Faculty of Science
Faculty of Science
UNIverse - Public Research Portal
Publications
37 found
Show per page
Figueira, J.S. et al. (2024) ‘SHALLOW GEOTHERMAL ENERGY SYSTEMS FOR DISTRICT HEATING AND COOLING NETWORKS: REVIEW AND TECHNOLOGICAL PROGRESSION THROUGH CASE STUDIES’, Renewable Energy, p. 121436. Available at: https://doi.org/10.1016/j.renene.2024.121436.
URLs
URLs
van Tiel, Marit et al. (2024) ‘Cryosphere–groundwater connectivity is a missing link in the mountain water cycle’, Nature Water. 19.07.2024, 2, pp. 624–637. Available at: https://doi.org/10.1038/s44221-024-00277-8.
URLs
URLs
Delottier, H., Schilling, O.S. and Therrien, R. (2024) ‘Assessing the impact of surface water and groundwater interactions for regional-scale simulations of water table elevation’, Journal of Hydrology, p. 131641. Available at: https://doi.org/10.1016/j.jhydrol.2024.131641.
URLs
URLs
Tang, Qi et al. (2024) ‘HGS-PDAF (version 1.0): A modular data assimilation framework for an integrated surface and subsurface hydrological model’, Geoscientific Model Development (GMD) [Preprint]. Available at: https://doi.org/10.5194/gmd-2023-229.
URLs
URLs
Blanc, T. et al. (2024) ‘Use of dissolved gases as tracers to study the impacts of floods and river works on Surface water – Groundwater interactions.’ Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-18189.
URLs
URLs
Epting, J. (2024) ‘Thermal management of urban groundwater resources - climate change, thermal potentials and opportunities’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-21533.
URLs
URLs
Epting, J. et al. (2024) ‘Measures to adapt to climate change and mitigate the impact of droughts in alluvial aquifers and rivers’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-16458.
URLs
URLs
Currle, F. et al. (2024) ‘Tracing and quantifying microbes in riverbank filtration sites combining online flow cytometry and integrated surface water – groundwater modelling’. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu24-10537.
URLs
URLs
Epting, J. et al. (2024) ‘Thermischer Einfluss von Untergrund-Bauten - Evaluierungsansätze und Nutzenpotenziale’, Aqua & Gas, 6(104), pp. 26–32. Available at: https://www.aquaetgas.ch/de/wasser/gew%C3%A4sser/20240603-hydraulischer-thermischer-einfluss-von-untergrundbauten/.
URLs
URLs
Epting, Jannis, Walde, Michel A. and Schilling, Oliver S. (2024) Herleitung «natürlicher» Grundwassertemperaturen & Definition Tiefengrundwasser - Hydrogeologische Grundlagen. . Translated by Bundesamt für Umwelt (BAFU), Abteilung Hydrologie. Basel: Angewandte und Umweltgeologie (AUG), Forschungsgruppe Hydrogeologie, Departement Umweltwissenschaft, p. 68.
Tang, Qi et al. (2024) ‘HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model’, Geoscientific Model Development, 17( 8 ), pp. 3559–3578. Available at: https://doi.org/10.5194/gmd-17-3559-2024.
URLs
URLs
Urycki, Dawn R. et al. (2024) ‘A new flow path: eDNA connecting hydrology and biology’, Wiley Interdisciplinary Reviews: Water, p. Early Access. Available at: https://doi.org/10.1002/wat2.1749.
URLs
URLs
Van Tiel, M. et al. (2024) ‘Cryosphere-groundwater connectivity in the mountain water cycle - where does meltwater go?’, in EGU General Assembly 2024. Vienna, Austria (EGU General Assembly 2024), pp. EGU24–4092. Available at: https://doi.org/10.5194/egusphere-egu24-4092.
URLs
URLs
Musy, S. et al. (2023) ‘Evaluating the impact of muon-induced cosmogenic 39Ar and 37Ar underground production on groundwater dating with field observations and numerical modeling’, Science of the Total Environment, 903. Available at: https://doi.org/10.1016/j.scitotenv.2023.166588.
URLs
URLs
Meyzonnat, G. et al. (2023) ‘Age distribution of groundwater in fractured aquifers of the St. Lawrence Lowlands (Canada) determined by environmental tracers (3H/3He, 85Kr, SF6, CFC-12, 14C) 加拿大St. Lawrence低地裂隙含水层根据环境示踪物 (3H/3He, 85Kr, SF6, CFC-12, 14C) 确定的年龄分布 Distribution des âges des eaux souterraines dans des aquifères fracturés des Basses terres du Saint-Laurent (Canada) déterminée par des traceurs environnementaux (3H/3He, 85Kr, SF6, CFC-12, 14C) Distribuição das idades da água subterrânea em aquíferos fraturados na Terras Baixas de St. Lawrence (Canadá) determinadas por traçadores ambientais (3H/3He, 85Kr, SF6, CFC-12, 14C) Distribución de la edad de las aguas subterráneas en acuíferos fracturados de St. Lawrence Lowlands (Canadá) determinada por trazadores ambientales (3H/3He, 85Kr, SF6, CFC-12, 14C)’, Hydrogeology Journal, 31(8), pp. 2139–2157. Available at: https://doi.org/10.1007/s10040-023-02671-0.
URLs
URLs
Musy, S. and Purtschert, R. (2023) ‘Reviewing 39Ar and 37Ar underground production in shallow depths with implications for groundwater dating’, Science of the Total Environment, 884. Available at: https://doi.org/10.1016/j.scitotenv.2023.163868.
URLs
URLs
Binder, M. et al. (2023) Surrogate-based implementation of sewer network structures into numerical heat transport models: First results of the Basel-City case study. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-11717.
URLs
URLs
Głogowski, A. et al. (2023) Inverse identification of soil properties at catchment scale via pilot point calibration of an integrated surface-subsurface hydrological model. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-8815.
URLs
URLs
Mustafa, S.M.T. et al. (2023) Making water models more inclusive and interdisciplinary to underpin sustainable development. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-16122.
URLs
URLs
Noethen, M. et al. (2023) Thermal impact of underground car parks on groundwater. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-2785.
URLs
URLs
Tang, Q. et al. (2023) A coupled data assimilation framework with an integrated surface and subsurface hydrological model. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu23-15189.
URLs
URLs
Lin, Y.-F.F. et al. (2023) ‘Groundwater: A Key Factor for Geothermal Energy Systems’, Groundwater, 61(2), pp. 159–160. Available at: https://doi.org/10.1111/gwat.13293.
URLs
URLs
Giroud, Sébastien et al. (2023) ‘New experimental approaches enabling the continuous monitoring of gas species in hydrothermal fluids’, Frontiers in Water, 4, p. 1032094. Available at: https://doi.org/10.3389/frwa.2022.1032094.
URLs
URLs
Schilling, O.S. and Schipanski, M. (2023) Celebrating the launch of Nature Water - Part 4: Focus on groundwater. Cassyni. Available at: https://doi.org/10.52843/cassyni.gxqlk9.
URLs
URLs
Epting, Jannis et al. (2023) ‘Climate change adaptation and mitigation measures for alluvial aquifers - Solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR)’, Water Research, 238, p. 119988. Available at: https://doi.org/10.1016/j.watres.2023.119988.
URLs
URLs
Epting, Jannis et al. (2023) ‘Anpassungsstrategien an den Klimawandel. Lösungsansätze zum Wärmemanagement von Grund- und Oberflächenwasserressourcen’, Aqua & Gas, 103(6), pp. 28–36. Available at: https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A31067.
URLs
URLs
Epting, Jannis et al. (2023) ‘Auswirkungen des Klimawandels auf Schweizer Lockergesteins-grundwasservorkommen – Eine quantitative Prognose mit Fokus auf natürliche und künstliche Grundwasserneubildung durch Oberflächenwasserinfiltration’, Wasser, Energie, Luft, (1)(115), pp. 37–44. Available at: https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A31775.
URLs
URLs
Moeck, Christian et al. (2023) ‘Grundwasser und Klimawandel’, Aqua Viva, 2(65), pp. 28–31.
Schilling, O.S. et al. (2023) ‘Editorial: Advances and emerging methods in tracer hydrogeology’, Frontiers in Water, 5. Available at: https://doi.org/10.3389/frwa.2023.1243114.
URLs
URLs
Schilling, O. S. et al. (2023) ‘Revisiting Mt. Fuji’s groundwater origins with helium, vanadium and eDNA tracers’, Nature Water, 1, pp. 60–73. Available at: https://doi.org/10.1038/s44221-022-00001-4.
URLs
URLs
Tomonaga, Y. et al. (2022) ‘Gas-bentonite interactions: Towards a better understanding of gas dynamics in Engineered Barrier Systems’, Applied Geochemistry, 138. Available at: https://doi.org/10.1016/j.apgeochem.2022.105205.
URLs
URLs
Delottier, Hugo et al. (2022) ‘Explicit simulation of environmental gas tracers with integrated surface and subsurface hydrological models’, Frontiers in Water, 4, p. 980030. Available at: https://doi.org/10.3389/frwa.2022.980030.
URLs
URLs
Moeck, Christian et al. (2022) ‘Grundwassermodellierung - Warum auch Modellunsicherheiten quantifiziert werden sollten’, Aqua & Gas, 7-8, pp. 27–33.
URLs
URLs
Schilling, O. S. et al. (2022) ‘Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration’, Geophysical Research Letters, 49(14), p. e2022GL098944. Available at: https://doi.org/10.1029/2022gl098944.
URLs
URLs
Michel, A. et al. (2021) River Temperature Evolution in Switzerland over the 21st Century. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu21-13001.
URLs
URLs
Olarinoye, T. et al. (2020) ‘Author Correction: Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater (Scientific Data, (2020), 7, 1, (59), 10.1038/s41597-019-0346-5)’, Scientific Data, 7(1). Available at: https://doi.org/10.1038/s41597-020-00590-3.
URLs
URLs
Previati, A., Crosta, G.B. and Epting, J. (2020) City-scale groundwater flow and heat transport modeling in the Milan Metropolitan Area. Copernicus GmbH. Available at: https://doi.org/10.5194/egusphere-egu2020-20306.
URLs
URLs