Experimental Physics (Warburton)
Publications
107 found
Show per page
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Tomm, Natasha et al. (2024) ‘Realization of a Coherent and Efficient One-Dimensional Atom’, Physical Review Letters. 21.08.2024, 133(8). Available at: https://doi.org/10.1103/physrevlett.133.083602.
Tomm, Natasha et al. (2024) ‘Realization of a Coherent and Efficient One-Dimensional Atom’, Physical Review Letters. 21.08.2024, 133(8). Available at: https://doi.org/10.1103/physrevlett.133.083602.
Erbe, M. et al. (2024) ‘Mo - Si superconducting nanowire single-photon detectors on Ga As’, Physical Review Applied. 29.07.2024, 22(1). Available at: https://doi.org/10.1103/physrevapplied.22.014072.
Erbe, M. et al. (2024) ‘Mo - Si superconducting nanowire single-photon detectors on Ga As’, Physical Review Applied. 29.07.2024, 22(1). Available at: https://doi.org/10.1103/physrevapplied.22.014072.
Spinnler, Clemens et al. (2024) ‘Quantum dot coupled to a suspended-beam mechanical resonator: From the unresolved- to the resolved-sideband regime’, Physical Review Applied. 21.03.2024, 21(3). Available at: https://doi.org/10.1103/physrevapplied.21.034046.
Spinnler, Clemens et al. (2024) ‘Quantum dot coupled to a suspended-beam mechanical resonator: From the unresolved- to the resolved-sideband regime’, Physical Review Applied. 21.03.2024, 21(3). Available at: https://doi.org/10.1103/physrevapplied.21.034046.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics [Preprint]. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics [Preprint]. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Gawarecki, Krzysztof et al. (2023) ‘Symmetry breaking via alloy disorder to explain radiative Auger transitions in self-assembled quantum dots’, Physical Review B. 07.12.2023, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235410.
Gawarecki, Krzysztof et al. (2023) ‘Symmetry breaking via alloy disorder to explain radiative Auger transitions in self-assembled quantum dots’, Physical Review B. 07.12.2023, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235410.
Nguyen, Giang N. et al. (2023) ‘Enhanced Electron-Spin Coherence in a GaAs Quantum Emitter’, Physical Review Letters. 22.11.2023, 131(21). Available at: https://doi.org/10.1103/physrevlett.131.210805.
Nguyen, Giang N. et al. (2023) ‘Enhanced Electron-Spin Coherence in a GaAs Quantum Emitter’, Physical Review Letters. 22.11.2023, 131(21). Available at: https://doi.org/10.1103/physrevlett.131.210805.
Javadi, Alisa et al. (2023) ‘Cavity-enhanced excitation of a quantum dot in the picosecond regime’, New Journal of Physics. 13.09.2023, 25(9), p. 093027. Available at: https://doi.org/10.1088/1367-2630/acf33b.
Javadi, Alisa et al. (2023) ‘Cavity-enhanced excitation of a quantum dot in the picosecond regime’, New Journal of Physics. 13.09.2023, 25(9), p. 093027. Available at: https://doi.org/10.1088/1367-2630/acf33b.
Antoniadis, Nadia O. et al. (2023) ‘Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds’, Nature Communications. 05.07.2023, 14. Available at: https://doi.org/10.1038/s41467-023-39568-1.
Antoniadis, Nadia O. et al. (2023) ‘Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds’, Nature Communications. 05.07.2023, 14. Available at: https://doi.org/10.1038/s41467-023-39568-1.
de Kruijf, Mathieu et al. (2023) ‘A compact and versatile cryogenic probe station for quantum device testing’, Review of Scientific Instruments, 94(5). Available at: https://doi.org/10.1063/5.0139825.
de Kruijf, Mathieu et al. (2023) ‘A compact and versatile cryogenic probe station for quantum device testing’, Review of Scientific Instruments, 94(5). Available at: https://doi.org/10.1063/5.0139825.
Tomm, Natasha et al. (2023) ‘Photon bound state dynamics from a single artificial atom’, Nature Physics. 20.03.2023, 19(6), pp. 857–862. Available at: https://doi.org/10.1038/s41567-023-01997-6.
Tomm, Natasha et al. (2023) ‘Photon bound state dynamics from a single artificial atom’, Nature Physics. 20.03.2023, 19(6), pp. 857–862. Available at: https://doi.org/10.1038/s41567-023-01997-6.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Antoniadis, Nadia O. et al. (2022) ‘A chiral one-dimensional atom using a quantum dot in an open microcavity’, npj Quantum Information, 8(1), p. 27. Available at: https://doi.org/10.1038/s41534-022-00545-z.
Antoniadis, Nadia O. et al. (2022) ‘A chiral one-dimensional atom using a quantum dot in an open microcavity’, npj Quantum Information, 8(1), p. 27. Available at: https://doi.org/10.1038/s41534-022-00545-z.
Bart, N. et al. (2022) ‘Wafer-scale epitaxial modulation of quantum dot density’, Nature Communications, 13(1), p. 1633. Available at: https://doi.org/10.1038/s41467-022-29116-8.
Bart, N. et al. (2022) ‘Wafer-scale epitaxial modulation of quantum dot density’, Nature Communications, 13(1), p. 1633. Available at: https://doi.org/10.1038/s41467-022-29116-8.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Flågan, Sigurd et al. (2022) ‘A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume’, Journal of Applied Physics, 131(11), p. 113102. Available at: https://doi.org/10.1063/5.0081577.
Flågan, Sigurd et al. (2022) ‘A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume’, Journal of Applied Physics, 131(11), p. 113102. Available at: https://doi.org/10.1063/5.0081577.
Sponfeldner, Lukas (2022) Controlling the excitonic response in two-dimensional semiconductors. . Translated by Warburton Richard. Dissertation. Universität Basel.
Sponfeldner, Lukas (2022) Controlling the excitonic response in two-dimensional semiconductors. . Translated by Warburton Richard. Dissertation. Universität Basel.
Zhai, Liang et al. (2022) ‘Quantum interference of identical photons from remote GaAs quantum dots’, Nature Nanotechnology, 17(8), pp. 829–833. Available at: https://doi.org/10.1038/s41565-022-01131-2.
Zhai, Liang et al. (2022) ‘Quantum interference of identical photons from remote GaAs quantum dots’, Nature Nanotechnology, 17(8), pp. 829–833. Available at: https://doi.org/10.1038/s41565-022-01131-2.
Appel, Martin Hayhurst et al. (2021) ‘Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions’, Physical Review Letters, 126(1), p. 013602. Available at: https://doi.org/10.1103/physrevlett.126.013602.
Appel, Martin Hayhurst et al. (2021) ‘Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions’, Physical Review Letters, 126(1), p. 013602. Available at: https://doi.org/10.1103/physrevlett.126.013602.
Babin, Hans Georg et al. (2021) ‘Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode’, Nanomaterials, 11(10), p. 2703. Available at: https://doi.org/10.3390/nano11102703.
Babin, Hans Georg et al. (2021) ‘Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode’, Nanomaterials, 11(10), p. 2703. Available at: https://doi.org/10.3390/nano11102703.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Flagan, Sigurd Somby (2021) An open Microcavity for Diamond-based Photonics. . Translated by Warburton Richard. Dissertation. Universität Basel.
Flagan, Sigurd Somby (2021) An open Microcavity for Diamond-based Photonics. . Translated by Warburton Richard. Dissertation. Universität Basel.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Leisgang, Nadine (2021) Electrical control of excitons in a gated two-dimensional semiconductor. . Translated by Warburton Richard. Dissertation. Universität Basel.
Leisgang, Nadine (2021) Electrical control of excitons in a gated two-dimensional semiconductor. . Translated by Warburton Richard. Dissertation. Universität Basel.
Najer, Daniel et al. (2021) ‘Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity’, Physical review applied, 15(4), p. 044004. Available at: https://doi.org/10.1103/physrevapplied.15.044004.
Najer, Daniel et al. (2021) ‘Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity’, Physical review applied, 15(4), p. 044004. Available at: https://doi.org/10.1103/physrevapplied.15.044004.
Spinnler, Clemens et al. (2021) ‘Optically driving the radiative Auger transition’, Nature Communications, 12(1), p. 6575. Available at: https://doi.org/10.1038/s41467-021-26875-8.
Spinnler, Clemens et al. (2021) ‘Optically driving the radiative Auger transition’, Nature Communications, 12(1), p. 6575. Available at: https://doi.org/10.1038/s41467-021-26875-8.
Tomm, Natasha (2021) A quantum dot in a microcavity as a bright source of coherent single photons. . Translated by Warburton Richard. Dissertation. Universität Basel.
Tomm, Natasha (2021) A quantum dot in a microcavity as a bright source of coherent single photons. . Translated by Warburton Richard. Dissertation. Universität Basel.
Tomm, Natasha et al. (2021) ‘A bright and fast source of coherent single photons’, Nature Nanotechnology, 16(4), pp. 399–403. Available at: https://doi.org/10.1038/s41565-020-00831-x.
Tomm, Natasha et al. (2021) ‘A bright and fast source of coherent single photons’, Nature Nanotechnology, 16(4), pp. 399–403. Available at: https://doi.org/10.1038/s41565-020-00831-x.
Tomm, Natasha et al. (2021) ‘Tuning the Mode Splitting of a Semiconductor Microcavity with Uniaxial Stress’, Physical Review Applied, 15(5), p. 054061. Available at: https://doi.org/10.1103/physrevapplied.15.054061.
Tomm, Natasha et al. (2021) ‘Tuning the Mode Splitting of a Semiconductor Microcavity with Uniaxial Stress’, Physical Review Applied, 15(5), p. 054061. Available at: https://doi.org/10.1103/physrevapplied.15.054061.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Zhai, Liang (2021) Low-noise GaAs quantum dots. . Translated by Warburton Richard. Dissertation. Universität Basel.
Zhai, Liang (2021) Low-noise GaAs quantum dots. . Translated by Warburton Richard. Dissertation. Universität Basel.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Leisgang, Nadine et al. (2020) ‘Giant Stark splitting of an exciton in bilayer MoS2’, Nature Nanotechnology, 15(11), pp. 901–907. Available at: https://doi.org/10.1038/s41565-020-0750-1.
Leisgang, Nadine et al. (2020) ‘Giant Stark splitting of an exciton in bilayer MoS2’, Nature Nanotechnology, 15(11), pp. 901–907. Available at: https://doi.org/10.1038/s41565-020-0750-1.
Löbl, Matthias Christian (2020) Excitons in quantum dots and design of their environment. . Translated by Warburton Richard. Dissertation. Universität Basel.
Löbl, Matthias Christian (2020) Excitons in quantum dots and design of their environment. . Translated by Warburton Richard. Dissertation. Universität Basel.
Lobl, Matthias C. et al. (2020) ‘Radiative Auger process in the single-photon limit’, Nature Nanotechnology, 15(7), pp. 558–562. Available at: https://doi.org/10.1038/s41565-020-0697-2.
Lobl, Matthias C. et al. (2020) ‘Radiative Auger process in the single-photon limit’, Nature Nanotechnology, 15(7), pp. 558–562. Available at: https://doi.org/10.1038/s41565-020-0697-2.
Paradisanos, Ioannis et al. (2020) ‘Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition’, Nature Communications, 11(1), p. 2391. Available at: https://doi.org/10.1038/s41467-020-16023-z.
Paradisanos, Ioannis et al. (2020) ‘Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition’, Nature Communications, 11(1), p. 2391. Available at: https://doi.org/10.1038/s41467-020-16023-z.
Pedersen, Freja T. et al. (2020) ‘Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide’, ACS Photonics, 7(9), pp. 2343–2349. Available at: https://doi.org/10.1021/acsphotonics.0c00758.
Pedersen, Freja T. et al. (2020) ‘Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide’, ACS Photonics, 7(9), pp. 2343–2349. Available at: https://doi.org/10.1021/acsphotonics.0c00758.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Uppu, Ravitej et al. (2020) ‘On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source’, Nature Communications, 11(1), p. 3782. Available at: https://doi.org/10.1038/s41467-020-17603-9.
Uppu, Ravitej et al. (2020) ‘On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source’, Nature Communications, 11(1), p. 3782. Available at: https://doi.org/10.1038/s41467-020-17603-9.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Zhai, Liang et al. (2020) ‘Low-noise GaAs quantum dots for quantum photonics’, Nature Communications, 11(1), p. 4745. Available at: https://doi.org/10.1038/s41467-020-18625-z.
Zhai, Liang et al. (2020) ‘Low-noise GaAs quantum dots for quantum photonics’, Nature Communications, 11(1), p. 4745. Available at: https://doi.org/10.1038/s41467-020-18625-z.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Caloz, Misael et al. (2019) ‘Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors’, Journal of Applied Physics, 126(16), p. 164501. Available at: https://doi.org/10.1063/1.5113748.
Caloz, Misael et al. (2019) ‘Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors’, Journal of Applied Physics, 126(16), p. 164501. Available at: https://doi.org/10.1063/1.5113748.
Ding, Dapeng et al. (2019) ‘Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface’, Physical review applied, 11(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.11.031002.
Ding, Dapeng et al. (2019) ‘Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface’, Physical review applied, 11(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.11.031002.
Loebl, Matthias C. et al. (2019) ‘Excitons in InGaAs quantum dots without electron wetting layer states’, Communications Physics, 2, p. 93. Available at: https://doi.org/10.1038/s42005-019-0194-9.
Loebl, Matthias C. et al. (2019) ‘Excitons in InGaAs quantum dots without electron wetting layer states’, Communications Physics, 2, p. 93. Available at: https://doi.org/10.1038/s42005-019-0194-9.
Loebl, Matthias C. et al. (2019) ‘Correlations between optical properties and Voronoi-cell area of quantum dots’, Physical Review B, 100(15), p. 155402. Available at: https://doi.org/10.1103/physrevb.100.155402.
Loebl, Matthias C. et al. (2019) ‘Correlations between optical properties and Voronoi-cell area of quantum dots’, Physical Review B, 100(15), p. 155402. Available at: https://doi.org/10.1103/physrevb.100.155402.
Najer, Daniel (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. . Translated by Warburton Richard. Dissertation. Universität Basel.
Najer, Daniel (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. . Translated by Warburton Richard. Dissertation. Universität Basel.
Najer, Daniel et al. (2019) ‘A gated quantum dot strongly coupled to an optical microcavity’, Nature, 575(7784), p. 622–+. Available at: https://doi.org/10.1038/s41586-019-1709-y.
Najer, Daniel et al. (2019) ‘A gated quantum dot strongly coupled to an optical microcavity’, Nature, 575(7784), p. 622–+. Available at: https://doi.org/10.1038/s41586-019-1709-y.
Roch, Jonas Gael (2019) Spin-Polarized Electrons in Monolayer MoS2. . Translated by Warburton Richard. Dissertation. Universität Basel.
Roch, Jonas Gael (2019) Spin-Polarized Electrons in Monolayer MoS2. . Translated by Warburton Richard. Dissertation. Universität Basel.
Roch, Jonas Gael et al. (2019) ‘Spin-polarized electrons in monolayer MoS2’, Nature Nanotechnology, 14(5), pp. 432–436. Available at: https://doi.org/10.1038/s41565-019-0397-y.
Roch, Jonas Gael et al. (2019) ‘Spin-polarized electrons in monolayer MoS2’, Nature Nanotechnology, 14(5), pp. 432–436. Available at: https://doi.org/10.1038/s41565-019-0397-y.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Javadi, Alisa et al. (2018) ‘Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide’, Nature Nanotechnology, 13(5), pp. 398–403. Available at: https://doi.org/10.1038/s41565-018-0091-5.
Javadi, Alisa et al. (2018) ‘Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide’, Nature Nanotechnology, 13(5), pp. 398–403. Available at: https://doi.org/10.1038/s41565-018-0091-5.
Kaldewey, Timo et al. (2018) ‘Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch’, Nature Photonics, 12(2), p. 68–+. Available at: https://doi.org/10.1038/s41566-017-0079-y.
Kaldewey, Timo et al. (2018) ‘Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch’, Nature Photonics, 12(2), p. 68–+. Available at: https://doi.org/10.1038/s41566-017-0079-y.
Leisgang, Nadine et al. (2018) ‘Optical second harmonic generation in encapsulated single-layer InSe’, AIP Advances, 8(10), p. 105120. Available at: https://doi.org/10.1063/1.5052417.
Leisgang, Nadine et al. (2018) ‘Optical second harmonic generation in encapsulated single-layer InSe’, AIP Advances, 8(10), p. 105120. Available at: https://doi.org/10.1063/1.5052417.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Thyrrestrup, Henri et al. (2018) ‘Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide’, Nano Letters, 18(3), pp. 1801–1806. Available at: https://doi.org/10.1021/acs.nanolett.7b05016.
Thyrrestrup, Henri et al. (2018) ‘Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide’, Nano Letters, 18(3), pp. 1801–1806. Available at: https://doi.org/10.1021/acs.nanolett.7b05016.
Ludwig, A. et al. (2017) ‘Ultra-low charge and spin noise in self-assembled quantum dots’, Journal of Crystal Growth, 477, pp. 193–196. Available at: https://doi.org/10.1016/j.jcrysgro.2017.05.008.
Ludwig, A. et al. (2017) ‘Ultra-low charge and spin noise in self-assembled quantum dots’, Journal of Crystal Growth, 477, pp. 193–196. Available at: https://doi.org/10.1016/j.jcrysgro.2017.05.008.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Kaldewey, Timo et al. (2017) ‘Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation’, Physical Review B, 95(24), p. 241306. Available at: https://doi.org/10.1103/physrevb.95.241306.
Kaldewey, Timo et al. (2017) ‘Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation’, Physical Review B, 95(24), p. 241306. Available at: https://doi.org/10.1103/physrevb.95.241306.
Kaldewey, Timo et al. (2017) ‘Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage’, Physical Review B, 95(16), p. 161302. Available at: https://doi.org/10.1103/physrevb.95.161302.
Kaldewey, Timo et al. (2017) ‘Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage’, Physical Review B, 95(16), p. 161302. Available at: https://doi.org/10.1103/physrevb.95.161302.
Kirsanske, Gabija et al. (2017) ‘Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide’, Physical Review B, 96(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.96.165306.
Kirsanske, Gabija et al. (2017) ‘Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide’, Physical Review B, 96(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.96.165306.
Loebl, Matthias C. et al. (2017) ‘Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode’, Physical Review B, 96(16), p. 165440. Available at: https://doi.org/10.1103/physrevb.96.165440.
Loebl, Matthias C. et al. (2017) ‘Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode’, Physical Review B, 96(16), p. 165440. Available at: https://doi.org/10.1103/physrevb.96.165440.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Najer, Daniel et al. (2017) ‘Fabrication of mirror templates in silica with micron-sized radii of curvature’, Applied Physics Letters, 110(1), p. 011101. Available at: https://doi.org/10.1063/1.4973458.
Najer, Daniel et al. (2017) ‘Fabrication of mirror templates in silica with micron-sized radii of curvature’, Applied Physics Letters, 110(1), p. 011101. Available at: https://doi.org/10.1063/1.4973458.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Warburton, Richard (2017) ‘A Self-assembled Quantum Dot as Single Photon Source and Spin Qubit: Charge Noise and Spin Noise’, in Michler, Peter (ed.) Quantum Dots for Quantum Information Technologies. Cham, Switzerland: Springer (Nano-Optics and Nanophotonics), pp. 287–323. Available at: https://doi.org/10.1007/978-3-319-56378-7_9.
Warburton, Richard (2017) ‘A Self-assembled Quantum Dot as Single Photon Source and Spin Qubit: Charge Noise and Spin Noise’, in Michler, Peter (ed.) Quantum Dots for Quantum Information Technologies. Cham, Switzerland: Springer (Nano-Optics and Nanophotonics), pp. 287–323. Available at: https://doi.org/10.1007/978-3-319-56378-7_9.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Heath, Robert M. et al. (2016) ‘A tunable fiber-coupled optical cavity for agile enhancement of detector absorption’, Journal of Applied Physics, 120(11), p. 113101. Available at: https://doi.org/10.1063/1.4962456.
Heath, Robert M. et al. (2016) ‘A tunable fiber-coupled optical cavity for agile enhancement of detector absorption’, Journal of Applied Physics, 120(11), p. 113101. Available at: https://doi.org/10.1063/1.4962456.
Prechtel, Jonathan H. et al. (2016) ‘Decoupling a hole spin qubit from the nuclear spins’, Nature Materials, 15(9), pp. 981–6. Available at: https://doi.org/10.1038/nmat4704.
Prechtel, Jonathan H. et al. (2016) ‘Decoupling a hole spin qubit from the nuclear spins’, Nature Materials, 15(9), pp. 981–6. Available at: https://doi.org/10.1038/nmat4704.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Wüst, G. et al. (2016) ‘Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot’, Nature Nanotechnology, 11(10), pp. 885–889. Available at: https://doi.org/10.1038/nnano.2016.114.
Greuter, Lukas (2015) Self{assembled quantum dots in a fully tunable microcavity. . Translated by Warburton Richard. Dissertation. Universität Basel.
Greuter, Lukas (2015) Self{assembled quantum dots in a fully tunable microcavity. . Translated by Warburton Richard. Dissertation. Universität Basel.
Greuter, Lukas et al. (2015) ‘Epitaxial lift-off for solid-state cavity quantum electrodynamics’, Journal of applied physics, 118(7), p. 075705. Available at: https://doi.org/10.1063/1.4928769.
Greuter, Lukas et al. (2015) ‘Epitaxial lift-off for solid-state cavity quantum electrodynamics’, Journal of applied physics, 118(7), p. 075705. Available at: https://doi.org/10.1063/1.4928769.
Greuter, Lukas et al. (2015) ‘Towards high-cooperativity strong coupling of a quantum dot in a tunable microcavity’, Physical Review B, 92(4), p. 045302. Available at: https://doi.org/10.1103/physrevb.92.045302.
Greuter, Lukas et al. (2015) ‘Towards high-cooperativity strong coupling of a quantum dot in a tunable microcavity’, Physical Review B, 92(4), p. 045302. Available at: https://doi.org/10.1103/physrevb.92.045302.
Jahn, Jan-Philipp et al. (2015) ‘An artificial Rb atom in a semiconductor with lifetime-limited linewidth’, Physical Review B, 92(24), p. 245439. Available at: https://doi.org/10.1103/physrevb.92.245439.
Jahn, Jan-Philipp et al. (2015) ‘An artificial Rb atom in a semiconductor with lifetime-limited linewidth’, Physical Review B, 92(24), p. 245439. Available at: https://doi.org/10.1103/physrevb.92.245439.
Kuhlmann, Andreas V et al. (2015) ‘Transform-limited single photons from a single quantum dot’, Nature communications, 6, p. 8204. Available at: https://doi.org/10.1038/ncomms9204.
Kuhlmann, Andreas V et al. (2015) ‘Transform-limited single photons from a single quantum dot’, Nature communications, 6, p. 8204. Available at: https://doi.org/10.1038/ncomms9204.
Prechtel, Jonathan (2015) The hole spin in a semiconductor quantum dot. . Translated by Warburton Richard. Dissertation. Universität Basel.
Prechtel, Jonathan (2015) The hole spin in a semiconductor quantum dot. . Translated by Warburton Richard. Dissertation. Universität Basel.
Prechtel, Jonathan H. et al. (2015) ‘Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations’, Physical Review B, 91(16), p. 165304. Available at: https://doi.org/10.1103/physrevb.91.165304.
Prechtel, Jonathan H. et al. (2015) ‘Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations’, Physical Review B, 91(16), p. 165304. Available at: https://doi.org/10.1103/physrevb.91.165304.
Wüst, Gunter (2015) Nuclear magnetic resonance on a single quantum dot and a quantum dot in a nanowire system: quantum photonics and opto-mechanical coupling. . Translated by Warburton Richard. Dissertation. Universität Basel.
Wüst, Gunter (2015) Nuclear magnetic resonance on a single quantum dot and a quantum dot in a nanowire system: quantum photonics and opto-mechanical coupling. . Translated by Warburton Richard. Dissertation. Universität Basel.
Greuter, Lukas et al. (2014) ‘A small mode volume tunable microcavity: development and characterization’, Applied Physics Letters, 105(12), p. 121105. Available at: https://doi.org/10.1063/1.4896415.
Greuter, Lukas et al. (2014) ‘A small mode volume tunable microcavity: development and characterization’, Applied Physics Letters, 105(12), p. 121105. Available at: https://doi.org/10.1063/1.4896415.
Heath, Robert M. et al. (2014) ‘Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector’, Applied physics letters, 104(6), p. 063503. Available at: https://doi.org/10.1063/1.4865199.
Heath, Robert M. et al. (2014) ‘Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector’, Applied physics letters, 104(6), p. 063503. Available at: https://doi.org/10.1063/1.4865199.
Houel, Julien et al. (2014) ‘High Resolution Coherent Population Trapping on a Single Hole Spin in a Semiconductor Quantum Dot’, Physical review letters, 112(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.112.107401.
Houel, Julien et al. (2014) ‘High Resolution Coherent Population Trapping on a Single Hole Spin in a Semiconductor Quantum Dot’, Physical review letters, 112(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.112.107401.
Riedel, Daniel et al. (2014) ‘Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond’, Physical review applied, 2(6). Available at: https://doi.org/10.1103/physrevapplied.2.064011.
Riedel, Daniel et al. (2014) ‘Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond’, Physical review applied, 2(6). Available at: https://doi.org/10.1103/physrevapplied.2.064011.
Heiss, M et al. (2013) ‘Self-assembled quantum dots in a nanowire system for quantum photonics’, Nature materials, 12(5), pp. 439–44. Available at: https://doi.org/10.1038/nmat3557.
Heiss, M et al. (2013) ‘Self-assembled quantum dots in a nanowire system for quantum photonics’, Nature materials, 12(5), pp. 439–44. Available at: https://doi.org/10.1038/nmat3557.
Kuhlmann, Andreas V. et al. (2013) ‘A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode’, Review of scientific instruments, 84(7), p. 073905. Available at: https://doi.org/10.1063/1.4813879.
Kuhlmann, Andreas V. et al. (2013) ‘A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode’, Review of scientific instruments, 84(7), p. 073905. Available at: https://doi.org/10.1063/1.4813879.
Kuhlmann, Andreas V. et al. (2013) ‘Charge noise and spin noise in a semiconductor quantum device’, Nature Physics, 9(9), pp. 570–575. Available at: https://doi.org/10.1038/nphys2688.
Kuhlmann, Andreas V. et al. (2013) ‘Charge noise and spin noise in a semiconductor quantum device’, Nature Physics, 9(9), pp. 570–575. Available at: https://doi.org/10.1038/nphys2688.
Prechtel, Jonathan H. et al. (2013) ‘Frequency-Stabilized Source of Single Photons from a Solid-State Qubit’, Physical review X, 3(4), p. 041006. Available at: https://doi.org/10.1103/physrevx.3.041006.
Prechtel, Jonathan H. et al. (2013) ‘Frequency-Stabilized Source of Single Photons from a Solid-State Qubit’, Physical review X, 3(4), p. 041006. Available at: https://doi.org/10.1103/physrevx.3.041006.
Rakher, Matthew T., Warburton, Richard J. and Treutlein, Philipp (2013) ‘Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble’, Physical review. A, Atomic, Molecular, and Optical Physics, 88(5), p. 053834. Available at: https://doi.org/10.1103/physreva.88.053834.
Rakher, Matthew T., Warburton, Richard J. and Treutlein, Philipp (2013) ‘Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble’, Physical review. A, Atomic, Molecular, and Optical Physics, 88(5), p. 053834. Available at: https://doi.org/10.1103/physreva.88.053834.
Sapienza, Luca et al. (2013) ‘Exciton fine-structure splitting of telecom-wavelength single quantum dots : Statistics and external strain tuning’, Physical review. B, Condensed matter and materials physics, 88(15), p. 155330. Available at: https://doi.org/10.1103/physrevb.88.155330.
Sapienza, Luca et al. (2013) ‘Exciton fine-structure splitting of telecom-wavelength single quantum dots : Statistics and external strain tuning’, Physical review. B, Condensed matter and materials physics, 88(15), p. 155330. Available at: https://doi.org/10.1103/physrevb.88.155330.
Warburton, Richard J (2013) ‘Single spins in self-assembled quantum dots’, Nature materials, 12(6), pp. 483–93. Available at: https://doi.org/10.1038/nmat3585.
Warburton, Richard J (2013) ‘Single spins in self-assembled quantum dots’, Nature materials, 12(6), pp. 483–93. Available at: https://doi.org/10.1038/nmat3585.
Houel, J. et al. (2012) ‘Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot’, Physical review letters, 108(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.108.107401.
Houel, J. et al. (2012) ‘Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot’, Physical review letters, 108(10), p. 107401. Available at: https://doi.org/10.1103/physrevlett.108.107401.
Hunger, D. et al. (2012) ‘Laser micro-fabrication of concave, low-roughness features in silica’, AIP Advances, 2(1), p. 012119. Available at: https://doi.org/10.1063/1.3679721.
Hunger, D. et al. (2012) ‘Laser micro-fabrication of concave, low-roughness features in silica’, AIP Advances, 2(1), p. 012119. Available at: https://doi.org/10.1063/1.3679721.
Prechtel, Jonathan H. et al. (2012) ‘Fast electro-optics of a single self-assembled quantum dot in a charge-tunable device’, Journal of applied physics, 111(4), p. 043112. Available at: https://doi.org/10.1063/1.3687375.
Prechtel, Jonathan H. et al. (2012) ‘Fast electro-optics of a single self-assembled quantum dot in a charge-tunable device’, Journal of applied physics, 111(4), p. 043112. Available at: https://doi.org/10.1063/1.3687375.
Tanner, M G et al. (2012) ‘A superconducting nanowire single photon detector on lithium niobate’, Nanotechnology, 23(50), p. 505201. Available at: https://doi.org/10.1088/0957-4484/23/50/505201.
Tanner, M G et al. (2012) ‘A superconducting nanowire single photon detector on lithium niobate’, Nanotechnology, 23(50), p. 505201. Available at: https://doi.org/10.1088/0957-4484/23/50/505201.
Davidson, I.A. et al. (2011) ‘CdSe quantum dots grown on a Zn0.2Mg0.8S 0.64Se0.36 barrier: MBE growth and μ-PL characterisation’, Journal of Crystal Growth, 323(1), pp. 236–240. Available at: https://doi.org/10.1016/j.jcrysgro.2010.10.116.
Davidson, I.A. et al. (2011) ‘CdSe quantum dots grown on a Zn0.2Mg0.8S 0.64Se0.36 barrier: MBE growth and μ-PL characterisation’, Journal of Crystal Growth, 323(1), pp. 236–240. Available at: https://doi.org/10.1016/j.jcrysgro.2010.10.116.
Barbour, Russell J. et al. (2011) ‘A tunable microcavity’, Journal of Applied Physics, 110(5), p. 053107. Available at: https://doi.org/10.1063/1.3632057.
Barbour, Russell J. et al. (2011) ‘A tunable microcavity’, Journal of Applied Physics, 110(5), p. 053107. Available at: https://doi.org/10.1063/1.3632057.
Dalgarno, Heather I C et al. (2011) ‘Nanometric depth resolution from multi-focal images in microscopy’, Interface : journal of the Royal Society, 8(60), pp. 942–51. Available at: https://doi.org/10.1098/rsif.2010.0508.
Dalgarno, Heather I C et al. (2011) ‘Nanometric depth resolution from multi-focal images in microscopy’, Interface : journal of the Royal Society, 8(60), pp. 942–51. Available at: https://doi.org/10.1098/rsif.2010.0508.