[FG] Hutter Gregor
Publications
53 found
Show per page
Sabatino, V. et al. (2025) ‘Bifunctional Phagocytic Synapse Enhancers for Cancer Immunotherapy’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.13.642658.
Sabatino, V. et al. (2025) ‘Bifunctional Phagocytic Synapse Enhancers for Cancer Immunotherapy’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.13.642658.
Salem, M.A. et al. (2025) ‘Quantitative proteomic analysis reveals different functional subtypes among IDH-wildtype glioblastoma’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.09.25323141.
Salem, M.A. et al. (2025) ‘Quantitative proteomic analysis reveals different functional subtypes among IDH-wildtype glioblastoma’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2025.03.09.25323141.
Shekarian, Tala et al. (2025) ‘Multidimensional analysis of matched primary and recurrent glioblastoma identifies contributors to tumor recurrence influencing time to relapse’, Journal of neuropathology and experimental neurology, 84, pp. 45–58. Available at: https://doi.org/10.1093/jnen/nlae108.
Shekarian, Tala et al. (2025) ‘Multidimensional analysis of matched primary and recurrent glioblastoma identifies contributors to tumor recurrence influencing time to relapse’, Journal of neuropathology and experimental neurology, 84, pp. 45–58. Available at: https://doi.org/10.1093/jnen/nlae108.
Hench, J. et al. (2024) ‘Rapid brain lymphoma diagnostics through nanopore sequencing of cytology-negative cerebrospinal fluid’, Acta Neuropathologica, 148(1). Available at: https://doi.org/10.1007/s00401-024-02793-z.
Hench, J. et al. (2024) ‘Rapid brain lymphoma diagnostics through nanopore sequencing of cytology-negative cerebrospinal fluid’, Acta Neuropathologica, 148(1). Available at: https://doi.org/10.1007/s00401-024-02793-z.
Martins, Tomás A. et al. (2024) ‘Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker’, Nature Communications , 15(1). Available at: https://doi.org/10.1038/s41467-024-54129-w.
Martins, Tomás A. et al. (2024) ‘Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker’, Nature Communications , 15(1). Available at: https://doi.org/10.1038/s41467-024-54129-w.
Theocharides, Alexandre P. A., Hutter, Gregor and Saito, Yasuyuki (2024) ‘Editorial: The therapeutic inhibition of macrophage checkpoints’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1418281.
Theocharides, Alexandre P. A., Hutter, Gregor and Saito, Yasuyuki (2024) ‘Editorial: The therapeutic inhibition of macrophage checkpoints’, Frontiers in Immunology, 15. Available at: https://doi.org/10.3389/fimmu.2024.1418281.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/eLife.92678.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/eLife.92678.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.2.
Schmassmann, Philip et al. (2023) ‘Single-cell characterization of human GBM reveals regional differences in tumor-infiltrating leukocyte activation’, eLife, 12. Available at: https://doi.org/10.7554/elife.92678.2.
Martins, T.A. et al. (2023) Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.31.555122.
Martins, T.A. et al. (2023) Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.08.31.555122.
Saemann, Attill et al. (2023) ‘Delayed headache 11 years after a pub fight: an unusual spontaneous intracerebral hemorrhage succeeding a temporal glass shard injury. Illustrative case’, Journal of Neurosurgery: Case Lessons. 04.09.2023, 6(10). Available at: https://doi.org/10.3171/CASE23364.
Saemann, Attill et al. (2023) ‘Delayed headache 11 years after a pub fight: an unusual spontaneous intracerebral hemorrhage succeeding a temporal glass shard injury. Illustrative case’, Journal of Neurosurgery: Case Lessons. 04.09.2023, 6(10). Available at: https://doi.org/10.3171/CASE23364.
Uzun, Sarp et al. (2023) ‘Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics’, Journal of Hepatology, 79(3), pp. 666–676. Available at: https://doi.org/10.1016/j.jhep.2023.05.020.
Uzun, Sarp et al. (2023) ‘Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics’, Journal of Hepatology, 79(3), pp. 666–676. Available at: https://doi.org/10.1016/j.jhep.2023.05.020.
Borisov, Vladislav et al. (2023) ‘Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential’, Bioengineering, 10(7). Available at: https://doi.org/10.3390/bioengineering10070800.
Borisov, Vladislav et al. (2023) ‘Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential’, Bioengineering, 10(7). Available at: https://doi.org/10.3390/bioengineering10070800.
Shekarian, T. et al. (2023) Multidimensional analysis of matched primary and recurrent glioblastoma identifies Fcγ receptors upregulation on microglia as a contributor of tumor recurrence. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.04.21.537308.
Shekarian, T. et al. (2023) Multidimensional analysis of matched primary and recurrent glioblastoma identifies Fcγ receptors upregulation on microglia as a contributor of tumor recurrence. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.04.21.537308.
Leu, S., Hutter, G. and Boulay, J.-L. (2023) ‘Proteome-based insights for IDH-mutant glioma classification’, Cell Reports Medicine, 4(1). Available at: https://doi.org/10.1016/j.xcrm.2022.100909.
Leu, S., Hutter, G. and Boulay, J.-L. (2023) ‘Proteome-based insights for IDH-mutant glioma classification’, Cell Reports Medicine, 4(1). Available at: https://doi.org/10.1016/j.xcrm.2022.100909.
Schmassmann, P. et al. (2023) ‘Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma’, Science Translational Medicine, 15(705). Available at: https://doi.org/10.1126/scitranslmed.adf5302.
Schmassmann, P. et al. (2023) ‘Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma’, Science Translational Medicine, 15(705). Available at: https://doi.org/10.1126/scitranslmed.adf5302.
Li, Aijun et al. (2022) ‘Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model’, Communications Biology, 5(1). Available at: https://doi.org/10.1038/s42003-022-04236-5.
Li, Aijun et al. (2022) ‘Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model’, Communications Biology, 5(1). Available at: https://doi.org/10.1038/s42003-022-04236-5.
Ho JQ et al. (2022) ‘The immune response to COVID-19: Does sex matter?’, Immunology, 166(4), pp. 429–443. Available at: https://doi.org/10.1111/imm.13487.
Ho JQ et al. (2022) ‘The immune response to COVID-19: Does sex matter?’, Immunology, 166(4), pp. 429–443. Available at: https://doi.org/10.1111/imm.13487.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery’, Science Advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Shekarian T et al. (2022) ‘Immunotherapy of glioblastoma explants induces interferon-γ responses and spatial immune cell rearrangements in tumor center, but not periphery’, Science Advances, 8(26), p. eabn9440. Available at: https://doi.org/10.1126/sciadv.abn9440.
Bigdelou B et al. (2022) ‘COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes’, Frontiers in Immunology, 13, p. 890517. Available at: https://doi.org/10.3389/fimmu.2022.890517.
Bigdelou B et al. (2022) ‘COVID-19 and Preexisting Comorbidities: Risks, Synergies, and Clinical Outcomes’, Frontiers in Immunology, 13, p. 890517. Available at: https://doi.org/10.3389/fimmu.2022.890517.
Kasenda, B. et al. (2022) ‘Targeting immunoliposomes to EGFR-positive glioblastoma’, ESMO Open, 7(1). Available at: https://doi.org/10.1016/j.esmoop.2021.100365.
Kasenda, B. et al. (2022) ‘Targeting immunoliposomes to EGFR-positive glioblastoma’, ESMO Open, 7(1). Available at: https://doi.org/10.1016/j.esmoop.2021.100365.
Etter MM et al. (2022) ‘Treatment and Postinterventional Management of a Fusiform Intracranial Aneurysm in a Professional Soccer Player: A Case Report’, Frontiers in Neurology. Frontiers Media S.A., 12. Available at: https://doi.org/10.3389/fneur.2021.732640.
Etter MM et al. (2022) ‘Treatment and Postinterventional Management of a Fusiform Intracranial Aneurysm in a Professional Soccer Player: A Case Report’, Frontiers in Neurology. Frontiers Media S.A., 12. Available at: https://doi.org/10.3389/fneur.2021.732640.
Brkic S et al. (2021) ‘Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy’, Leukemia, 35(10), pp. 2875–2884. Available at: https://doi.org/10.1038/s41375-021-01391-2.
Brkic S et al. (2021) ‘Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy’, Leukemia, 35(10), pp. 2875–2884. Available at: https://doi.org/10.1038/s41375-021-01391-2.
Hofer S et al. (2021) ‘Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM)’, Swiss medical weekly, 151, p. w20501. Available at: https://doi.org/10.4414/smw.2021.20501.
Hofer S et al. (2021) ‘Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM)’, Swiss medical weekly, 151, p. w20501. Available at: https://doi.org/10.4414/smw.2021.20501.
Pantelyushin S. et al. (2021) ‘Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs’, Cancers, 13(4), pp. 1–18. Available at: https://doi.org/10.3390/cancers13040785.
Pantelyushin S. et al. (2021) ‘Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs’, Cancers, 13(4), pp. 1–18. Available at: https://doi.org/10.3390/cancers13040785.
Saleh C. et al. (2021) ‘The need for neuroimaging in first manifestations of psychiatric symptoms’, Surgical Neurology International, 12. Available at: https://doi.org/10.25259/SNI_754_2021.
Saleh C. et al. (2021) ‘The need for neuroimaging in first manifestations of psychiatric symptoms’, Surgical Neurology International, 12. Available at: https://doi.org/10.25259/SNI_754_2021.
Martins T.A. et al. (2020) ‘Microglia-Centered Combinatorial Strategies Against Glioblastoma’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.571951.
Martins T.A. et al. (2020) ‘Microglia-Centered Combinatorial Strategies Against Glioblastoma’, Frontiers in Immunology, 11. Available at: https://doi.org/10.3389/fimmu.2020.571951.
Shekarian T et al. (2019) ‘Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade’, Science Translational Medicine, 11(515). Available at: https://doi.org/10.1126/scitranslmed.aat5025.
Shekarian T et al. (2019) ‘Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade’, Science Translational Medicine, 11(515). Available at: https://doi.org/10.1126/scitranslmed.aat5025.
Hutter G et al. (2019) ‘Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma’, Proceedings of the National Academy of Sciences of the United States of America, 116(3), pp. 997–1006. Available at: https://doi.org/10.1073/pnas.1721434116.
Hutter G et al. (2019) ‘Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma’, Proceedings of the National Academy of Sciences of the United States of America, 116(3), pp. 997–1006. Available at: https://doi.org/10.1073/pnas.1721434116.
Buser, Dominik P. et al. (2019) ‘Quantitative proteomics reveals reduction of endocytic machinery components in gliomas’, EBioMedicine, 46, pp. 32–41. Available at: https://doi.org/10.1016/j.ebiom.2019.07.039.
Buser, Dominik P. et al. (2019) ‘Quantitative proteomics reveals reduction of endocytic machinery components in gliomas’, EBioMedicine, 46, pp. 32–41. Available at: https://doi.org/10.1016/j.ebiom.2019.07.039.
Kahn S.A. et al. (2018) ‘Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06564-9.
Kahn S.A. et al. (2018) ‘Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma’, Nature Communications, 9(1). Available at: https://doi.org/10.1038/s41467-018-06564-9.
Kahn SA et al. (2018) ‘Publisher Correction: Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma.’, 9(1). Available at: https://doi.org/10.1038/s41467-018-07182-1.
Kahn SA et al. (2018) ‘Publisher Correction: Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma.’, 9(1). Available at: https://doi.org/10.1038/s41467-018-07182-1.
Gregor Hutter (2017) ‘A POTENT MICROGLIAL RESPONSE TO BLOCKING THE CD47-SIRPα ANTI-PHAGOCYTIC AXIS OVERCOMES DEFICIENT MACROPHAGE RECRUITMENT DURING ANTI-CD47 IMMUNOTHERAPY AGAINST GLIOBLASTOMA’, in SNO Meeting. San Francisco (SNO Meeting). Available at: https://doi.org/10.1093/neuonc/nox168.994.
Gregor Hutter (2017) ‘A POTENT MICROGLIAL RESPONSE TO BLOCKING THE CD47-SIRPα ANTI-PHAGOCYTIC AXIS OVERCOMES DEFICIENT MACROPHAGE RECRUITMENT DURING ANTI-CD47 IMMUNOTHERAPY AGAINST GLIOBLASTOMA’, in SNO Meeting. San Francisco (SNO Meeting). Available at: https://doi.org/10.1093/neuonc/nox168.994.
Zanganeh S et al. (2017) ‘Tumor-associated macrophages, nanomedicine and imaging: The axis of success in the future of cancer immunotherapy’, Immunotherapy, 9(10), pp. 819–835. Available at: https://doi.org/10.2217/imt-2017-0041.
Zanganeh S et al. (2017) ‘Tumor-associated macrophages, nanomedicine and imaging: The axis of success in the future of cancer immunotherapy’, Immunotherapy, 9(10), pp. 819–835. Available at: https://doi.org/10.2217/imt-2017-0041.
Gordon SR et al. (2017) ‘PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity’, Nature. 17.05.2017, 545(7655), pp. 495–499. Available at: https://doi.org/10.1038/nature22396.
Gordon SR et al. (2017) ‘PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity’, Nature. 17.05.2017, 545(7655), pp. 495–499. Available at: https://doi.org/10.1038/nature22396.
Hutter,Gregor (2017) ‘Induction of differential macrophage and microglial glioblastoma phagocytosis by anti CD47 treatment - implication of tumor subtypes’, in WFNOS Meeting. Zürich (WFNOS Meeting). Available at: https://doi.org/10.1093/neuonc/nox036.003.
Hutter,Gregor (2017) ‘Induction of differential macrophage and microglial glioblastoma phagocytosis by anti CD47 treatment - implication of tumor subtypes’, in WFNOS Meeting. Zürich (WFNOS Meeting). Available at: https://doi.org/10.1093/neuonc/nox036.003.
Gholamin S et al. (2017) ‘Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors’, Science Translational Medicine, 9(381). Available at: https://doi.org/10.1126/scitranslmed.aaf2968.
Gholamin S et al. (2017) ‘Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors’, Science Translational Medicine, 9(381). Available at: https://doi.org/10.1126/scitranslmed.aaf2968.
Hutter G. et al. (2017) ‘Reverse phase protein arrays enable glioblastoma molecular subtyping’, Journal of Neuro-Oncology, 131(3), pp. 437–448. Available at: https://doi.org/10.1007/s11060-016-2316-5.
Hutter G. et al. (2017) ‘Reverse phase protein arrays enable glioblastoma molecular subtyping’, Journal of Neuro-Oncology, 131(3), pp. 437–448. Available at: https://doi.org/10.1007/s11060-016-2316-5.
Zanganeh S et al. (2016) ‘Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues’, Nature Nanotechnology. 26.09.2016, 11(11), pp. 986–994. Available at: https://doi.org/10.1038/nnano.2016.168.
Zanganeh S et al. (2016) ‘Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues’, Nature Nanotechnology. 26.09.2016, 11(11), pp. 986–994. Available at: https://doi.org/10.1038/nnano.2016.168.
Mitra S.S. et al. (2016) ‘Introduction: Cancer Stem Cells’, pp. 3–24. Available at: https://doi.org/10.1016/b978-0-12-803892-5.00001-2.
Mitra S.S. et al. (2016) ‘Introduction: Cancer Stem Cells’, pp. 3–24. Available at: https://doi.org/10.1016/b978-0-12-803892-5.00001-2.
Zhang M et al. (2016) ‘Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo’, PLoS ONE. 19.04.2016, 11(4), p. e0153550. Available at: https://doi.org/10.1371/journal.pone.0153550.
Zhang M et al. (2016) ‘Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo’, PLoS ONE. 19.04.2016, 11(4), p. e0153550. Available at: https://doi.org/10.1371/journal.pone.0153550.
Sailer, Martin H. et al. (2016) ‘An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery’, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (114), p. 54018. Available at: https://doi.org/10.3791/54018.
Sailer, Martin H. et al. (2016) ‘An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery’, JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (114), p. 54018. Available at: https://doi.org/10.3791/54018.
Hutter G. et al. (2015) ‘Intracranial Interdigitating Dendritic Cell Sarcoma: First Case Report’, Neurosurgery, 77(6), pp. E979–E983. Available at: https://doi.org/10.1227/neu.0000000000000925.
Hutter G. et al. (2015) ‘Intracranial Interdigitating Dendritic Cell Sarcoma: First Case Report’, Neurosurgery, 77(6), pp. E979–E983. Available at: https://doi.org/10.1227/neu.0000000000000925.
Cordier, Dominik et al. (2014) ‘Expression of different neurokinin-1 receptor (NK1R) isoforms in glioblastoma multiforme: potential implications for targeted therapy’, Cancer Biotherapy and Radiopharmaceuticals, 29(5), pp. 221–6. Available at: https://doi.org/10.1089/cbr.2013.1588.
Cordier, Dominik et al. (2014) ‘Expression of different neurokinin-1 receptor (NK1R) isoforms in glioblastoma multiforme: potential implications for targeted therapy’, Cancer Biotherapy and Radiopharmaceuticals, 29(5), pp. 221–6. Available at: https://doi.org/10.1089/cbr.2013.1588.
Hutter,Gregor et al. (2014) ‘Extensive cervical prevertebral haemorrhage with airway obstruction after low-energy hyperextension injury’, Injury Extra, 45(8), pp. 53–55. Available at: https://doi.org/10.1016/j.injury.2014.04.030.
Hutter,Gregor et al. (2014) ‘Extensive cervical prevertebral haemorrhage with airway obstruction after low-energy hyperextension injury’, Injury Extra, 45(8), pp. 53–55. Available at: https://doi.org/10.1016/j.injury.2014.04.030.
Hutter G. et al. (2014) ‘Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: A randomized controlled trial - Clinical article’, Journal of Neurosurgery, 121(3), pp. 735–744. Available at: https://doi.org/10.3171/2014.6.jns131917.
Hutter G. et al. (2014) ‘Risk factors for postoperative CSF leakage after elective craniotomy and the efficacy of fleece-bound tissue sealing against dural suturing alone: A randomized controlled trial - Clinical article’, Journal of Neurosurgery, 121(3), pp. 735–744. Available at: https://doi.org/10.3171/2014.6.jns131917.
Nuvolone M et al. (2013) ‘SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells’, Journal of Experimental Medicine, 210(12), pp. 2539–2552. Available at: https://doi.org/10.1084/jem.20131274.
Nuvolone M et al. (2013) ‘SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells’, Journal of Experimental Medicine, 210(12), pp. 2539–2552. Available at: https://doi.org/10.1084/jem.20131274.
Sailer, Martin H M et al. (2013) ‘Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling’, Journal of cell science, 126(Pt 16), pp. 3533–40. Available at: https://doi.org/10.1242/jcs.125757.
Sailer, Martin H M et al. (2013) ‘Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling’, Journal of cell science, 126(Pt 16), pp. 3533–40. Available at: https://doi.org/10.1242/jcs.125757.
Kranich, Jan et al. (2010) ‘Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner’, Journal of Experimental Medicine. WOS.SCI, 207(10), pp. 2271–2281. Available at: https://doi.org/10.1084/jem.20092401.
Kranich, Jan et al. (2010) ‘Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner’, Journal of Experimental Medicine. WOS.SCI, 207(10), pp. 2271–2281. Available at: https://doi.org/10.1084/jem.20092401.
Chen D et al. (2008) ‘The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration’, Experimental Gerontology. 30.08.2008, 43(12), pp. 1086–1093. Available at: https://doi.org/10.1016/j.exger.2008.08.050.
Chen D et al. (2008) ‘The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration’, Experimental Gerontology. 30.08.2008, 43(12), pp. 1086–1093. Available at: https://doi.org/10.1016/j.exger.2008.08.050.
Steele AD et al. (2008) ‘Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease’, Proceedings of the National Academy of Sciences of the United States of America. 29.08.2008, 105(36), pp. 13626–13631. Available at: https://doi.org/10.1073/pnas.0806319105.
Steele AD et al. (2008) ‘Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease’, Proceedings of the National Academy of Sciences of the United States of America. 29.08.2008, 105(36), pp. 13626–13631. Available at: https://doi.org/10.1073/pnas.0806319105.
Julius C et al. (2008) ‘Transcriptional Stability of Cultured Cells upon Prion Infection’, Journal of Molecular Biology. 12.11.2007, 375(5), pp. 1222–1233. Available at: https://doi.org/10.1016/j.jmb.2007.11.003.
Julius C et al. (2008) ‘Transcriptional Stability of Cultured Cells upon Prion Infection’, Journal of Molecular Biology. 12.11.2007, 375(5), pp. 1222–1233. Available at: https://doi.org/10.1016/j.jmb.2007.11.003.
Ingold B et al. (2006) ‘Abdominal seeding of an atypical teratoid/rhabdoid tumor of the pineal gland along a ventriculoperitoneal shunt catheter [2]’, 111(1). Available at: https://doi.org/10.1007/s00401-005-1112-7.
Ingold B et al. (2006) ‘Abdominal seeding of an atypical teratoid/rhabdoid tumor of the pineal gland along a ventriculoperitoneal shunt catheter [2]’, 111(1). Available at: https://doi.org/10.1007/s00401-005-1112-7.
Hutter G, Heppner FL and Aguzzi A (2003) ‘No superoxide dismutase activity of cellular prion protein in vivo’, Biological Chemistry, 384(9), pp. 1279–1285. Available at: https://doi.org/10.1515/BC.2003.142.
Hutter G, Heppner FL and Aguzzi A (2003) ‘No superoxide dismutase activity of cellular prion protein in vivo’, Biological Chemistry, 384(9), pp. 1279–1285. Available at: https://doi.org/10.1515/BC.2003.142.