Wahrscheinlichkeitstheorie
Publications
26 found
Show per page
Oswald, Pascal (2025) ‘Ancestral lineages for a branching annihilating random walk’, Stochastic Processes and their Applications, p. 104648. Available at: https://doi.org/10.1016/j.spa.2025.104648.
Oswald, Pascal (2025) ‘Ancestral lineages for a branching annihilating random walk’, Stochastic Processes and their Applications, p. 104648. Available at: https://doi.org/10.1016/j.spa.2025.104648.
Černý, J. and Locher, R. (2025) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Annales de l’institut Henri Poincare (B) Probability and Statistics, 61(1), pp. 746–767. Available at: https://doi.org/10.1214/23-AIHP1436.
Černý, J. and Locher, R. (2025) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Annales de l’institut Henri Poincare (B) Probability and Statistics, 61(1), pp. 746–767. Available at: https://doi.org/10.1214/23-AIHP1436.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2025) ‘ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN RANDOM ENVIRONMENT’, Annals of Probability, 53(2), pp. 509–543. Available at: https://doi.org/10.1214/24-AOP1713.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2025) ‘ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN RANDOM ENVIRONMENT’, Annals of Probability, 53(2), pp. 509–543. Available at: https://doi.org/10.1214/24-AOP1713.
Birkner, M. et al. (2024) ‘SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK’, Annals of Applied Probability, 34(6), pp. 5737–5768. Available at: https://doi.org/10.1214/24-AAP2105.
Birkner, M. et al. (2024) ‘SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK’, Annals of Applied Probability, 34(6), pp. 5737–5768. Available at: https://doi.org/10.1214/24-AAP2105.
Erb, Raphael (2024) ‘Bounds on Mixing Time for Time-Inhomogeneous Markov Chains’, Latin American Journal of Probability and Mathematical Statistics, 21(2), pp. 1915–1948. Available at: https://doi.org/10.30757/alea.v21-73.
Erb, Raphael (2024) ‘Bounds on Mixing Time for Time-Inhomogeneous Markov Chains’, Latin American Journal of Probability and Mathematical Statistics, 21(2), pp. 1915–1948. Available at: https://doi.org/10.30757/alea.v21-73.
Oswald, P. (2024) Spatial branching processes in random environment. Doctoral Thesis.
Oswald, P. (2024) Spatial branching processes in random environment. Doctoral Thesis.
Černý, Jiří (2023) ‘Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs’, Communications on Pure and Applied Mathematics, 76(11), pp. 3346–3373. Available at: https://doi.org/10.1002/cpa.22112.
Černý, Jiří (2023) ‘Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs’, Communications on Pure and Applied Mathematics, 76(11), pp. 3346–3373. Available at: https://doi.org/10.1002/cpa.22112.
Birkner, M. et al. (2023) ‘Survival and complete convergence for a branching annihilating random walk’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Birkner, M. et al. (2023) ‘Survival and complete convergence for a branching annihilating random walk’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Černý, J., Drewitz, A. and Oswald, P. (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 8).
Černý, J., Drewitz, A. and Oswald, P. (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 8).
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION’, Annals of Applied Probability, 33(3), pp. 2342–2373. Available at: https://doi.org/10.1214/22-AAP1869.
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION’, Annals of Applied Probability, 33(3), pp. 2342–2373. Available at: https://doi.org/10.1214/22-AAP1869.
Černý, J. and Locher, R. (2023) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 9).
Černý, J. and Locher, R. (2023) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 9).
Bethuelsen, Stein Andreas et al. (2023) Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster. Electronic Journal of Probability.
Bethuelsen, Stein Andreas et al. (2023) Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster. Electronic Journal of Probability.
Fröber, L. (2023) Spherical sherrington-kirkpatrick models
and the TAP approach. Doctoral Thesis.
Fröber, L. (2023) Spherical sherrington-kirkpatrick models
and the TAP approach. Doctoral Thesis.
Belius, David et al. (2022) ‘Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field’, Journal of Statistical Physics, 186(1), p. 12. Available at: https://doi.org/10.1007/s10955-021-02855-6.
Belius, David et al. (2022) ‘Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field’, Journal of Statistical Physics, 186(1), p. 12. Available at: https://doi.org/10.1007/s10955-021-02855-6.
Černý, Jiří and Hayder, Thomas (2022) ‘Critical window for the vacant set left by random walk on the configuration model’, Alea (Rio de Janeiro), 19(1), pp. 231–257. Available at: https://doi.org/10.30757/ALEA.V19-10.
Černý, Jiří and Hayder, Thomas (2022) ‘Critical window for the vacant set left by random walk on the configuration model’, Alea (Rio de Janeiro), 19(1), pp. 231–257. Available at: https://doi.org/10.30757/ALEA.V19-10.
Černý, J. and Hayder, T. (2021) ‘Critical window for the vacant set left by random walk on the configuration model’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 16).
Černý, J. and Hayder, T. (2021) ‘Critical window for the vacant set left by random walk on the configuration model’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 16).
Belius, D. et al. (2021) ‘Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Belius, D. et al. (2021) ‘Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Černý, J. (2021) ‘Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Černý, J. (2021) ‘Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Černý, J., Drewitz, A. and Schmitz, L. (2021) ‘(Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 7).
Černý, J., Drewitz, A. and Schmitz, L. (2021) ‘(Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 7).
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Electronic Journal of Probability, 25, pp. 1–24. Available at: https://doi.org/10.1214/20-ejp468.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Electronic Journal of Probability, 25, pp. 1–24. Available at: https://doi.org/10.1214/20-ejp468.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Electronic Journal of Probability, 25, pp. 1–39. Available at: https://doi.org/10.1214/20-ejp532.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Electronic Journal of Probability, 25, pp. 1–39. Available at: https://doi.org/10.1214/20-ejp532.
Černý, Jiří and Drewitz, Alexander (2020) ‘Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model’, The Annals of Probability, 48(1), pp. 94–146. Available at: https://doi.org/10.1214/19-aop1347.
Černý, Jiří and Drewitz, Alexander (2020) ‘Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model’, The Annals of Probability, 48(1), pp. 94–146. Available at: https://doi.org/10.1214/19-aop1347.
Černý, Jiří and Klimovsky, Anton (2020) ‘Markovian dynamics of exchangeable arrays’, in Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (ed.) Lecture Notes Series. World Scientific: World Scientific (Lecture Notes Series). Available at: https://doi.org/10.1142/9789811206092_0005.
Černý, Jiří and Klimovsky, Anton (2020) ‘Markovian dynamics of exchangeable arrays’, in Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (ed.) Lecture Notes Series. World Scientific: World Scientific (Lecture Notes Series). Available at: https://doi.org/10.1142/9789811206092_0005.
Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Černý, Jiří (2019) ‘Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM’, in Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (ed.) Springer Proceedings in Mathematics & Statistics. Springer: Springer (Springer Proceedings in Mathematics & Statistics). Available at: https://doi.org/10.1007/978-3-030-29077-1_5.
Černý, Jiří (2019) ‘Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM’, in Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (ed.) Springer Proceedings in Mathematics & Statistics. Springer: Springer (Springer Proceedings in Mathematics & Statistics). Available at: https://doi.org/10.1007/978-3-030-29077-1_5.