UNIverse - Public Research Portal

Wahrscheinlichkeitstheorie

Publications

26 found
Show per page

Oswald, Pascal (2025) ‘Ancestral lineages for a branching annihilating random walk’, Stochastic Processes and their Applications, p. 104648. Available at: https://doi.org/10.1016/j.spa.2025.104648.

URLs
URLs

Černý, J. and Locher, R. (2025) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Annales de l’institut Henri Poincare (B) Probability and Statistics, 61(1), pp. 746–767. Available at: https://doi.org/10.1214/23-AIHP1436.

URLs
URLs

Černý, Jiří, Drewitz, Alexander and Oswald, Pascal (2025) ‘ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN RANDOM ENVIRONMENT’, Annals of Probability, 53(2), pp. 509–543. Available at: https://doi.org/10.1214/24-AOP1713.

URLs
URLs

Birkner, M. et al. (2024) ‘SURVIVAL AND COMPLETE CONVERGENCE FOR A BRANCHING ANNIHILATING RANDOM WALK’, Annals of Applied Probability, 34(6), pp. 5737–5768. Available at: https://doi.org/10.1214/24-AAP2105.

URLs
URLs

Erb, Raphael (2024) ‘Bounds on Mixing Time for Time-Inhomogeneous Markov Chains’, Latin American Journal of Probability and Mathematical Statistics, 21(2), pp. 1915–1948. Available at: https://doi.org/10.30757/alea.v21-73.

URLs
URLs

Oswald, P. (2024) Spatial branching processes in random environment. Doctoral Thesis.

URLs
URLs

Černý, Jiří (2023) ‘Giant component for the supercritical level-set percolation of the Gaussian free field on regular expander graphs’, Communications on Pure and Applied Mathematics, 76(11), pp. 3346–3373. Available at: https://doi.org/10.1002/cpa.22112.

URLs
URLs

Birkner, M. et al. (2023) ‘Survival and complete convergence for a branching annihilating random walk’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).

URLs
URLs

Černý, J., Drewitz, A. and Oswald, P. (2023) ‘On the tightness of the maximum of branching Brownian motion in random environment’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 8).

URLs
URLs

Černý, Jiří, Drewitz, Alexander and Schmitz, Lars (2023) ‘(UN-)BOUNDED TRANSITION FRONTS FOR THE PARABOLIC ANDERSON MODEL AND THE RANDOMIZED F-KPP EQUATION’, Annals of Applied Probability, 33(3), pp. 2342–2373. Available at: https://doi.org/10.1214/22-AAP1869.

URLs
URLs

Černý, J. and Locher, R. (2023) ‘Critical and near-critical level-set percolation of the Gaussian free field on regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 9).

URLs
URLs

Bethuelsen, Stein Andreas et al. (2023) Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster. Electronic Journal of Probability.

Fröber, L. (2023) Spherical sherrington-kirkpatrick models and the TAP approach. Doctoral Thesis.

URLs
URLs

Belius, David et al. (2022) ‘Triviality of the Geometry of Mixed p-Spin Spherical Hamiltonians with External Field’, Journal of Statistical Physics, 186(1), p. 12. Available at: https://doi.org/10.1007/s10955-021-02855-6.

URLs
URLs

Černý, Jiří and Hayder, Thomas (2022) ‘Critical window for the vacant set left by random walk on the configuration model’, Alea (Rio de Janeiro), 19(1), pp. 231–257. Available at: https://doi.org/10.30757/ALEA.V19-10.

URLs
URLs

Černý, J. and Hayder, T. (2021) ‘Critical window for the vacant set left by random walk on the configuration model’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 16).

URLs
URLs

Belius, D. et al. (2021) ‘Triviality of the geometry of mixed $p$-spin spherical Hamiltonians with external field’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).

URLs
URLs

Černý, J. (2021) ‘Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).

URLs
URLs

Černý, J., Drewitz, A. and Schmitz, L. (2021) ‘(Un-)bounded transition fronts for the parabolic Anderson model and the randomized F-KPP equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 7).

URLs
URLs

Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Electronic Journal of Probability, 25, pp. 1–24. Available at: https://doi.org/10.1214/20-ejp468.

URLs
URLs

Abächerli, Angelo and Černý, Jiří (2020) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Electronic Journal of Probability, 25, pp. 1–39. Available at: https://doi.org/10.1214/20-ejp532.

URLs
URLs

Černý, Jiří and Drewitz, Alexander (2020) ‘Quenched invariance principles for the maximal particle in branching random walk in random environment and the parabolic Anderson model’, The Annals of Probability, 48(1), pp. 94–146. Available at: https://doi.org/10.1214/19-aop1347.

URLs
URLs

Černý, Jiří and Klimovsky, Anton (2020) ‘Markovian dynamics of exchangeable arrays’, in Birkner, Matthias; Sun, Rongfeng; Swart, Jan M. (ed.) Lecture Notes Series. World Scientific: World Scientific (Lecture Notes Series). Available at: https://doi.org/10.1142/9789811206092_0005.

URLs
URLs

Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs I: Regular trees’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).

URLs
URLs

Abächerli, A. and Černý, J. (2019) ‘Level-set percolation of the Gaussian free field on regular graphs II: Finite expanders’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).

URLs
URLs

Černý, Jiří (2019) ‘Concentration of the Clock Process Normalisation for the Metropolis Dynamics of the REM’, in Gayrard, Véronique; Arguin, Louis-Pierre; Kistler, Nicola; Kourkova, Irina (ed.) Springer Proceedings in Mathematics & Statistics. Springer: Springer (Springer Proceedings in Mathematics & Statistics). Available at: https://doi.org/10.1007/978-3-030-29077-1_5.

URLs
URLs