COPD patients with and without frequent exacerbations’, Chest, 151(5), p. A5. Available at: https://doi.org/10.1016/j.chest.2017.04.006.
Gaugg, M.T. et al. (2017) ‘110 On-line breath analysis with secondary electrospray ionization discriminates between COPD patients with and without frequent exacerbations’, Chest, 151(5), p. A5. Available at: https://doi.org/10.1016/j.chest.2017.04.006.
Nussbaumer-Ochsner, Y. et al. (2017) ‘P149 Targeted on-line breath analysis discriminates COPD patients vs. healthy controls and subjects suffering from asthma’, Chest, 151(5), pp. A46–A47. Available at: https://doi.org/10.1016/j.chest.2017.04.050.
Nussbaumer-Ochsner, Y. et al. (2017) ‘P149 Targeted on-line breath analysis discriminates COPD patients vs. healthy controls and subjects suffering from asthma’, Chest, 151(5), pp. A46–A47. Available at: https://doi.org/10.1016/j.chest.2017.04.050.
Sinues, P. et al. (2017) ‘119 Exhaled breath analysis by real-time mass spectrometry in patients with pulmonary fibrosis’, Chest, 151(5), p. A16. Available at: https://doi.org/10.1016/j.chest.2017.04.017.
Sinues, P. et al. (2017) ‘119 Exhaled breath analysis by real-time mass spectrometry in patients with pulmonary fibrosis’, Chest, 151(5), p. A16. Available at: https://doi.org/10.1016/j.chest.2017.04.017.
Martinez-Lozano Sinues P et al. (2017) ‘Gauging circadian variation in ketamine metabolism by real-time breath analysis.’, Chemical communications (Cambridge, England), 53(14), pp. 2264–2267. Available at: https://doi.org/10.1039/c6cc09061c.
Martinez-Lozano Sinues P et al. (2017) ‘Gauging circadian variation in ketamine metabolism by real-time breath analysis.’, Chemical communications (Cambridge, England), 53(14), pp. 2264–2267. Available at: https://doi.org/10.1039/c6cc09061c.
Singh KD et al. (2017) ‘Differential regulation of germ line apoptosis and germ cell differentiation by CPEB family members in C. elegans.’, PloS one, 12(7), p. e0182270. Available at: https://doi.org/10.1371/journal.pone.0182270.
Singh KD et al. (2017) ‘Differential regulation of germ line apoptosis and germ cell differentiation by CPEB family members in C. elegans.’, PloS one, 12(7), p. e0182270. Available at: https://doi.org/10.1371/journal.pone.0182270.
Tejero Rioseras, Alberto et al. (2017) ‘Comprehensive Real-Time Analysis of the Yeast Volatilome’, Scientific reports, 7(1), p. 14236. Available at: https://doi.org/10.1038/s41598-017-14554-y.
Tejero Rioseras, Alberto et al. (2017) ‘Comprehensive Real-Time Analysis of the Yeast Volatilome’, Scientific reports, 7(1), p. 14236. Available at: https://doi.org/10.1038/s41598-017-14554-y.
Barrios-Collado C. et al. (2016) ‘Real time read-out of plant metabolism’, Chimia, 70(9), p. 660. Available at: https://doi.org/10.2533/chimia.2016.660.
Barrios-Collado C. et al. (2016) ‘Real time read-out of plant metabolism’, Chimia, 70(9), p. 660. Available at: https://doi.org/10.2533/chimia.2016.660.
Gaisl, T. et al. (2016) ‘Real-time determination of slightly volatile amino acids in the exhalome by secondary electrospray ionization. A proof-of-principle study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2016.pa3551.
Gaisl, T. et al. (2016) ‘Real-time determination of slightly volatile amino acids in the exhalome by secondary electrospray ionization. A proof-of-principle study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2016.pa3551.
García-Gómez, Diego et al. (2016) ‘Secondary electrospray ionization coupled to high-resolution mass spectrometry reveals tryptophan pathway metabolites in exhaled human breath.’, Chemical communications (Cambridge, England), 52(55), pp. 8526–8. Available at: https://doi.org/10.1039/c6cc03070j.
García-Gómez, Diego et al. (2016) ‘Secondary electrospray ionization coupled to high-resolution mass spectrometry reveals tryptophan pathway metabolites in exhaled human breath.’, Chemical communications (Cambridge, England), 52(55), pp. 8526–8. Available at: https://doi.org/10.1039/c6cc03070j.
Barrios-Collado, César et al. (2016) ‘Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles.’, Analytical chemistry. 04.02.2016, 88(4), pp. 2406–12. Available at: https://doi.org/10.1021/acs.analchem.5b04452.
Barrios-Collado, César et al. (2016) ‘Capturing in Vivo Plant Metabolism by Real-Time Analysis of Low to High Molecular Weight Volatiles.’, Analytical chemistry. 04.02.2016, 88(4), pp. 2406–12. Available at: https://doi.org/10.1021/acs.analchem.5b04452.
Barrios-Collado C., Vidal-De-Miguel G. and Martinez-Lozano Sinues P. (2016) ‘Numerical modeling and experimental validation of a universal secondary electrospray ionization source for mass spectrometric gas analysis in real-time’, Sensors and Actuators, B: Chemical, 223, pp. 217–225. Available at: https://doi.org/10.1016/j.snb.2015.09.073.
Barrios-Collado C., Vidal-De-Miguel G. and Martinez-Lozano Sinues P. (2016) ‘Numerical modeling and experimental validation of a universal secondary electrospray ionization source for mass spectrometric gas analysis in real-time’, Sensors and Actuators, B: Chemical, 223, pp. 217–225. Available at: https://doi.org/10.1016/j.snb.2015.09.073.
Schwarz, Esther I et al. (2016) ‘Effects of CPAP therapy withdrawal on exhaled breath pattern in obstructive sleep apnoea.’, Thorax. 15.12.2015, 71(2), pp. 110–7. Available at: https://doi.org/10.1136/thoraxjnl-2015-207597.
Schwarz, Esther I et al. (2016) ‘Effects of CPAP therapy withdrawal on exhaled breath pattern in obstructive sleep apnoea.’, Thorax. 15.12.2015, 71(2), pp. 110–7. Available at: https://doi.org/10.1136/thoraxjnl-2015-207597.
García-Gómez, Diego et al. (2016) ‘Real-Time Quantification of Amino Acids in the Exhalome by Secondary Electrospray Ionization-Mass Spectrometry: A Proof-of-Principle Study’, Clinical chemistry, 62(9), pp. 1230–7. Available at: https://doi.org/10.1373/clinchem.2016.256909.
García-Gómez, Diego et al. (2016) ‘Real-Time Quantification of Amino Acids in the Exhalome by Secondary Electrospray Ionization-Mass Spectrometry: A Proof-of-Principle Study’, Clinical chemistry, 62(9), pp. 1230–7. Available at: https://doi.org/10.1373/clinchem.2016.256909.
Singh KD et al. (2016) ‘Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways.’, PloS one, 11(3), p. e0149418. Available at: https://doi.org/10.1371/journal.pone.0149418.
Singh KD et al. (2016) ‘Natural Genetic Variation Influences Protein Abundances in C. elegans Developmental Signalling Pathways.’, PloS one, 11(3), p. e0149418. Available at: https://doi.org/10.1371/journal.pone.0149418.
Trecate, Giovanna, Sinues, Pablo Martinez-Lozano and Orlandi, Rosaria (2016) ‘Noninvasive strategies for breast cancer early detection’, Future oncology (London, England), 12(11), pp. 1395–411. Available at: https://doi.org/10.2217/fon-2015-0071.
Trecate, Giovanna, Sinues, Pablo Martinez-Lozano and Orlandi, Rosaria (2016) ‘Noninvasive strategies for breast cancer early detection’, Future oncology (London, England), 12(11), pp. 1395–411. Available at: https://doi.org/10.2217/fon-2015-0071.
Bregy, Lukas et al. (2015) ‘Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry.’, Scientific reports. 19.10.2015, 5, p. 15163. Available at: https://doi.org/10.1038/srep15163.
Bregy, Lukas et al. (2015) ‘Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry.’, Scientific reports. 19.10.2015, 5, p. 15163. Available at: https://doi.org/10.1038/srep15163.
Martinez-Lozano Sinues, Pablo et al. (2015) ‘Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: a pilot study.’, Journal of breath research. 21.09.2015, 9(3), p. 031001. Available at: https://doi.org/10.1088/1752-7155/9/3/031001.
Martinez-Lozano Sinues, Pablo et al. (2015) ‘Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: a pilot study.’, Journal of breath research. 21.09.2015, 9(3), p. 031001. Available at: https://doi.org/10.1088/1752-7155/9/3/031001.
Li, Xue et al. (2015) ‘Drug Pharmacokinetics Determined by Real-Time Analysis of Mouse Breath.’, Angewandte Chemie (International ed. in English). 27.05.2015, 54(27), pp. 7815–8. Available at: https://doi.org/10.1002/anie.201503312.
Li, Xue et al. (2015) ‘Drug Pharmacokinetics Determined by Real-Time Analysis of Mouse Breath.’, Angewandte Chemie (International ed. in English). 27.05.2015, 54(27), pp. 7815–8. Available at: https://doi.org/10.1002/anie.201503312.
García-Gómez, Diego et al. (2015) ‘Identification of 2-alkenals, 4-hydroxy-2-alkenals, and 4-hydroxy-2,6-alkadienals in exhaled breath condensate by UHPLC-HRMS and in breath by real-time HRMS.’, Analytical chemistry. 13.02.2015, 87(5), pp. 3087–93. Available at: https://doi.org/10.1021/ac504796p.
García-Gómez, Diego et al. (2015) ‘Identification of 2-alkenals, 4-hydroxy-2-alkenals, and 4-hydroxy-2,6-alkadienals in exhaled breath condensate by UHPLC-HRMS and in breath by real-time HRMS.’, Analytical chemistry. 13.02.2015, 87(5), pp. 3087–93. Available at: https://doi.org/10.1021/ac504796p.
Sinues, P. M. L. and De La Mora, J. F. (2015) ‘Method to analyze and classify persons and organisms based on odor patterns from released vapors’.
Sinues, P. M. L. and De La Mora, J. F. (2015) ‘Method to analyze and classify persons and organisms based on odor patterns from released vapors’.
Frankevich V.E. et al. (2014) ‘Ion mobility spectrometry coupled to laser-induced fluorescence for probing the electronic structure and conformation of gas-phase ions’, Journal of Analytical Chemistry, 69(13), pp. 1215–1219. Available at: https://doi.org/10.1134/s106193481413005x.
Frankevich V.E. et al. (2014) ‘Ion mobility spectrometry coupled to laser-induced fluorescence for probing the electronic structure and conformation of gas-phase ions’, Journal of Analytical Chemistry, 69(13), pp. 1215–1219. Available at: https://doi.org/10.1134/s106193481413005x.
Ballabio, Claudia et al. (2014) ‘Rapid identification of bacteria in blood cultures by mass-spectrometric analysis of volatiles.’, Journal of clinical pathology. 09.05.2014, 67(8), pp. 743–6. Available at: https://doi.org/10.1136/jclinpath-2014-202301.
Ballabio, Claudia et al. (2014) ‘Rapid identification of bacteria in blood cultures by mass-spectrometric analysis of volatiles.’, Journal of clinical pathology. 09.05.2014, 67(8), pp. 743–6. Available at: https://doi.org/10.1136/jclinpath-2014-202301.
Dumlao M. et al. (2014) ‘Real-time detection of chemical warfare agent simulants in forensic samples using active capillary plasma ionization with benchtop and field-deployable mass spectrometers’, Analytical Methods, 6(11), pp. 3604–3609. Available at: https://doi.org/10.1039/c4ay00303a.
Dumlao M. et al. (2014) ‘Real-time detection of chemical warfare agent simulants in forensic samples using active capillary plasma ionization with benchtop and field-deployable mass spectrometers’, Analytical Methods, 6(11), pp. 3604–3609. Available at: https://doi.org/10.1039/c4ay00303a.
Barylyuk, Konstantin et al. (2014) ‘Mass spectrometry research at the Laboratory for Organic Chemistry, ETH Zurich’, Chimia, 68(3), pp. 119–23. Available at: https://doi.org/10.2533/chimia.2014.119.
Barylyuk, Konstantin et al. (2014) ‘Mass spectrometry research at the Laboratory for Organic Chemistry, ETH Zurich’, Chimia, 68(3), pp. 119–23. Available at: https://doi.org/10.2533/chimia.2014.119.
Bregy, Lukas et al. (2014) ‘Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry’, Journal of breath research, 8(2), p. 027102. Available at: https://doi.org/10.1088/1752-7155/8/2/027102.
Bregy, Lukas et al. (2014) ‘Real-time breath analysis with active capillary plasma ionization-ambient mass spectrometry’, Journal of breath research, 8(2), p. 027102. Available at: https://doi.org/10.1088/1752-7155/8/2/027102.
He, Jingjing et al. (2014) ‘Fingerprinting breast cancer vs. normal mammary cells by mass spectrometric analysis of volatiles’, Scientific Reports, 4, p. 5196. Available at: https://doi.org/10.1038/srep05196.
He, Jingjing et al. (2014) ‘Fingerprinting breast cancer vs. normal mammary cells by mass spectrometric analysis of volatiles’, Scientific Reports, 4, p. 5196. Available at: https://doi.org/10.1038/srep05196.
Martinez-Lozano Sinues, Pablo et al. (2014) ‘Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease.’, Respiration; international review of thoracic diseases. 19.02.2014, 87(4), pp. 301–10. Available at: https://doi.org/10.1159/000357785.
Martinez-Lozano Sinues, Pablo et al. (2014) ‘Breath analysis in real time by mass spectrometry in chronic obstructive pulmonary disease.’, Respiration; international review of thoracic diseases. 19.02.2014, 87(4), pp. 301–10. Available at: https://doi.org/10.1159/000357785.
Martinez-Lozano Sinues, Pablo et al. (2014) ‘Circadian variation of the human metabolome captured by real-time breath analysis.’, PloS one. 29.12.2014, 9(12), p. e114422. Available at: https://doi.org/10.1371/journal.pone.0114422.
Martinez-Lozano Sinues, Pablo et al. (2014) ‘Circadian variation of the human metabolome captured by real-time breath analysis.’, PloS one. 29.12.2014, 9(12), p. e114422. Available at: https://doi.org/10.1371/journal.pone.0114422.
Martinez-Lozano Sinues P., Kohler M. and Zenobi R. (2013) ‘Human Breath Analysis May Support the Existence of Individual Metabolic Phenotypes’, PLoS ONE, 8(4). Available at: https://doi.org/10.1371/journal.pone.0059909.
Martinez-Lozano Sinues P., Kohler M. and Zenobi R. (2013) ‘Human Breath Analysis May Support the Existence of Individual Metabolic Phenotypes’, PLoS ONE, 8(4). Available at: https://doi.org/10.1371/journal.pone.0059909.
Frankevich V. et al. (2013) ‘Ion mobility spectrometry coupled to laser-induced fluorescence’, Analytical Chemistry, 85(1), pp. 39–43. Available at: https://doi.org/10.1021/ac303137e.
Frankevich V. et al. (2013) ‘Ion mobility spectrometry coupled to laser-induced fluorescence’, Analytical Chemistry, 85(1), pp. 39–43. Available at: https://doi.org/10.1021/ac303137e.
Martínez-Lozano, Pablo et al. (2013) ‘Differential mobility analysis-mass spectrometry coupled to XCMS algorithm as a novel analytical platform for metabolic profiling’, Metabolomics, 9(SUPPL.1), pp. 30–43. Available at: https://doi.org/10.1007/s11306-011-0319-y.
Martínez-Lozano, Pablo et al. (2013) ‘Differential mobility analysis-mass spectrometry coupled to XCMS algorithm as a novel analytical platform for metabolic profiling’, Metabolomics, 9(SUPPL.1), pp. 30–43. Available at: https://doi.org/10.1007/s11306-011-0319-y.
Martinez-Lozano Sinues, Pablo, Kohler, Malcolm and Zenobi, Renato (2013) ‘Monitoring diurnal changes in exhaled human breath’, Analytical Chemistry, 85(1), pp. 369–73. Available at: https://doi.org/10.1021/ac3029097.
Martinez-Lozano Sinues, Pablo, Kohler, Malcolm and Zenobi, Renato (2013) ‘Monitoring diurnal changes in exhaled human breath’, Analytical Chemistry, 85(1), pp. 369–73. Available at: https://doi.org/10.1021/ac3029097.
Sinues P.M.-L., Zenobi R. and Kohler M. (2013) ‘Analysis of the exhalome: A diagnostic tool of the future’, Chest, 144(3), pp. 746–749. Available at: https://doi.org/10.1378/chest.13-1106.
Sinues P.M.-L., Zenobi R. and Kohler M. (2013) ‘Analysis of the exhalome: A diagnostic tool of the future’, Chest, 144(3), pp. 746–749. Available at: https://doi.org/10.1378/chest.13-1106.
Martinez-Lozano Sinues P., Criado E. and Vidal G. (2012) ‘Mechanistic study on the ionization of trace gases by an electrospray plume’, International Journal of Mass Spectrometry, 313, pp. 21–29. Available at: https://doi.org/10.1016/j.ijms.2011.12.010.
Martinez-Lozano Sinues P., Criado E. and Vidal G. (2012) ‘Mechanistic study on the ionization of trace gases by an electrospray plume’, International Journal of Mass Spectrometry, 313, pp. 21–29. Available at: https://doi.org/10.1016/j.ijms.2011.12.010.
Martinez-Lozano Sinues, Pablo et al. (2012) ‘Mass spectrometry fingerprinting coupled to National Institute of Standards and Technology Mass Spectral search algorithm for pattern recognition’, Analytica Chimica Acta, 755, pp. 28–36. Available at: https://doi.org/10.1016/j.aca.2012.10.018.
Martinez-Lozano Sinues, Pablo et al. (2012) ‘Mass spectrometry fingerprinting coupled to National Institute of Standards and Technology Mass Spectral search algorithm for pattern recognition’, Analytica Chimica Acta, 755, pp. 28–36. Available at: https://doi.org/10.1016/j.aca.2012.10.018.
Cristoni S. et al. (2009) ‘Letter to the editor’, Rapid Communications in Mass Spectrometry, 23(17), pp. 2839–2845. Available at: https://doi.org/10.1002/rcm.4180.
Cristoni S. et al. (2009) ‘Letter to the editor’, Rapid Communications in Mass Spectrometry, 23(17), pp. 2839–2845. Available at: https://doi.org/10.1002/rcm.4180.
Cristoni, Simone et al. (2009) ‘MALDI-MS-NIST library approach for colorectal cancer diagnosis’, Rapid Communications in Mass Spectrometry, 23(17), pp. 2839–45. Available at: https://doi.org/10.1002/rcm.4180.
Cristoni, Simone et al. (2009) ‘MALDI-MS-NIST library approach for colorectal cancer diagnosis’, Rapid Communications in Mass Spectrometry, 23(17), pp. 2839–45. Available at: https://doi.org/10.1002/rcm.4180.