Experimental Physics (Warburton)
Publications
138 found
Show per page
Eggli, Rafael S. et al. (2025) ‘Coupling a high-Q resonator to a spin qubit with all-electrical control’, Physical Review Research. 24.02.2025, 7(1). Available at: https://doi.org/10.1103/physrevresearch.7.013197.
Eggli, Rafael S. et al. (2025) ‘Coupling a high-Q resonator to a spin qubit with all-electrical control’, Physical Review Research. 24.02.2025, 7(1). Available at: https://doi.org/10.1103/physrevresearch.7.013197.
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Yurgens, Viktoria et al. (2024) ‘Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in diamond’, npj Quantum Information. 07.11.2024, 10. Available at: https://doi.org/10.1038/s41534-024-00915-9.
Spinnler, Clemens et al. (2024) ‘A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime’, Nature Communications. 04.11.2024, 15(1). Available at: https://doi.org/10.1038/s41467-024-53882-2.
Spinnler, Clemens et al. (2024) ‘A single-photon emitter coupled to a phononic-crystal resonator in the resolved-sideband regime’, Nature Communications. 04.11.2024, 15(1). Available at: https://doi.org/10.1038/s41467-024-53882-2.
Tomm, Natasha et al. (2024) ‘Realization of a Coherent and Efficient One-Dimensional Atom’, Physical Review Letters. 21.08.2024, 133(8). Available at: https://doi.org/10.1103/physrevlett.133.083602.
Tomm, Natasha et al. (2024) ‘Realization of a Coherent and Efficient One-Dimensional Atom’, Physical Review Letters. 21.08.2024, 133(8). Available at: https://doi.org/10.1103/physrevlett.133.083602.
Erbe, M. et al. (2024) ‘Mo - Si superconducting nanowire single-photon detectors on Ga As’, Physical Review Applied. 29.07.2024, 22(1). Available at: https://doi.org/10.1103/physrevapplied.22.014072.
Erbe, M. et al. (2024) ‘Mo - Si superconducting nanowire single-photon detectors on Ga As’, Physical Review Applied. 29.07.2024, 22(1). Available at: https://doi.org/10.1103/physrevapplied.22.014072.
Severin, B. et al. (2024) ‘Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-67787-z.
Severin, B. et al. (2024) ‘Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning’, Scientific Reports, 14(1). Available at: https://doi.org/10.1038/s41598-024-67787-z.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics, 20(7), pp. 1152–1157. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Geyer, S. et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics, 20(7), pp. 1152–1157. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Geyer, Simon et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics, 20(7), pp. 1152–1157. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Geyer, Simon et al. (2024) ‘Anisotropic exchange interaction of two hole-spin qubits’, Nature Physics, 20(7), pp. 1152–1157. Available at: https://doi.org/10.1038/s41567-024-02481-5.
Spinnler, Clemens et al. (2024) ‘Quantum dot coupled to a suspended-beam mechanical resonator: From the unresolved- to the resolved-sideband regime’, Physical Review Applied. 21.03.2024, 21(3). Available at: https://doi.org/10.1103/physrevapplied.21.034046.
Spinnler, Clemens et al. (2024) ‘Quantum dot coupled to a suspended-beam mechanical resonator: From the unresolved- to the resolved-sideband regime’, Physical Review Applied. 21.03.2024, 21(3). Available at: https://doi.org/10.1103/physrevapplied.21.034046.
De Matteis, D. (2024) Phonon engineering in nanowire heterostructures.
De Matteis, D. (2024) Phonon engineering in nanowire heterostructures.
Nguyen, G.N.B. (2024) Coherent photons and coherent spins in a GaAs quantum dot.
Nguyen, G.N.B. (2024) Coherent photons and coherent spins in a GaAs quantum dot.
Zuber, J.A. (2024) Optical spectroscopy of shallow silicon vacancy centers in
diamond nanostructures.
Zuber, J.A. (2024) Optical spectroscopy of shallow silicon vacancy centers in
diamond nanostructures.
Gawarecki, Krzysztof et al. (2023) ‘Symmetry breaking via alloy disorder to explain radiative Auger transitions in self-assembled quantum dots’, Physical Review B. 07.12.2023, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235410.
Gawarecki, Krzysztof et al. (2023) ‘Symmetry breaking via alloy disorder to explain radiative Auger transitions in self-assembled quantum dots’, Physical Review B. 07.12.2023, 108(23). Available at: https://doi.org/10.1103/physrevb.108.235410.
Nguyen, Giang N. et al. (2023) ‘Enhanced Electron-Spin Coherence in a GaAs Quantum Emitter’, Physical Review Letters. 22.11.2023, 131(21). Available at: https://doi.org/10.1103/physrevlett.131.210805.
Nguyen, Giang N. et al. (2023) ‘Enhanced Electron-Spin Coherence in a GaAs Quantum Emitter’, Physical Review Letters. 22.11.2023, 131(21). Available at: https://doi.org/10.1103/physrevlett.131.210805.
Javadi, Alisa et al. (2023) ‘Cavity-enhanced excitation of a quantum dot in the picosecond regime’, New Journal of Physics. 13.09.2023, 25(9), p. 093027. Available at: https://doi.org/10.1088/1367-2630/acf33b.
Javadi, Alisa et al. (2023) ‘Cavity-enhanced excitation of a quantum dot in the picosecond regime’, New Journal of Physics. 13.09.2023, 25(9), p. 093027. Available at: https://doi.org/10.1088/1367-2630/acf33b.
Antoniadis, Nadia O. et al. (2023) ‘Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds’, Nature Communications. 05.07.2023, 14. Available at: https://doi.org/10.1038/s41467-023-39568-1.
Antoniadis, Nadia O. et al. (2023) ‘Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds’, Nature Communications. 05.07.2023, 14. Available at: https://doi.org/10.1038/s41467-023-39568-1.
de Kruijf, Mathieu et al. (2023) ‘A compact and versatile cryogenic probe station for quantum device testing’, Review of Scientific Instruments, 94(5). Available at: https://doi.org/10.1063/5.0139825.
de Kruijf, Mathieu et al. (2023) ‘A compact and versatile cryogenic probe station for quantum device testing’, Review of Scientific Instruments, 94(5). Available at: https://doi.org/10.1063/5.0139825.
Tomm, Natasha et al. (2023) ‘Photon bound state dynamics from a single artificial atom’, Nature Physics. 20.03.2023, 19(6), pp. 857–862. Available at: https://doi.org/10.1038/s41567-023-01997-6.
Tomm, Natasha et al. (2023) ‘Photon bound state dynamics from a single artificial atom’, Nature Physics. 20.03.2023, 19(6), pp. 857–862. Available at: https://doi.org/10.1038/s41567-023-01997-6.
Antoniadis, N.O. (2023) A quantum dot in a microcavity as a coherent spin-photon interface.
Antoniadis, N.O. (2023) A quantum dot in a microcavity as a coherent spin-photon interface.
Correa Sampaio, I. (2023) Quantum transport phenomena in 2D semiconductor-superconductor hybrid structures.
Correa Sampaio, I. (2023) Quantum transport phenomena in 2D semiconductor-superconductor hybrid structures.
Geyer, S. (2023) Spin qubits in silicon fin field-effect transistors.
Geyer, S. (2023) Spin qubits in silicon fin field-effect transistors.
Jaeger, D. (2023) Fiber-Cavity optomechanics with hexagonal boron nitride drum resonators.
Jaeger, D. (2023) Fiber-Cavity optomechanics with hexagonal boron nitride drum resonators.
Mattiat, H. (2023) Nanowire magnetic force microscopy.
Mattiat, H. (2023) Nanowire magnetic force microscopy.
Spinnler, C. (2023) Exploiting phonon and coulomb interactions in semiconductor quantum dots.
Spinnler, C. (2023) Exploiting phonon and coulomb interactions in semiconductor quantum dots.
Sponfeldner, L. (2023) Controlling the excitonic response and the electronic ground state in two-dimensional semiconductors.
Sponfeldner, L. (2023) Controlling the excitonic response and the electronic ground state in two-dimensional semiconductors.
Yurgens, V. (2023) Cavity-enhancement of a low-noise single-photon emitter in diamond.
Yurgens, V. (2023) Cavity-enhancement of a low-noise single-photon emitter in diamond.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Yurgens, V. et al. (2022) ‘Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures’, Applied Physics Letters, 121(23). Available at: https://doi.org/10.1063/5.0126669.
Antoniadis, Nadia O. et al. (2022) ‘A chiral one-dimensional atom using a quantum dot in an open microcavity’, npj Quantum Information, 8(1), p. 27. Available at: https://doi.org/10.1038/s41534-022-00545-z.
Antoniadis, Nadia O. et al. (2022) ‘A chiral one-dimensional atom using a quantum dot in an open microcavity’, npj Quantum Information, 8(1), p. 27. Available at: https://doi.org/10.1038/s41534-022-00545-z.
Bart, N. et al. (2022) ‘Wafer-scale epitaxial modulation of quantum dot density’, Nature Communications, 13(1), p. 1633. Available at: https://doi.org/10.1038/s41467-022-29116-8.
Bart, N. et al. (2022) ‘Wafer-scale epitaxial modulation of quantum dot density’, Nature Communications, 13(1), p. 1633. Available at: https://doi.org/10.1038/s41467-022-29116-8.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Flågan, Sigurd et al. (2022) ‘Microcavity platform for widely tunable optical double resonance’, Optica, 9(10), pp. 1197–1209. Available at: https://doi.org/10.1364/optica.466003.
Flågan, Sigurd et al. (2022) ‘A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume’, Journal of Applied Physics, 131(11), p. 113102. Available at: https://doi.org/10.1063/5.0081577.
Flågan, Sigurd et al. (2022) ‘A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume’, Journal of Applied Physics, 131(11), p. 113102. Available at: https://doi.org/10.1063/5.0081577.
Ramezani, M. (2022) Superconducting contacts and quantum interference phenomena
in monolayer semiconductor devices.
Ramezani, M. (2022) Superconducting contacts and quantum interference phenomena
in monolayer semiconductor devices.
Sponfeldner, Lukas (2022) Controlling the excitonic response in two-dimensional semiconductors. Dissertation. Universität Basel.
Sponfeldner, Lukas (2022) Controlling the excitonic response in two-dimensional semiconductors. Dissertation. Universität Basel.
Zhai, Liang et al. (2022) ‘Quantum interference of identical photons from remote GaAs quantum dots’, Nature Nanotechnology, 17(8), pp. 829–833. Available at: https://doi.org/10.1038/s41565-022-01131-2.
Zhai, Liang et al. (2022) ‘Quantum interference of identical photons from remote GaAs quantum dots’, Nature Nanotechnology, 17(8), pp. 829–833. Available at: https://doi.org/10.1038/s41565-022-01131-2.
Appel, Martin Hayhurst et al. (2021) ‘Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions’, Physical Review Letters, 126(1), p. 013602. Available at: https://doi.org/10.1103/physrevlett.126.013602.
Appel, Martin Hayhurst et al. (2021) ‘Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions’, Physical Review Letters, 126(1), p. 013602. Available at: https://doi.org/10.1103/physrevlett.126.013602.
Babin, Hans Georg et al. (2021) ‘Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode’, Nanomaterials, 11(10), p. 2703. Available at: https://doi.org/10.3390/nano11102703.
Babin, Hans Georg et al. (2021) ‘Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode’, Nanomaterials, 11(10), p. 2703. Available at: https://doi.org/10.3390/nano11102703.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Camenzind, Leon C. et al. (2021) ‘A hole spin qubit in a fin field-effect transistor above 4 kelvin’, Nature electronics, 5(3), pp. 178–183. Available at: https://doi.org/10.1038/s41928-022-00722-0.
Flågan, S. (2021) An Open Microcavity for Diamond-based
Photonics.
Flågan, S. (2021) An Open Microcavity for Diamond-based
Photonics.
Flagan, Sigurd Somby (2021) An open Microcavity for Diamond-based Photonics. Dissertation. Universität Basel.
Flagan, Sigurd Somby (2021) An open Microcavity for Diamond-based Photonics. Dissertation. Universität Basel.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Geyer, Simon et al. (2021) ‘Self-aligned gates for scalable silicon quantum computing’, Applied Physics Letters, 118(10), p. 104004. Available at: https://doi.org/10.1063/5.0036520.
Leisgang, Nadine (2021) Electrical control of excitons in a gated two-dimensional semiconductor. Dissertation. Universität Basel.
Leisgang, Nadine (2021) Electrical control of excitons in a gated two-dimensional semiconductor. Dissertation. Universität Basel.
Leisgang, N.M. (2021) Electrical control of excitons in a gated two-dimensional semiconductor.
Leisgang, N.M. (2021) Electrical control of excitons in a gated two-dimensional semiconductor.
Najer, Daniel et al. (2021) ‘Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity’, Physical review applied, 15(4), p. 044004. Available at: https://doi.org/10.1103/physrevapplied.15.044004.
Najer, Daniel et al. (2021) ‘Suppression of Surface-Related Loss in a Gated Semiconductor Microcavity’, Physical review applied, 15(4), p. 044004. Available at: https://doi.org/10.1103/physrevapplied.15.044004.
Spinnler, Clemens et al. (2021) ‘Optically driving the radiative Auger transition’, Nature Communications, 12(1), p. 6575. Available at: https://doi.org/10.1038/s41467-021-26875-8.
Spinnler, Clemens et al. (2021) ‘Optically driving the radiative Auger transition’, Nature Communications, 12(1), p. 6575. Available at: https://doi.org/10.1038/s41467-021-26875-8.
Tomm, Natasha (2021) A quantum dot in a microcavity as a bright source of coherent single photons. Dissertation. Universität Basel.
Tomm, Natasha (2021) A quantum dot in a microcavity as a bright source of coherent single photons. Dissertation. Universität Basel.
Tomm, N. (2021) A quantum dot in a microcavity as a bright source of coherent single photons.
Tomm, N. (2021) A quantum dot in a microcavity as a bright source of coherent single photons.
Tomm, Natasha et al. (2021) ‘A bright and fast source of coherent single photons’, Nature Nanotechnology, 16(4), pp. 399–403. Available at: https://doi.org/10.1038/s41565-020-00831-x.
Tomm, Natasha et al. (2021) ‘A bright and fast source of coherent single photons’, Nature Nanotechnology, 16(4), pp. 399–403. Available at: https://doi.org/10.1038/s41565-020-00831-x.
Tomm, Natasha et al. (2021) ‘Tuning the Mode Splitting of a Semiconductor Microcavity with Uniaxial Stress’, Physical Review Applied, 15(5), p. 054061. Available at: https://doi.org/10.1103/physrevapplied.15.054061.
Tomm, Natasha et al. (2021) ‘Tuning the Mode Splitting of a Semiconductor Microcavity with Uniaxial Stress’, Physical Review Applied, 15(5), p. 054061. Available at: https://doi.org/10.1103/physrevapplied.15.054061.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Yurgens, Viktoria et al. (2021) ‘Low-Charge-Noise Nitrogen-Vacancy Centers in Diamond Created Using Laser Writing with a Solid-Immersion Lens’, ACS Photonics, 8(6), pp. 1726–1734. Available at: https://doi.org/10.1021/acsphotonics.1c00274.
Zhai, Liang (2021) Low-noise GaAs quantum dots. Dissertation. Universität Basel.
Zhai, Liang (2021) Low-noise GaAs quantum dots. Dissertation. Universität Basel.
Zhai, L. (2021) Low-noise GaAs Quantum Dots.
Zhai, L. (2021) Low-noise GaAs Quantum Dots.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Kasperczyk, M. et al. (2020) ‘Statistically modeling optical linewidths of nitrogen vacancy centers in microstructures’, Physical Review B, 102(7), p. 075312. Available at: https://doi.org/10.1103/physrevb.102.075312.
Leisgang, Nadine et al. (2020) ‘Giant Stark splitting of an exciton in bilayer MoS2’, Nature Nanotechnology, 15(11), pp. 901–907. Available at: https://doi.org/10.1038/s41565-020-0750-1.
Leisgang, Nadine et al. (2020) ‘Giant Stark splitting of an exciton in bilayer MoS2’, Nature Nanotechnology, 15(11), pp. 901–907. Available at: https://doi.org/10.1038/s41565-020-0750-1.
Löbl, Matthias Christian (2020) Excitons in quantum dots and design of their environment. Dissertation. Universität Basel.
Löbl, Matthias Christian (2020) Excitons in quantum dots and design of their environment. Dissertation. Universität Basel.
Lobl, Matthias C. et al. (2020) ‘Radiative Auger process in the single-photon limit’, Nature Nanotechnology, 15(7), pp. 558–562. Available at: https://doi.org/10.1038/s41565-020-0697-2.
Lobl, Matthias C. et al. (2020) ‘Radiative Auger process in the single-photon limit’, Nature Nanotechnology, 15(7), pp. 558–562. Available at: https://doi.org/10.1038/s41565-020-0697-2.
Paradisanos, Ioannis et al. (2020) ‘Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition’, Nature Communications, 11(1), p. 2391. Available at: https://doi.org/10.1038/s41467-020-16023-z.
Paradisanos, Ioannis et al. (2020) ‘Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition’, Nature Communications, 11(1), p. 2391. Available at: https://doi.org/10.1038/s41467-020-16023-z.
Pedersen, Freja T. et al. (2020) ‘Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide’, ACS Photonics, 7(9), pp. 2343–2349. Available at: https://doi.org/10.1021/acsphotonics.0c00758.
Pedersen, Freja T. et al. (2020) ‘Near Transform-Limited Quantum Dot Linewidths in a Broadband Photonic Crystal Waveguide’, ACS Photonics, 7(9), pp. 2343–2349. Available at: https://doi.org/10.1021/acsphotonics.0c00758.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Riedel, Daniel et al. (2020) ‘Cavity-Enhanced Raman Scattering for in situ Alignment and Characterization of Solid-State Microcavities’, Physical Review Applied, 13(1), p. 014036. Available at: https://doi.org/10.1103/physrevapplied.13.014036.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Roch, Jonas G. et al. (2020) ‘First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS2’, Physical review letters, 124(18), p. 187602. Available at: https://doi.org/10.1103/physrevlett.124.187602.
Uppu, Ravitej et al. (2020) ‘On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source’, Nature Communications, 11(1), p. 3782. Available at: https://doi.org/10.1038/s41467-020-17603-9.
Uppu, Ravitej et al. (2020) ‘On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source’, Nature Communications, 11(1), p. 3782. Available at: https://doi.org/10.1038/s41467-020-17603-9.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Zhai, Liang et al. (2020) ‘Large-range frequency tuning of a narrow-linewidth quantum emitter’, Applied Physics Letters, 117(8), p. 083106. Available at: https://doi.org/10.1063/5.0017995.
Zhai, Liang et al. (2020) ‘Low-noise GaAs quantum dots for quantum photonics’, Nature Communications, 11(1), p. 4745. Available at: https://doi.org/10.1038/s41467-020-18625-z.
Zhai, Liang et al. (2020) ‘Low-noise GaAs quantum dots for quantum photonics’, Nature Communications, 11(1), p. 4745. Available at: https://doi.org/10.1038/s41467-020-18625-z.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Wolters, Janik et al. (2019) ‘Rb vapor cell quantum memory for single photons’, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference. Munich, Germany: Institute of Electrical and Electronics Engineers ( 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference). Available at: https://doi.org/10.1109/CLEOE-EQEC.2019.8872182.
Caloz, Misael et al. (2019) ‘Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors’, Journal of Applied Physics, 126(16), p. 164501. Available at: https://doi.org/10.1063/1.5113748.
Caloz, Misael et al. (2019) ‘Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors’, Journal of Applied Physics, 126(16), p. 164501. Available at: https://doi.org/10.1063/1.5113748.
Ding, Dapeng et al. (2019) ‘Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface’, Physical review applied, 11(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.11.031002.
Ding, Dapeng et al. (2019) ‘Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface’, Physical review applied, 11(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.11.031002.
Löbl, M.C. (2019) Excitons in quantum dots and design of their environment. Available at: https://doi.org/10.5451/unibas-007216659.
Löbl, M.C. (2019) Excitons in quantum dots and design of their environment. Available at: https://doi.org/10.5451/unibas-007216659.
Loebl, Matthias C. et al. (2019) ‘Excitons in InGaAs quantum dots without electron wetting layer states’, Communications Physics, 2, p. 93. Available at: https://doi.org/10.1038/s42005-019-0194-9.
Loebl, Matthias C. et al. (2019) ‘Excitons in InGaAs quantum dots without electron wetting layer states’, Communications Physics, 2, p. 93. Available at: https://doi.org/10.1038/s42005-019-0194-9.
Loebl, Matthias C. et al. (2019) ‘Correlations between optical properties and Voronoi-cell area of quantum dots’, Physical Review B, 100(15), p. 155402. Available at: https://doi.org/10.1103/physrevb.100.155402.
Loebl, Matthias C. et al. (2019) ‘Correlations between optical properties and Voronoi-cell area of quantum dots’, Physical Review B, 100(15), p. 155402. Available at: https://doi.org/10.1103/physrevb.100.155402.
Najer, Daniel (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. Dissertation. Universität Basel.
Najer, Daniel (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. Dissertation. Universität Basel.
Najer, D. (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. Available at: https://doi.org/10.5451/unibas-007116606.
Najer, D. (2019) A coherent light-matter interface with a semiconductor quantum dot in an optical microcavity. Available at: https://doi.org/10.5451/unibas-007116606.
Najer, Daniel et al. (2019) ‘A gated quantum dot strongly coupled to an optical microcavity’, Nature, 575(7784), p. 622–+. Available at: https://doi.org/10.1038/s41586-019-1709-y.
Najer, Daniel et al. (2019) ‘A gated quantum dot strongly coupled to an optical microcavity’, Nature, 575(7784), p. 622–+. Available at: https://doi.org/10.1038/s41586-019-1709-y.
Roch, Jonas Gael (2019) Spin-Polarized Electrons in Monolayer MoS2. Dissertation. Universität Basel.
Roch, Jonas Gael (2019) Spin-Polarized Electrons in Monolayer MoS2. Dissertation. Universität Basel.
Roch, J.G. (2019) Spin-polarized electrons in monolayer MoS. Available at: https://doi.org/10.5451/unibas-007116972.
Roch, J.G. (2019) Spin-polarized electrons in monolayer MoS. Available at: https://doi.org/10.5451/unibas-007116972.
Roch, Jonas Gael et al. (2019) ‘Spin-polarized electrons in monolayer MoS2’, Nature Nanotechnology, 14(5), pp. 432–436. Available at: https://doi.org/10.1038/s41565-019-0397-y.
Roch, Jonas Gael et al. (2019) ‘Spin-polarized electrons in monolayer MoS2’, Nature Nanotechnology, 14(5), pp. 432–436. Available at: https://doi.org/10.1038/s41565-019-0397-y.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Béguin, Lucas et al. (2018) ‘On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets’, Physical Review B, 97(20), p. 205304. Available at: https://doi.org/10.1103/physrevb.97.205304.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Caloz, Misael et al. (2018) ‘High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors’, Applied Physics Letters, 112(6), p. 061103. Available at: https://doi.org/10.1063/1.5010102.
Jahn, J.-P. (2018) An artificial rubidium atom. Available at: https://doi.org/10.5451/unibas-006853895.
Jahn, J.-P. (2018) An artificial rubidium atom. Available at: https://doi.org/10.5451/unibas-006853895.
Javadi, Alisa et al. (2018) ‘Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide’, Nature Nanotechnology, 13(5), pp. 398–403. Available at: https://doi.org/10.1038/s41565-018-0091-5.
Javadi, Alisa et al. (2018) ‘Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide’, Nature Nanotechnology, 13(5), pp. 398–403. Available at: https://doi.org/10.1038/s41565-018-0091-5.
Kaldewey, Timo et al. (2018) ‘Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch’, Nature Photonics, 12(2), p. 68–+. Available at: https://doi.org/10.1038/s41566-017-0079-y.
Kaldewey, Timo et al. (2018) ‘Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch’, Nature Photonics, 12(2), p. 68–+. Available at: https://doi.org/10.1038/s41566-017-0079-y.
Leisgang, Nadine et al. (2018) ‘Optical second harmonic generation in encapsulated single-layer InSe’, AIP Advances, 8(10), p. 105120. Available at: https://doi.org/10.1063/1.5052417.
Leisgang, Nadine et al. (2018) ‘Optical second harmonic generation in encapsulated single-layer InSe’, AIP Advances, 8(10), p. 105120. Available at: https://doi.org/10.1063/1.5052417.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Roch, Jonas G. et al. (2018) ‘Quantum-Confined Stark Effect in a MoS2 Monolayer van der Waals Heterostructure’, Nano Letters, 18(2), pp. 1070–1074. Available at: https://doi.org/10.1021/acs.nanolett.7b04553.
Thyrrestrup, Henri et al. (2018) ‘Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide’, Nano Letters, 18(3), pp. 1801–1806. Available at: https://doi.org/10.1021/acs.nanolett.7b05016.
Thyrrestrup, Henri et al. (2018) ‘Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide’, Nano Letters, 18(3), pp. 1801–1806. Available at: https://doi.org/10.1021/acs.nanolett.7b05016.
Ludwig, A. et al. (2017) ‘Ultra-low charge and spin noise in self-assembled quantum dots’, Journal of Crystal Growth, 477, pp. 193–196. Available at: https://doi.org/10.1016/j.jcrysgro.2017.05.008.
Ludwig, A. et al. (2017) ‘Ultra-low charge and spin noise in self-assembled quantum dots’, Journal of Crystal Growth, 477, pp. 193–196. Available at: https://doi.org/10.1016/j.jcrysgro.2017.05.008.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Korzh, Boris et al. (2017) ‘Superconducting nanowire single photon detectors based on amorphous superconductors (Conference Presentation)’, in Joe C. Campbell;Mark A. Itzler (ed.) SPIE Commercial + Scientific Sensing and Imaging. Anaheim, CA, United States: SPIE (SPIE Commercial + Scientific Sensing and Imaging), p. 102120B . Available at: https://doi.org/10.1117/12.2265488.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Cadeddu, Davide et al. (2017) ‘Electric-Field Sensing with a Scanning Fiber-Coupled Quantum Dot’, Physical Review Applied, 8(3), p. 031002. Available at: https://doi.org/10.1103/physrevapplied.8.031002.
Kaldewey, Timo et al. (2017) ‘Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation’, Physical Review B, 95(24), p. 241306. Available at: https://doi.org/10.1103/physrevb.95.241306.
Kaldewey, Timo et al. (2017) ‘Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation’, Physical Review B, 95(24), p. 241306. Available at: https://doi.org/10.1103/physrevb.95.241306.
Kaldewey, Timo et al. (2017) ‘Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage’, Physical Review B, 95(16), p. 161302. Available at: https://doi.org/10.1103/physrevb.95.161302.
Kaldewey, Timo et al. (2017) ‘Coherent and robust high-fidelity generation of a biexciton in a quantum dot by rapid adiabatic passage’, Physical Review B, 95(16), p. 161302. Available at: https://doi.org/10.1103/physrevb.95.161302.
Kirsanske, Gabija et al. (2017) ‘Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide’, Physical Review B, 96(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.96.165306.
Kirsanske, Gabija et al. (2017) ‘Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide’, Physical Review B, 96(16), p. 165306. Available at: https://doi.org/10.1103/physrevb.96.165306.
Loebl, Matthias C. et al. (2017) ‘Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode’, Physical Review B, 96(16), p. 165440. Available at: https://doi.org/10.1103/physrevb.96.165440.
Loebl, Matthias C. et al. (2017) ‘Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode’, Physical Review B, 96(16), p. 165440. Available at: https://doi.org/10.1103/physrevb.96.165440.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Munsch, Mathieu et al. (2017) ‘Resonant driving of a single photon emitter embedded in a mechanical oscillator’, Nature Communications, 8, p. 76. Available at: https://doi.org/10.1038/s41467-017-00097-3.
Najer, Daniel et al. (2017) ‘Fabrication of mirror templates in silica with micron-sized radii of curvature’, Applied Physics Letters, 110(1), p. 011101. Available at: https://doi.org/10.1063/1.4973458.
Najer, Daniel et al. (2017) ‘Fabrication of mirror templates in silica with micron-sized radii of curvature’, Applied Physics Letters, 110(1), p. 011101. Available at: https://doi.org/10.1063/1.4973458.
Riedel, D. (2017) Engineering of the photonic environment of single nitrogen-vacancy centers in diamond. Available at: https://doi.org/10.5451/unibas-006828637.
Riedel, D. (2017) Engineering of the photonic environment of single nitrogen-vacancy centers in diamond. Available at: https://doi.org/10.5451/unibas-006828637.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Riedel, Daniel et al. (2017) ‘Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond’, Physical review X, 7(3), p. 031040. Available at: https://doi.org/10.1103/physrevx.7.031040.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Wolters, Janik et al. (2017) ‘Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons’, Physical Review Letters, 119(6), p. 060502. Available at: https://doi.org/10.1103/physrevlett.119.060502.
Warburton, Richard (2017) ‘A Self-assembled Quantum Dot as Single Photon Source and Spin Qubit: Charge Noise and Spin Noise’, in Michler, Peter (ed.) Quantum Dots for Quantum Information Technologies. Cham, Switzerland: Springer (Nano-Optics and Nanophotonics), pp. 287–323. Available at: https://doi.org/10.1007/978-3-319-56378-7_9.
Warburton, Richard (2017) ‘A Self-assembled Quantum Dot as Single Photon Source and Spin Qubit: Charge Noise and Spin Noise’, in Michler, Peter (ed.) Quantum Dots for Quantum Information Technologies. Cham, Switzerland: Springer (Nano-Optics and Nanophotonics), pp. 287–323. Available at: https://doi.org/10.1007/978-3-319-56378-7_9.
Altmann, P. (2016) Spin precession in spin-orbit fields under wire confinement and drift. Available at: https://doi.org/10.5451/unibas-006653117.
Altmann, P. (2016) Spin precession in spin-orbit fields under wire confinement and drift. Available at: https://doi.org/10.5451/unibas-006653117.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Cadeddu, D. et al. (2016) ‘A fiber-coupled quantum-dot on a photonic tip’, Applied physics letters, 108(1), p. 011112. Available at: https://doi.org/10.1063/1.4939264.
Heath, Robert M. et al. (2016) ‘A tunable fiber-coupled optical cavity for agile enhancement of detector absorption’, Journal of Applied Physics, 120(11), p. 113101. Available at: https://doi.org/10.1063/1.4962456.
Heath, Robert M. et al. (2016) ‘A tunable fiber-coupled optical cavity for agile enhancement of detector absorption’, Journal of Applied Physics, 120(11), p. 113101. Available at: https://doi.org/10.1063/1.4962456.
Kaldewey, T. (2016) Ultra-fast spectroscopy on single self-assembled quantum dots with rapid adiabatic passage. Available at: https://doi.org/10.5451/unibas-006700823.
Kaldewey, T. (2016) Ultra-fast spectroscopy on single self-assembled quantum dots with rapid adiabatic passage. Available at: https://doi.org/10.5451/unibas-006700823.
Prechtel, Jonathan H. et al. (2016) ‘Decoupling a hole spin qubit from the nuclear spins’, Nature Materials, 15(9), pp. 981–6. Available at: https://doi.org/10.1038/nmat4704.
Prechtel, Jonathan H. et al. (2016) ‘Decoupling a hole spin qubit from the nuclear spins’, Nature Materials, 15(9), pp. 981–6. Available at: https://doi.org/10.1038/nmat4704.