Wahrscheinlichkeitstheorie
Publications
13 found
Show per page
Černý, Jiří (2023) ‘Giant component for the supercritical level‐set percolation of the Gaussian free field on regular expander graphs’, Communications on Pure and Applied Mathematics, 76(11), pp. 3346–3373. Available at: https://doi.org/10.1002/cpa.22112.
Černý, Jiří (2023) ‘Giant component for the supercritical level‐set percolation of the Gaussian free field on regular expander graphs’, Communications on Pure and Applied Mathematics, 76(11), pp. 3346–3373. Available at: https://doi.org/10.1002/cpa.22112.
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation’, The Annals of Applied Probability, 33(3). Available at: https://doi.org/10.1214/22-aap1869.
Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation’, The Annals of Applied Probability, 33(3). Available at: https://doi.org/10.1214/22-aap1869.
Birkner, Matthias et al. (2023) ‘Survival and complete convergence for a branching annihilating random walk’. Available at: https://doi.org/10.48550/arxiv.2304.09127.
Birkner, Matthias et al. (2023) ‘Survival and complete convergence for a branching annihilating random walk’. Available at: https://doi.org/10.48550/arxiv.2304.09127.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, ArXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2212.12390.
Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, ArXiv [Preprint]. Cornell University. Available at: https://doi.org/10.48550/arxiv.2212.12390.
Černý, Jiří and Locher, Ramon (2023) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’. Available at: https://doi.org/10.48550/arxiv.2302.02753.
Černý, Jiří and Locher, Ramon (2023) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’. Available at: https://doi.org/10.48550/arxiv.2302.02753.
Erb, Raphael (2023) ‘Bounds on Mixing Time for Time-Inhomogeneous Markov Chains’.
Erb, Raphael (2023) ‘Bounds on Mixing Time for Time-Inhomogeneous Markov Chains’.
Belius, David et al. (2022) ‘Triviality of the Geometry of Mixed $p$-Spin Spherical Hamiltonians with External Field’, Journal of statistical physics, 186, p. 12. Available at: https://doi.org/10.1007/s10955-021-02855-6.
Belius, David et al. (2022) ‘Triviality of the Geometry of Mixed $p$-Spin Spherical Hamiltonians with External Field’, Journal of statistical physics, 186, p. 12. Available at: https://doi.org/10.1007/s10955-021-02855-6.
Černý, Jiří and Hayder, Thomas (2022) ‘Critical window for the vacant set left by random walk on the configuration model’, ALEA Lat. Am. J. Probab. Math. Stat., 19(1), pp. 231–257. Available at: https://doi.org/10.30757/alea.v19-10.
Černý, Jiří and Hayder, Thomas (2022) ‘Critical window for the vacant set left by random walk on the configuration model’, ALEA Lat. Am. J. Probab. Math. Stat., 19(1), pp. 231–257. Available at: https://doi.org/10.30757/alea.v19-10.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Electronic Journal of Probability, 25, pp. 1–24. Available at: https://doi.org/10.1214/20-ejp468.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Electronic Journal of Probability, 25, pp. 1–24. Available at: https://doi.org/10.1214/20-ejp468.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Electronic Journal of Probability, 25, pp. 1–39. Available at: https://doi.org/10.1214/20-ejp532.
Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Electronic Journal of Probability, 25, pp. 1–39. Available at: https://doi.org/10.1214/20-ejp532.
Černý, Jiří and Drewitz, Alexander (2020) ‘Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model’, The Annals of Probability, 48(1), pp. 94–146. Available at: https://doi.org/10.1214/19-aop1347.
Černý, Jiří and Drewitz, Alexander (2020) ‘Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model’, The Annals of Probability, 48(1), pp. 94–146. Available at: https://doi.org/10.1214/19-aop1347.
Černý, Jiří and Klimovsky, Anton (2020) ‘Markovian dynamics of exchangeable arrays’, in Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (ed.) Lecture Notes Series. World Scientific: World Scientific (Lecture Notes Series). Available at: https://doi.org/10.1142/9789811206092_0005.
Černý, Jiří and Klimovsky, Anton (2020) ‘Markovian dynamics of exchangeable arrays’, in Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (ed.) Lecture Notes Series. World Scientific: World Scientific (Lecture Notes Series). Available at: https://doi.org/10.1142/9789811206092_0005.
Černý, Jiří (2019) ‘Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM’, in Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (ed.) Springer Proceedings in Mathematics & Statistics. Springer: Springer (Springer Proceedings in Mathematics & Statistics). Available at: https://doi.org/10.1007/978-3-030-29077-1_5.
Černý, Jiří (2019) ‘Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM’, in Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (ed.) Springer Proceedings in Mathematics & Statistics. Springer: Springer (Springer Proceedings in Mathematics & Statistics). Available at: https://doi.org/10.1007/978-3-030-29077-1_5.