[FG] Hutter Gregor
Publications
51 found
Show per page
Martins, Tomás A. et al. (2024) ‘Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-54129-w.
Martins, Tomás A. et al. (2024) ‘Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker’, Nature Communications, 15(1). Available at: https://doi.org/10.1038/s41467-024-54129-w.
Hench, J. et al. (2024) ‘Rapid brain lymphoma diagnostics through nanopore sequencing of cytology-negative cerebrospinal fluid’, Acta Neuropathologica, 148. Available at: https://doi.org/10.1007/s00401-024-02793-z.
Hench, J. et al. (2024) ‘Rapid brain lymphoma diagnostics through nanopore sequencing of cytology-negative cerebrospinal fluid’, Acta Neuropathologica, 148. Available at: https://doi.org/10.1007/s00401-024-02793-z.
Mironov, Aleksei et al. (2024) ‘Leveraging multi-omics data to infer regulators of mRNA 3’ end processing in glioblastoma’, Frontiers in Molecular Biosciences, 11. Available at: https://doi.org/10.3389/fmolb.2024.1363933.
Mironov, Aleksei et al. (2024) ‘Leveraging multi-omics data to infer regulators of mRNA 3’ end processing in glioblastoma’, Frontiers in Molecular Biosciences, 11. Available at: https://doi.org/10.3389/fmolb.2024.1363933.
Theocharides, Alexandre P. A., Hutter, Gregor and Saito, Yasuyuki (2024) ‘Editorial: The therapeutic inhibition of macrophage checkpoints’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1418281.
Theocharides, Alexandre P. A., Hutter, Gregor and Saito, Yasuyuki (2024) ‘Editorial: The therapeutic inhibition of macrophage checkpoints’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1418281.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.2.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.2.
Borisov, Vladislav et al. (2023) ‘Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential’, Bioengineering, 10. Available at: https://doi.org/10.3390/bioengineering10070800.
Borisov, Vladislav et al. (2023) ‘Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential’, Bioengineering, 10. Available at: https://doi.org/10.3390/bioengineering10070800.
Leu, S., Hutter, G. and Boulay, J.-L. (2023) ‘Proteome-based insights for IDH-mutant glioma classification’, Cell Reports Medicine, 4. Available at: https://doi.org/10.1016/j.xcrm.2022.100909.
Leu, S., Hutter, G. and Boulay, J.-L. (2023) ‘Proteome-based insights for IDH-mutant glioma classification’, Cell Reports Medicine, 4. Available at: https://doi.org/10.1016/j.xcrm.2022.100909.
Saemann, Attill et al. (2023) ‘Delayed headache 11 years after a pub fight: an unusual spontaneous intracerebral hemorrhage succeeding a temporal glass shard injury. Illustrative case’, Journal of Neurosurgery: Case Lessons. 04.09.2023, 6(10). Available at: https://doi.org/10.3171/case23364.
Saemann, Attill et al. (2023) ‘Delayed headache 11 years after a pub fight: an unusual spontaneous intracerebral hemorrhage succeeding a temporal glass shard injury. Illustrative case’, Journal of Neurosurgery: Case Lessons. 04.09.2023, 6(10). Available at: https://doi.org/10.3171/case23364.
Schmassmann, P. et al. (2023) ‘Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma’, Science Translational Medicine, 15. Available at: https://doi.org/10.1126/scitranslmed.adf5302.
Schmassmann, P. et al. (2023) ‘Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma’, Science Translational Medicine, 15. Available at: https://doi.org/10.1126/scitranslmed.adf5302.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.
Uzun, Sarp et al. (2023) ‘Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics’, Journal of Hepatology, 79, pp. 666–676. Available at: https://doi.org/10.1016/j.jhep.2023.05.020.
Uzun, Sarp et al. (2023) ‘Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics’, Journal of Hepatology, 79, pp. 666–676. Available at: https://doi.org/10.1016/j.jhep.2023.05.020.
Ho JQ et al. (2022) ‘The immune response to COVID-19: Does sex matter?’, Immunology, 166(4), pp. 429–443. Available at: https://doi.org/10.1111/imm.13487.
Ho JQ et al. (2022) ‘The immune response to COVID-19: Does sex matter?’, Immunology, 166(4), pp. 429–443. Available at: https://doi.org/10.1111/imm.13487.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery.’, Science advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery.’, Science advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Bigdelou B et al. (2022) ‘COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes.’, Frontiers in immunology, 13, p. 890517. Available at: https://doi.org/10.3389/fimmu.2022.890517.
Bigdelou B et al. (2022) ‘COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes.’, Frontiers in immunology, 13, p. 890517. Available at: https://doi.org/10.3389/fimmu.2022.890517.
Kasenda, B. et al. (2022) ‘Targeting immunoliposomes to EGFR-positive glioblastoma’, ESMO Open, 7. Available at: https://doi.org/10.1016/j.esmoop.2021.100365.
Kasenda, B. et al. (2022) ‘Targeting immunoliposomes to EGFR-positive glioblastoma’, ESMO Open, 7. Available at: https://doi.org/10.1016/j.esmoop.2021.100365.
Li, Aijun et al. (2022) ‘Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model’, Communications Biology, 5. Available at: https://doi.org/10.1038/s42003-022-04236-5.
Li, Aijun et al. (2022) ‘Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model’, Communications Biology, 5. Available at: https://doi.org/10.1038/s42003-022-04236-5.
Parmigiani, Elena et al. (2022) ‘Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells’, Developmental Cell, 57, pp. 1847–1865.e9. Available at: https://doi.org/10.1016/j.devcel.2022.06.006.
Parmigiani, Elena et al. (2022) ‘Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells’, Developmental Cell, 57, pp. 1847–1865.e9. Available at: https://doi.org/10.1016/j.devcel.2022.06.006.
Rychen, Jonathan et al. (2022) ‘The sylvian keyhole approach for surgical clipping of middle cerebral artery aneurysms: Technical nuance to the minipterional craniotomy’, Frontiers in Surgery, 9. Available at: https://doi.org/10.3389/fsurg.2022.1078735.
Rychen, Jonathan et al. (2022) ‘The sylvian keyhole approach for surgical clipping of middle cerebral artery aneurysms: Technical nuance to the minipterional craniotomy’, Frontiers in Surgery, 9. Available at: https://doi.org/10.3389/fsurg.2022.1078735.
Brkic S et al. (2021) ‘Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy’, Leukemia, 35(10), pp. 2875–2884. Available at: https://doi.org/10.1038/s41375-021-01391-2.
Brkic S et al. (2021) ‘Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy’, Leukemia, 35(10), pp. 2875–2884. Available at: https://doi.org/10.1038/s41375-021-01391-2.
Hofer S et al. (2021) ‘Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM)’, Swiss medical weekly, 151, p. w20501. Available at: https://doi.org/10.4414/smw.2021.20501.
Hofer S et al. (2021) ‘Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM)’, Swiss medical weekly, 151, p. w20501. Available at: https://doi.org/10.4414/smw.2021.20501.
Pantelyushin S. et al. (2021) ‘Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs’, Cancers, 13(4), pp. 1–18. Available at: https://doi.org/10.3390/cancers13040785.
Pantelyushin S. et al. (2021) ‘Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs’, Cancers, 13(4), pp. 1–18. Available at: https://doi.org/10.3390/cancers13040785.
Etter MM et al. (2021) ‘Treatment and Postinterventional Management of a Fusiform Intracranial Aneurysm in a Professional Soccer Player: A Case Report.’, 12. Available at: https://doi.org/10.3389/fneur.2021.732640.
Etter MM et al. (2021) ‘Treatment and Postinterventional Management of a Fusiform Intracranial Aneurysm in a Professional Soccer Player: A Case Report.’, 12. Available at: https://doi.org/10.3389/fneur.2021.732640.
Saleh C. et al. (2021) ‘The need for neuroimaging in first manifestations of psychiatric symptoms’, Surgical Neurology International, 12. Available at: https://doi.org/10.25259/sni_754_2021.
Saleh C. et al. (2021) ‘The need for neuroimaging in first manifestations of psychiatric symptoms’, Surgical Neurology International, 12. Available at: https://doi.org/10.25259/sni_754_2021.
Martins T.A. et al. (2020) ‘Microglia-Centered Combinatorial Strategies Against Glioblastoma’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.571951.
Martins T.A. et al. (2020) ‘Microglia-Centered Combinatorial Strategies Against Glioblastoma’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.571951.
Shekarian T et al. (2019) ‘Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade’, Science Translational Medicine, 11(515). Available at: https://doi.org/10.1126/scitranslmed.aat5025.
Shekarian T et al. (2019) ‘Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade’, Science Translational Medicine, 11(515). Available at: https://doi.org/10.1126/scitranslmed.aat5025.
Hutter G et al. (2019) ‘Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma’, Proceedings of the National Academy of Sciences of the United States of America, 116(3), pp. 997–1006. Available at: https://doi.org/10.1073/pnas.1721434116.
Hutter G et al. (2019) ‘Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma’, Proceedings of the National Academy of Sciences of the United States of America, 116(3), pp. 997–1006. Available at: https://doi.org/10.1073/pnas.1721434116.
Buser, Dominik P. et al. (2019) ‘Quantitative proteomics reveals reduction of endocytic machinery components in gliomas’, EBioMedicine, 46, pp. 32–41. Available at: https://doi.org/10.1016/j.ebiom.2019.07.039.
Buser, Dominik P. et al. (2019) ‘Quantitative proteomics reveals reduction of endocytic machinery components in gliomas’, EBioMedicine, 46, pp. 32–41. Available at: https://doi.org/10.1016/j.ebiom.2019.07.039.
Kahn S.A. et al. (2018) ‘Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06564-9.
Kahn S.A. et al. (2018) ‘Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06564-9.
Kahn SA et al. (2018) ‘Publisher Correction: Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma.’, 9(1). Available at: https://doi.org/10.1038/s41467-018-07182-1.
Kahn SA et al. (2018) ‘Publisher Correction: Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma.’, 9(1). Available at: https://doi.org/10.1038/s41467-018-07182-1.
Gregor Hutter (2017) ‘A POTENT MICROGLIAL RESPONSE TO BLOCKING THE CD47-SIRPα ANTI-PHAGOCYTIC AXIS OVERCOMES DEFICIENT MACROPHAGE RECRUITMENT DURING ANTI-CD47 IMMUNOTHERAPY AGAINST GLIOBLASTOMA’, in SNO Meeting. San Francisco (SNO Meeting). Available at: https://doi.org/10.1093/neuonc/nox168.994.
Gregor Hutter (2017) ‘A POTENT MICROGLIAL RESPONSE TO BLOCKING THE CD47-SIRPα ANTI-PHAGOCYTIC AXIS OVERCOMES DEFICIENT MACROPHAGE RECRUITMENT DURING ANTI-CD47 IMMUNOTHERAPY AGAINST GLIOBLASTOMA’, in SNO Meeting. San Francisco (SNO Meeting). Available at: https://doi.org/10.1093/neuonc/nox168.994.
Zanganeh S et al. (2017) ‘Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.’, Immunotherapy, 9(10), pp. 819–835. Available at: https://doi.org/10.2217/imt-2017-0041.
Zanganeh S et al. (2017) ‘Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.’, Immunotherapy, 9(10), pp. 819–835. Available at: https://doi.org/10.2217/imt-2017-0041.
Gordon SR et al. (2017) ‘PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity.’, Nature. 17.05.2017, 545(7655), pp. 495–499. Available at: https://doi.org/10.1038/nature22396.
Gordon SR et al. (2017) ‘PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity.’, Nature. 17.05.2017, 545(7655), pp. 495–499. Available at: https://doi.org/10.1038/nature22396.
Hutter,Gregor (2017) ‘Induction of differential macrophage and microglial glioblastoma phagocytosis by anti CD47 treatment - implication of tumor subtypes’, in WFNOS Meeting. Zürich (WFNOS Meeting). Available at: https://doi.org/10.1093/neuonc/nox036.003.
Hutter,Gregor (2017) ‘Induction of differential macrophage and microglial glioblastoma phagocytosis by anti CD47 treatment - implication of tumor subtypes’, in WFNOS Meeting. Zürich (WFNOS Meeting). Available at: https://doi.org/10.1093/neuonc/nox036.003.
Gholamin S et al. (2017) ‘Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors.’, Science translational medicine, 9(381). Available at: https://doi.org/10.1126/scitranslmed.aaf2968.
Gholamin S et al. (2017) ‘Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors.’, Science translational medicine, 9(381). Available at: https://doi.org/10.1126/scitranslmed.aaf2968.
Hutter G. et al. (2017) ‘Reverse phase protein arrays enable glioblastoma molecular subtyping.’, Journal of neuro-oncology, 131(3), pp. 437–448. Available at: https://doi.org/10.1007/s11060-016-2316-5.
Hutter G. et al. (2017) ‘Reverse phase protein arrays enable glioblastoma molecular subtyping.’, Journal of neuro-oncology, 131(3), pp. 437–448. Available at: https://doi.org/10.1007/s11060-016-2316-5.
Zanganeh S et al. (2016) ‘Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.’, Nature nanotechnology. 26.09.2016, 11(11), pp. 986–994. Available at: https://doi.org/10.1038/nnano.2016.168.
Zanganeh S et al. (2016) ‘Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.’, Nature nanotechnology. 26.09.2016, 11(11), pp. 986–994. Available at: https://doi.org/10.1038/nnano.2016.168.
Mitra S.S. et al. (2016) ‘Introduction: Cancer Stem Cells’, pp. 3–24. Available at: https://doi.org/10.1016/b978-0-12-803892-5.00001-2.
Mitra S.S. et al. (2016) ‘Introduction: Cancer Stem Cells’, pp. 3–24. Available at: https://doi.org/10.1016/b978-0-12-803892-5.00001-2.
Sailer, Martin H. et al. (2016) ‘An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery’, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (114), p. 54018. Available at: https://doi.org/10.3791/54018.
Sailer, Martin H. et al. (2016) ‘An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery’, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (114), p. 54018. Available at: https://doi.org/10.3791/54018.
Zhang M et al. (2016) ‘Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo.’, PloS one. 19.04.2016, 11(4), p. e0153550. Available at: https://doi.org/10.1371/journal.pone.0153550.
Zhang M et al. (2016) ‘Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo.’, PloS one. 19.04.2016, 11(4), p. e0153550. Available at: https://doi.org/10.1371/journal.pone.0153550.
Hutter G. et al. (2015) ‘Intracranial Interdigitating Dendritic Cell Sarcoma: First Case Report’, Neurosurgery, 77(6), pp. E979–E983. Available at: https://doi.org/10.1227/neu.0000000000000925.
Hutter G. et al. (2015) ‘Intracranial Interdigitating Dendritic Cell Sarcoma: First Case Report’, Neurosurgery, 77(6), pp. E979–E983. Available at: https://doi.org/10.1227/neu.0000000000000925.
Hutter,Gregor et al. (2014) ‘Extensive cervical prevertebral haemorrhage with airway obstruction after low-energy hyperextension injury’, Injury Extra, 45(8), pp. 53–55. Available at: https://doi.org/10.1016/j.injury.2014.04.030.
Hutter,Gregor et al. (2014) ‘Extensive cervical prevertebral haemorrhage with airway obstruction after low-energy hyperextension injury’, Injury Extra, 45(8), pp. 53–55. Available at: https://doi.org/10.1016/j.injury.2014.04.030.
Cordier, Dominik et al. (2014) ‘Expression of different neurokinin-1 receptor (NK1R) isoforms in glioblastoma multiforme: potential implications for targeted therapy’, Cancer Biotherapy and Radiopharmaceuticals, 29(5), pp. 221–6. Available at: https://doi.org/10.1089/cbr.2013.1588.
Cordier, Dominik et al. (2014) ‘Expression of different neurokinin-1 receptor (NK1R) isoforms in glioblastoma multiforme: potential implications for targeted therapy’, Cancer Biotherapy and Radiopharmaceuticals, 29(5), pp. 221–6. Available at: https://doi.org/10.1089/cbr.2013.1588.
Hutter G. et al. (2014) ‘Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: A randomized controlled trial - Clinical article’, Journal of Neurosurgery, 121(3), pp. 735–744. Available at: https://doi.org/10.3171/2014.6.jns131917.
Hutter G. et al. (2014) ‘Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: A randomized controlled trial - Clinical article’, Journal of Neurosurgery, 121(3), pp. 735–744. Available at: https://doi.org/10.3171/2014.6.jns131917.
Nuvolone M et al. (2013) ‘SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells.’, The Journal of experimental medicine, 210(12), pp. 2539–52. Available at: https://doi.org/10.1084/jem.20131274.
Nuvolone M et al. (2013) ‘SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells.’, The Journal of experimental medicine, 210(12), pp. 2539–52. Available at: https://doi.org/10.1084/jem.20131274.
Sailer, Martin H M et al. (2013) ‘Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling’, Journal of cell science, 126(Pt 16), pp. 3533–40. Available at: https://doi.org/10.1242/jcs.125757.
Sailer, Martin H M et al. (2013) ‘Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling’, Journal of cell science, 126(Pt 16), pp. 3533–40. Available at: https://doi.org/10.1242/jcs.125757.
Kranich, Jan et al. (2010) ‘Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner’, JOURNAL OF EXPERIMENTAL MEDICINE. WOS.SCI, 207, pp. 2271–2281. Available at: https://doi.org/10.1084/jem.20092401.
Kranich, Jan et al. (2010) ‘Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner’, JOURNAL OF EXPERIMENTAL MEDICINE. WOS.SCI, 207, pp. 2271–2281. Available at: https://doi.org/10.1084/jem.20092401.
Chen D et al. (2008) ‘The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration.’, Experimental gerontology. 30.08.2008, 43(12), pp. 1086–93. Available at: https://doi.org/10.1016/j.exger.2008.08.050.
Chen D et al. (2008) ‘The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration.’, Experimental gerontology. 30.08.2008, 43(12), pp. 1086–93. Available at: https://doi.org/10.1016/j.exger.2008.08.050.
Steele AD et al. (2008) ‘Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease.’, Proceedings of the National Academy of Sciences of the United States of America. 29.08.2008, 105(36), pp. 13626–31. Available at: https://doi.org/10.1073/pnas.0806319105.
Steele AD et al. (2008) ‘Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease.’, Proceedings of the National Academy of Sciences of the United States of America. 29.08.2008, 105(36), pp. 13626–31. Available at: https://doi.org/10.1073/pnas.0806319105.
Julius C et al. (2008) ‘Transcriptional stability of cultured cells upon prion infection.’, Journal of molecular biology. 12.11.2007, 375(5), pp. 1222–33. Available at: https://doi.org/10.1016/j.jmb.2007.11.003.
Julius C et al. (2008) ‘Transcriptional stability of cultured cells upon prion infection.’, Journal of molecular biology. 12.11.2007, 375(5), pp. 1222–33. Available at: https://doi.org/10.1016/j.jmb.2007.11.003.
Ingold B et al. (2006) ‘Abdominal seeding of an atypical teratoid/rhabdoid tumor of the pineal gland along a ventriculoperitoneal shunt catheter.’, 111(1). Available at: https://doi.org/10.1007/s00401-005-1112-7.
Ingold B et al. (2006) ‘Abdominal seeding of an atypical teratoid/rhabdoid tumor of the pineal gland along a ventriculoperitoneal shunt catheter.’, 111(1). Available at: https://doi.org/10.1007/s00401-005-1112-7.
Hutter G, Heppner FL and Aguzzi A (2003) ‘No superoxide dismutase activity of cellular prion protein in vivo.’, Biological chemistry, 384(9), pp. 1279–85. Available at: https://doi.org/10.1515/bc.2003.142.
Hutter G, Heppner FL and Aguzzi A (2003) ‘No superoxide dismutase activity of cellular prion protein in vivo.’, Biological chemistry, 384(9), pp. 1279–85. Available at: https://doi.org/10.1515/bc.2003.142.