Numerik
Publications
119 found
Show per page
de Souza, G.R. et al. (2024) ‘EXPLICIT STABILIZED MULTIRATE METHODS FOR THE MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY’, ESAIM: Mathematical Modelling and Numerical Analysis, 58(6), pp. 2225–2254. Available at: https://doi.org/10.1051/m2an/2024030.
de Souza, G.R. et al. (2024) ‘EXPLICIT STABILIZED MULTIRATE METHODS FOR THE MONODOMAIN MODEL IN CARDIAC ELECTROPHYSIOLOGY’, ESAIM: Mathematical Modelling and Numerical Analysis, 58(6), pp. 2225–2254. Available at: https://doi.org/10.1051/m2an/2024030.
Schmidlin, M. (2024) Regularity analysis for semilinear elliptic PDEs with random data.
Schmidlin, M. (2024) Regularity analysis for semilinear elliptic PDEs with random data.
Gleichmann, Yannik G and Grote, Marcus J (2023) ‘Adaptive Spectral Inversion for inverse medium problems’, Inverse Problems, 39(12), p. 125007. Available at: https://doi.org/10.1088/1361-6420/ad01d4.
Gleichmann, Yannik G and Grote, Marcus J (2023) ‘Adaptive Spectral Inversion for inverse medium problems’, Inverse Problems, 39(12), p. 125007. Available at: https://doi.org/10.1088/1361-6420/ad01d4.
Gleichmann, Y.G. (2023) Adaptive spectral inversion for inverse medium problems.
Gleichmann, Y.G. (2023) Adaptive spectral inversion for inverse medium problems.
Abdulle, Assyr, Grote, Marcus J. and Rosilho de Souza, Giacomo (2022) ‘Explicit stabilized multirate method for stiff differential equations’, Mathematics of Computation, 91(338), pp. 2681–2714. Available at: https://doi.org/10.1090/mcom/3753.
Abdulle, Assyr, Grote, Marcus J. and Rosilho de Souza, Giacomo (2022) ‘Explicit stabilized multirate method for stiff differential equations’, Mathematics of Computation, 91(338), pp. 2681–2714. Available at: https://doi.org/10.1090/mcom/3753.
Baffet, Daniel, Gleichmann, Yannik and Grote, Marcus J. (2022) ‘Error estimates for adaptive spectral decompositions’, Journal of Scientific Computing, 93(3), p. 68. Available at: https://doi.org/10.1007/s10915-022-02004-5.
Baffet, Daniel, Gleichmann, Yannik and Grote, Marcus J. (2022) ‘Error estimates for adaptive spectral decompositions’, Journal of Scientific Computing, 93(3), p. 68. Available at: https://doi.org/10.1007/s10915-022-02004-5.
Baffet, D.H., Gleichmann, Y.G. and Grote, M.J. (2022) ‘Error Estimates for Adaptive Spectral Decompositions’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Baffet, D.H., Gleichmann, Y.G. and Grote, M.J. (2022) ‘Error Estimates for Adaptive Spectral Decompositions’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Chaumont-Frelet, T. et al. (2022) ‘A controllability method for Maxwell’s equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Chaumont-Frelet, T. et al. (2022) ‘A controllability method for Maxwell’s equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Chaumont-Frelet, Théophile et al. (2022) ‘A controllability method for Maxwell’s Equations’, SIAM Journal on Scientific Computing, 44(6), pp. A3700–A3727. Available at: https://doi.org/10.1137/21m1424445.
Chaumont-Frelet, Théophile et al. (2022) ‘A controllability method for Maxwell’s Equations’, SIAM Journal on Scientific Computing, 44(6), pp. A3700–A3727. Available at: https://doi.org/10.1137/21m1424445.
Grote, Marcus J., Michel, Simon and Nobile, Fabio (2022) ‘Uncertainty quantification by multilevel Monte Carlo and local time-stepping’, SIAM/ASA Journal on Uncertainty Quantification, 10(4), pp. 1601–1628. Available at: https://doi.org/10.1137/21m1429047.
Grote, Marcus J., Michel, Simon and Nobile, Fabio (2022) ‘Uncertainty quantification by multilevel Monte Carlo and local time-stepping’, SIAM/ASA Journal on Uncertainty Quantification, 10(4), pp. 1601–1628. Available at: https://doi.org/10.1137/21m1429047.
Grote, M.J., Michel, S. and Nobile, F. (2022) ‘Uncertainty Quantification by MLMC and Local Time-stepping For Wave Propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 2).
Grote, M.J., Michel, S. and Nobile, F. (2022) ‘Uncertainty Quantification by MLMC and Local Time-stepping For Wave Propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 2).
Baffet, Daniel, Grote, Marcus J. and Tang, Jet Hoe (2021) ‘Adaptive Spectral Decompositions for Inverse Medium Problems’, Inverse Problems, 37(2). Available at: https://doi.org/10.1088/1361-6420/abc2ff.
Baffet, Daniel, Grote, Marcus J. and Tang, Jet Hoe (2021) ‘Adaptive Spectral Decompositions for Inverse Medium Problems’, Inverse Problems, 37(2). Available at: https://doi.org/10.1088/1361-6420/abc2ff.
Grote, Marcus J., Michel, Simon R. J. and Sauter, Stefan (2021) ‘Stabilized Leapfrog Based Local Time-Stepping Method for the Wave Equation’, Mathematics of Computation, 90(332), pp. 2603–2643. Available at: https://doi.org/10.1090/mcom/3650.
Grote, Marcus J., Michel, Simon R. J. and Sauter, Stefan (2021) ‘Stabilized Leapfrog Based Local Time-Stepping Method for the Wave Equation’, Mathematics of Computation, 90(332), pp. 2603–2643. Available at: https://doi.org/10.1090/mcom/3650.
Michel, Simon René Jonas (2021) Analysis and applications of leapfrog-based local time-stepping methods for the wave equation. Dissertation.
Michel, Simon René Jonas (2021) Analysis and applications of leapfrog-based local time-stepping methods for the wave equation. Dissertation.
Michel, S.R.J. (2021) Analysis and Applications of Leapfrog-Based Local Time-Stepping Methods for the Wave Equation.
Michel, S.R.J. (2021) Analysis and Applications of Leapfrog-Based Local Time-Stepping Methods for the Wave Equation.
Grote, Marcus J. et al. (2020) ‘Parallel Controllability Methods for the Helmholtz Equation’, Computer Methods in Applied Mechanics and Engineering, 362, p. 112846. Available at: https://doi.org/10.1016/j.cma.2020.112846.
Grote, Marcus J. et al. (2020) ‘Parallel Controllability Methods for the Helmholtz Equation’, Computer Methods in Applied Mechanics and Engineering, 362, p. 112846. Available at: https://doi.org/10.1016/j.cma.2020.112846.
Grote, M.J. et al. (2019) ‘Parallel Controllability Methods For the Helmholtz Equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Grote, M.J. et al. (2019) ‘Parallel Controllability Methods For the Helmholtz Equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Graff, M. et al. (2019) ‘How to solve inverse scattering problems without knowing the source term: a three-step strategy’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Graff, M. et al. (2019) ‘How to solve inverse scattering problems without knowing the source term: a three-step strategy’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Baffet, Daniel and Grote, Marcus J. (2019) ‘On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions’, Journal of computational physics, 387, pp. 589–596. Available at: https://doi.org/10.1016/j.jcp.2019.03.004.
Baffet, Daniel and Grote, Marcus J. (2019) ‘On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions’, Journal of computational physics, 387, pp. 589–596. Available at: https://doi.org/10.1016/j.jcp.2019.03.004.
Baffet, Daniel and Grote, Marcus J. (2019) ‘One-Way Operators for Time Dependent Wave Splitting and Echo Removal’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Baffet, Daniel and Grote, Marcus J. (2019) ‘One-Way Operators for Time Dependent Wave Splitting and Echo Removal’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Baffet, Daniel, Grote, Marcus J. and Tang, Jet Hoe (2019) ‘Adaptive Eigenspace Regularization for Inverse Scattering Problems’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Baffet, Daniel, Grote, Marcus J. and Tang, Jet Hoe (2019) ‘Adaptive Eigenspace Regularization for Inverse Scattering Problems’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Baffet, Daniel H. et al. (2019) ‘Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation’, Journal of Scientific Computing, 81(3), pp. 2237–2270. Available at: https://doi.org/10.1007/s10915-019-01089-9.
Baffet, Daniel H. et al. (2019) ‘Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation’, Journal of Scientific Computing, 81(3), pp. 2237–2270. Available at: https://doi.org/10.1007/s10915-019-01089-9.
Graff, Marie et al. (2019) ‘How To Solve Inverse Scattering Problems Without Knowing the Source Term: A Three-step Strategy’, Inverse Problems, 35(10), p. 104001. Available at: https://doi.org/10.1088/1361-6420/ab2d5f.
Graff, Marie et al. (2019) ‘How To Solve Inverse Scattering Problems Without Knowing the Source Term: A Three-step Strategy’, Inverse Problems, 35(10), p. 104001. Available at: https://doi.org/10.1088/1361-6420/ab2d5f.
Graff, Marie et al. (2019) ‘How to solve inverse scattering problems without knowing the source term’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Graff, Marie et al. (2019) ‘How to solve inverse scattering problems without knowing the source term’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Grote, Marcus J. and Michel, Simon (2019) ‘Efficient Uncertainty Quantification for Wave Propagation in Complex Geometry’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Grote, Marcus J. and Michel, Simon (2019) ‘Efficient Uncertainty Quantification for Wave Propagation in Complex Geometry’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Grote, Marcus J. and Nahum, Uri (2019) ‘Adaptive Eigenspace for Multi-Parameter Inverse Scattering Problems’, Computers & mathematics with applications, 77(12), pp. 3264–3280. Available at: https://doi.org/10.1016/j.camwa.2019.02.005.
Grote, Marcus J. and Nahum, Uri (2019) ‘Adaptive Eigenspace for Multi-Parameter Inverse Scattering Problems’, Computers & mathematics with applications, 77(12), pp. 3264–3280. Available at: https://doi.org/10.1016/j.camwa.2019.02.005.
Grote, Marcus J. et al. (2019) ‘Scalable Parallel Methods for the Helmholtz Equation via Exact Controllability’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Grote, Marcus J. et al. (2019) ‘Scalable Parallel Methods for the Helmholtz Equation via Exact Controllability’. TU Wien: TU Wien. Available at: https://doi.org/10.34726/waves2019.
Grote, Marcus J. and Tang, Jet Hoe (2019) ‘On Controllability Methods for the Helmholtz Equation’, Journal of computational and applied mathematics, 358, pp. 306–326. Available at: https://doi.org/10.1016/j.cam.2019.03.016.
Grote, Marcus J. and Tang, Jet Hoe (2019) ‘On Controllability Methods for the Helmholtz Equation’, Journal of computational and applied mathematics, 358, pp. 306–326. Available at: https://doi.org/10.1016/j.cam.2019.03.016.
Tang, J.H. (2019) Solving forward and inverse Helmholtz equations via controllability methods. Available at: https://doi.org/10.5451/unibas-007171297.
Tang, J.H. (2019) Solving forward and inverse Helmholtz equations via controllability methods. Available at: https://doi.org/10.5451/unibas-007171297.
Baffet, D. and Grote, M.J. (2018) ‘On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Baffet, D. and Grote, M.J. (2018) ‘On Wave Splitting, Source Separation and Echo Removal with Absorbing Boundary Conditions’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Baffet, D. et al. (2018) ‘Energy decay and stability of a perfectly matched layer for the wave equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 13).
Baffet, D. et al. (2018) ‘Energy decay and stability of a perfectly matched layer for the wave equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 13).
Abdulle, A., Grote, M. and Jecker, O. (2018) ‘Finite element heterogeneous multiscale method for Elastic Waves in Heterogeneous Media’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Abdulle, A., Grote, M. and Jecker, O. (2018) ‘Finite element heterogeneous multiscale method for Elastic Waves in Heterogeneous Media’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Abdulle, Assyr, Grote, Marcus J. and Jecker, Orane (2018) ‘Finite element heterogeneous multiscale method for elastic waves in heterogeneous media’, Computer Methods in Applied Mechanics and Engineering, 335(335), pp. 1–23. Available at: https://doi.org/10.1016/j.cma.2018.01.038.
Abdulle, Assyr, Grote, Marcus J. and Jecker, Orane (2018) ‘Finite element heterogeneous multiscale method for elastic waves in heterogeneous media’, Computer Methods in Applied Mechanics and Engineering, 335(335), pp. 1–23. Available at: https://doi.org/10.1016/j.cma.2018.01.038.
Baffet, Daniel Henri (2018) ‘A Gauss-Jacobi Kernel Compression Scheme for Fractional Differential Equations’, Journal of scientific computing, 79, pp. 227–248. Available at: https://doi.org/10.1007/s10915-018-0848-x.
Baffet, Daniel Henri (2018) ‘A Gauss-Jacobi Kernel Compression Scheme for Fractional Differential Equations’, Journal of scientific computing, 79, pp. 227–248. Available at: https://doi.org/10.1007/s10915-018-0848-x.
Grote, Marcus J., Mehlin, Michaela and Sauter, Stefan A. (2018) ‘Convergence Analysis of Energy Conserving’, SIAM Journal on Numerical Analysis, 56(2), pp. 994–1021. Available at: https://doi.org/10.1137/17m1121925.
Grote, Marcus J., Mehlin, Michaela and Sauter, Stefan A. (2018) ‘Convergence Analysis of Energy Conserving’, SIAM Journal on Numerical Analysis, 56(2), pp. 994–1021. Available at: https://doi.org/10.1137/17m1121925.
Grote, M. and Tang, J.H. (2018) ‘On controllability methods for the Helmholtz equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 6).
Grote, M. and Tang, J.H. (2018) ‘On controllability methods for the Helmholtz equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 6).
Grote, Marcus J., Kray, Marie and Nahum, Uri (2017) ‘Adaptive eigenspace method for inverse scattering problems in the frequency domain’, Inverse Problems, 33(2), p. 025006. Available at: https://doi.org/10.1088/1361-6420/aa5250.
Grote, Marcus J., Kray, Marie and Nahum, Uri (2017) ‘Adaptive eigenspace method for inverse scattering problems in the frequency domain’, Inverse Problems, 33(2), p. 025006. Available at: https://doi.org/10.1088/1361-6420/aa5250.
Grote, Marcus J. et al. (2017) ‘Time-dependent wave splitting and source separation’, Journal of Computational Physics, 330, pp. 981–996. Available at: https://doi.org/10.1016/j.jcp.2016.10.021.
Grote, Marcus J. et al. (2017) ‘Time-dependent wave splitting and source separation’, Journal of Computational Physics, 330, pp. 981–996. Available at: https://doi.org/10.1016/j.jcp.2016.10.021.
Grote, M., Mehlin, M. and Sauter, S.A. (2017) ‘Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 2).
Grote, M., Mehlin, M. and Sauter, S.A. (2017) ‘Convergence analysis of energy conserving explicit local time-stepping methods for the wave equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 2).
Grote, M. and Nahum, U. (2017) ‘Adaptive eigenspace regularization for inverse scattering problems’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Grote, M. and Nahum, U. (2017) ‘Adaptive eigenspace regularization for inverse scattering problems’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Rietmann, Max et al. (2017) ‘Newmark local time stepping on high-performance computing architectures’, Journal of Computational Physics, 334, pp. 308–326. Available at: https://doi.org/10.1016/j.jcp.2016.11.012.
Rietmann, Max et al. (2017) ‘Newmark local time stepping on high-performance computing architectures’, Journal of Computational Physics, 334, pp. 308–326. Available at: https://doi.org/10.1016/j.jcp.2016.11.012.
Grote, M., Kray, M. and Nahum, U. (2016) ‘Adaptive eigenspace method for inverse scattering problems in the frequency domain’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 13).
Grote, M., Kray, M. and Nahum, U. (2016) ‘Adaptive eigenspace method for inverse scattering problems in the frequency domain’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 13).
Nahum, Uri (2016) Adaptive eigenspace for inverse problems in the frequency domain. Dissertation.
Nahum, Uri (2016) Adaptive eigenspace for inverse problems in the frequency domain. Dissertation.
Nahum, U. (2016) Adaptive eigenspace for inverse problems in the frequency domain. Available at: https://doi.org/10.5451/unibas-006657545.
Nahum, U. (2016) Adaptive eigenspace for inverse problems in the frequency domain. Available at: https://doi.org/10.5451/unibas-006657545.
Almquist, Martin, Grote, Marcus and Mehlin, Michaela (2015) ‘Multi-Level Runge-Kutta based Explicit Local Time-Stepping for Wave Propagation’. KIT: KIT.
Almquist, Martin, Grote, Marcus and Mehlin, Michaela (2015) ‘Multi-Level Runge-Kutta based Explicit Local Time-Stepping for Wave Propagation’. KIT: KIT.
Assous, F. et al. (2015) ‘Time-dependent wave splitting and source separation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 30).
Assous, F. et al. (2015) ‘Time-dependent wave splitting and source separation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 30).
Diaz, J. and Grote, M. (2015) ‘Multi-Level Explicit LocalTime-Stepping Methodsfor Second-OrderWave Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Diaz, J. and Grote, M. (2015) ‘Multi-Level Explicit LocalTime-Stepping Methodsfor Second-OrderWave Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 14).
Diaz, Julien and Grote, Marcus J. (2015) ‘Multi-level Explicit Local Time-stepping For Second-order Wave Equations’, Computer methods in applied mechanics and engineering, 291, pp. 240–265. Available at: https://doi.org/10.1016/j.cma.2015.03.027.
Diaz, Julien and Grote, Marcus J. (2015) ‘Multi-level Explicit Local Time-stepping For Second-order Wave Equations’, Computer methods in applied mechanics and engineering, 291, pp. 240–265. Available at: https://doi.org/10.1016/j.cma.2015.03.027.
Gaudio, Loredana, Grote, Marcus and Mehlin, Michaela (2015) ‘Convergence Analysis of Leap-Frog Based Local Time-Stepping for the Wave Equation’. KIT: KIT.
Gaudio, Loredana, Grote, Marcus and Mehlin, Michaela (2015) ‘Convergence Analysis of Leap-Frog Based Local Time-Stepping for the Wave Equation’. KIT: KIT.
Grote, Marcus J. et al. (2015) ‘Wave splitting for time-dependent scattered field separation’, Comptes rendus mathematique, 353(6), pp. 523–527. Available at: https://doi.org/10.1016/j.crma.2015.03.008.
Grote, Marcus J. et al. (2015) ‘Wave splitting for time-dependent scattered field separation’, Comptes rendus mathematique, 353(6), pp. 523–527. Available at: https://doi.org/10.1016/j.crma.2015.03.008.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2015) ‘Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation’, SIAM journal on scientific computing, 37(2), pp. A747–A775. Available at: https://doi.org/10.1137/140958293.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2015) ‘Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation’, SIAM journal on scientific computing, 37(2), pp. A747–A775. Available at: https://doi.org/10.1137/140958293.
Grote, Marcus et al. (2015) ‘Wave-Splitting for Time-Dependent Scattered Field Separation’. KIT: KIT. Available at: https://doi.org/10.1016/j.crma.2015.03.008.
Grote, Marcus et al. (2015) ‘Wave-Splitting for Time-Dependent Scattered Field Separation’. KIT: KIT. Available at: https://doi.org/10.1016/j.crma.2015.03.008.
Grote, Marcus and Mehlin, Michaela (2015) ‘Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics’. KIT: KIT.
Grote, Marcus and Mehlin, Michaela (2015) ‘Runge-Kutta type Explicit Local Time-Stepping for Electromagnetics’. KIT: KIT.
Grote, Marcus and Nahum, Uri (2015) ‘Adaptive Eigenspace Inversion for the Helmholtz Equation’. KIT: KIT.
Grote, Marcus and Nahum, Uri (2015) ‘Adaptive Eigenspace Inversion for the Helmholtz Equation’. KIT: KIT.
Mehlin, Michaela (2015) Efficient explicit time integration for the simulation of acoustic and electromagnetic waves. Dissertation.
Mehlin, Michaela (2015) Efficient explicit time integration for the simulation of acoustic and electromagnetic waves. Dissertation.
Mehlin, M. (2015) Efficient explicit time integration for the simulation of acoustic and electromagnetic waves. Available at: https://doi.org/10.5451/unibas-006433971.
Mehlin, M. (2015) Efficient explicit time integration for the simulation of acoustic and electromagnetic waves. Available at: https://doi.org/10.5451/unibas-006433971.
Rietmann, Max et al. (2015) ‘Load-Balanced Local Time Stepping for Large-Scale Wave Propagation’. IEEE: IEEE. Available at: https://doi.org/10.1109/ipdps.2015.10.
Rietmann, Max et al. (2015) ‘Load-Balanced Local Time Stepping for Large-Scale Wave Propagation’. IEEE: IEEE. Available at: https://doi.org/10.1109/ipdps.2015.10.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2014) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects’, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 12(3), pp. 1230–1257. Available at: https://doi.org/10.1137/13094195x.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2014) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects’, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 12(3), pp. 1230–1257. Available at: https://doi.org/10.1137/13094195x.
Diaz, J. and Grote, M. (2014) ‘Multi-Level Explicit Local Time-Stepping Methods for Second-Order Wave Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Diaz, J. and Grote, M. (2014) ‘Multi-Level Explicit Local Time-Stepping Methods for Second-Order Wave Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 10).
Grote, Marcus J. et al. (2014) ‘Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization’, SIAM Journal on Scientific Computing, 36(3), pp. A1251–A1276. Available at: https://doi.org/10.1137/130921283.
Grote, Marcus J. et al. (2014) ‘Inexact Interior-Point Method for PDE-Constrained Nonlinear Optimization’, SIAM Journal on Scientific Computing, 36(3), pp. A1251–A1276. Available at: https://doi.org/10.1137/130921283.
Grote, M. et al. (2014) ‘Wave splitting for time-dependent scattered field separation -- Décomposition d’ondes pour la séparation de champs diffractésdans le domaine temporel’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 21).
Grote, M. et al. (2014) ‘Wave splitting for time-dependent scattered field separation -- Décomposition d’ondes pour la séparation de champs diffractésdans le domaine temporel’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 21).
Grote, M., Mehlin, M. and Mitkova, T. (2014) ‘Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Grote, M., Mehlin, M. and Mitkova, T. (2014) ‘Runge-Kutta Based Explicit Local Time-Stepping Methods for Wave Propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Grote, M.J. and Mitkova, T. (2013) ‘High-order explicit local time-stepping methods for damped wave equations’, Journal of Computational and Applied Mathematics, 239(1), pp. 270–289. Available at: https://doi.org/10.1016/j.cam.2012.09.046.
Grote, M.J. and Mitkova, T. (2013) ‘High-order explicit local time-stepping methods for damped wave equations’, Journal of Computational and Applied Mathematics, 239(1), pp. 270–289. Available at: https://doi.org/10.1016/j.cam.2012.09.046.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2013) ‘FE Heterogeneous Multiscale Method for Long Time Wave Propagation’, Comptes rendus mathematique, 351(11-12), pp. 495–499. Available at: https://doi.org/10.1016/j.crma.2013.06.002.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2013) ‘FE Heterogeneous Multiscale Method for Long Time Wave Propagation’, Comptes rendus mathematique, 351(11-12), pp. 495–499. Available at: https://doi.org/10.1016/j.crma.2013.06.002.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2013) ‘Finite element heterogeneous multiscale method for the wave equation: long-time effects’. INRIA: INRIA. Available at: https://doi.org/10.4171/owr/2013/03.
Abdulle, Assyr, Grote, Marcus J. and Stohrer, Christian (2013) ‘Finite element heterogeneous multiscale method for the wave equation: long-time effects’. INRIA: INRIA. Available at: https://doi.org/10.4171/owr/2013/03.
Abdulle, A., Grote, M. and Stohrer, C. (2013) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 25).
Abdulle, A., Grote, M. and Stohrer, C. (2013) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 25).
Assous, Frank et al. (2013) ‘Time-reversed absorbing conditions (TRAC): discrimination between one and two nearby inclusions in the partial aperture case’. INRIA: INRIA.
Assous, Frank et al. (2013) ‘Time-reversed absorbing conditions (TRAC): discrimination between one and two nearby inclusions in the partial aperture case’. INRIA: INRIA.
Cohen, D., Larsson, S. and Sigg, M. (2013) ‘A trigonometric method for the linear stochastic wave equation’, SIAM Journal on Numerical Analysis, 51(1), pp. 204–222. Available at: https://doi.org/10.1137/12087030x.
Cohen, D., Larsson, S. and Sigg, M. (2013) ‘A trigonometric method for the linear stochastic wave equation’, SIAM Journal on Numerical Analysis, 51(1), pp. 204–222. Available at: https://doi.org/10.1137/12087030x.
de Buhan, Maya and Kray, Marie (2013) ‘A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods’, Inverse problems, 29(8), p. 085009. Available at: https://doi.org/10.1088/0266-5611/29/8/085009.
de Buhan, Maya and Kray, Marie (2013) ‘A new approach to solve the inverse scattering problem for waves: combining the TRAC and the Adaptive Inversion methods’, Inverse problems, 29(8), p. 085009. Available at: https://doi.org/10.1088/0266-5611/29/8/085009.
Gaudio, Loredana, Grote, Marcus J. and Schenk, Olaf (2013) ‘Interior point method for time-dependent inverse problems’. INRIA: INRIA.
Gaudio, Loredana, Grote, Marcus J. and Schenk, Olaf (2013) ‘Interior point method for time-dependent inverse problems’. INRIA: INRIA.
Grote, M. et al. (2013) ‘Inexact Interior-Point Method for Pde-Constrained Nonlinear Optimization’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Grote, M. et al. (2013) ‘Inexact Interior-Point Method for Pde-Constrained Nonlinear Optimization’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 15).
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2013) ‘Runge-Kutta type explicit local time-stepping methods’. INRIA: INRIA.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2013) ‘Runge-Kutta type explicit local time-stepping methods’. INRIA: INRIA.
Huber, Johannes (2013) Interior-point methods for PDE-constrained optimization. Dissertation.
Huber, Johannes (2013) Interior-point methods for PDE-constrained optimization. Dissertation.
Huber, J. (2013) Interior-point methods for PDE-constrained optimization. Available at: https://doi.org/10.5451/unibas-006145479.
Huber, J. (2013) Interior-point methods for PDE-constrained optimization. Available at: https://doi.org/10.5451/unibas-006145479.
Stohrer, Christian (2013) Finite element heterogeneous multiscale methods for the wave equation. Dissertation. Available at: https://doi.org/10.5451/unibas-006145369.
Stohrer, Christian (2013) Finite element heterogeneous multiscale methods for the wave equation. Dissertation. Available at: https://doi.org/10.5451/unibas-006145369.
Stohrer, C. (2013) Finite element heterogeneous multiscale methods for the wave equation. Available at: https://doi.org/10.5451/unibas-006145369.
Stohrer, C. (2013) Finite element heterogeneous multiscale methods for the wave equation. Available at: https://doi.org/10.5451/unibas-006145369.
Grote, Marcus J. and Mitkova, Teodora (2013) ‘Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation’, in Graham, I.; Langer, U.; Melenk, J.; Sini, M. (ed.) Direct and Inverse Problems in Wave Propagation and Applications. Berlin: De Gruyter (Radon Series on Comput. and Appl. Math.), p. S. 187–218. Available at: https://doi.org/10.1515/9783110282283.187.
Grote, Marcus J. and Mitkova, Teodora (2013) ‘Explicit Local Time-Stepping Methods for Time-Dependent Wave Propagation’, in Graham, I.; Langer, U.; Melenk, J.; Sini, M. (ed.) Direct and Inverse Problems in Wave Propagation and Applications. Berlin: De Gruyter (Radon Series on Comput. and Appl. Math.), p. S. 187–218. Available at: https://doi.org/10.1515/9783110282283.187.
Cohen, David (2012) ‘On the numerical discretisation of stochastic oscillators’, Mathematics and Computers in Simulation, 82(8), pp. 1478–1495. Available at: https://doi.org/10.1016/j.matcom.2012.02.004.
Cohen, David (2012) ‘On the numerical discretisation of stochastic oscillators’, Mathematics and Computers in Simulation, 82(8), pp. 1478–1495. Available at: https://doi.org/10.1016/j.matcom.2012.02.004.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2012) ‘Theory and Applications of Discontinuous Galerkin Methods’. European Math Society: European Math Society. Available at: https://doi.org/10.4171/owr/2012/10.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2012) ‘Theory and Applications of Discontinuous Galerkin Methods’. European Math Society: European Math Society. Available at: https://doi.org/10.4171/owr/2012/10.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2012) ‘High-Order Local Time-Stepping with Explicit Runge-Kutta Methods’. ETHZ: ETHZ.
Grote, Marcus J., Mehlin, Michaela and Mitkova, Teodora (2012) ‘High-Order Local Time-Stepping with Explicit Runge-Kutta Methods’. ETHZ: ETHZ.
Grote, M. and Mitkova, T. (2012) ‘Explicit local time-stepping methods for time-dependent wave propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Grote, M. and Mitkova, T. (2012) ‘Explicit local time-stepping methods for time-dependent wave propagation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Abdulle, Assyr and Grote, Marcus J. (2011) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation’, Multiscale Modeling & Simulation, 9(2), pp. 766–792. Available at: https://doi.org/10.1137/100800488.
Abdulle, Assyr and Grote, Marcus J. (2011) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation’, Multiscale Modeling & Simulation, 9(2), pp. 766–792. Available at: https://doi.org/10.1137/100800488.
Abdulle Assyr, Grote, Marcus J. and Stohrer, Christian (2011) ‘Finite element heterogeneous multiscale method for transient wave propagation’. The Pacific Institute for the Mathematical Sciences: The Pacific Institute for the Mathematical Sciences. Available at: http://www.sfu.ca/WAVES/proceedings/.
Abdulle Assyr, Grote, Marcus J. and Stohrer, Christian (2011) ‘Finite element heterogeneous multiscale method for transient wave propagation’. The Pacific Institute for the Mathematical Sciences: The Pacific Institute for the Mathematical Sciences. Available at: http://www.sfu.ca/WAVES/proceedings/.
Cohen, David and Sigg, Magdalena (2011) ‘Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations’, Numerische Mathematik, 121(1), pp. 1–29. Available at: https://doi.org/10.1007/s00211-011-0426-8.
Cohen, David and Sigg, Magdalena (2011) ‘Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations’, Numerische Mathematik, 121(1), pp. 1–29. Available at: https://doi.org/10.1007/s00211-011-0426-8.
Grote, Marcus J et al. (2011) ‘Dynamic formation of oriented patches in chondrocyte cell cultures’, Journal of mathematical biology, 63(4), pp. 757–77. Available at: https://doi.org/10.1007/s00285-010-0390-4.
Grote, Marcus J et al. (2011) ‘Dynamic formation of oriented patches in chondrocyte cell cultures’, Journal of mathematical biology, 63(4), pp. 757–77. Available at: https://doi.org/10.1007/s00285-010-0390-4.
Grote, Marcus J. and Sim, Imbo (2011) ‘Local nonreflecting boundary condition for time-dependent multiple scattering’, Journal of Computational Physics, 230(8), pp. 3135–3154. Available at: https://doi.org/10.1016/j.jcp.2011.01.017.
Grote, Marcus J. and Sim, Imbo (2011) ‘Local nonreflecting boundary condition for time-dependent multiple scattering’, Journal of Computational Physics, 230(8), pp. 3135–3154. Available at: https://doi.org/10.1016/j.jcp.2011.01.017.
Grote, M. J., Huber, J. and Schenk, O. (2011) ‘Interior point methods for the inverse medium problem on massively parallel architectures’, in Sato, M; Matsuoka, S; Sloot, PMA; VanAlbada, GD; Dongarra, J (ed.). Elsevier: Elsevier. Available at: https://doi.org/10.1016/j.procs.2011.04.159.
Grote, M. J., Huber, J. and Schenk, O. (2011) ‘Interior point methods for the inverse medium problem on massively parallel architectures’, in Sato, M; Matsuoka, S; Sloot, PMA; VanAlbada, GD; Dongarra, J (ed.). Elsevier: Elsevier. Available at: https://doi.org/10.1016/j.procs.2011.04.159.
Abdulle, A. and Grote, M. (2010) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Abdulle, A. and Grote, M. (2010) ‘Finite Element Heterogeneous Multiscale Method for the Wave Equation’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 1).
Barbero, A. et al. (2010) ‘Dynamic Formation of Oriented Patches in Chondrocyte Cell Cultures’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Barbero, A. et al. (2010) ‘Dynamic Formation of Oriented Patches in Chondrocyte Cell Cultures’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 3).
Beilina, L. and Grote, M. (2010) ‘Adaptive Hybrid Finite Element/Difference Method for Maxwell’s Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Beilina, L. and Grote, M. (2010) ‘Adaptive Hybrid Finite Element/Difference Method for Maxwell’s Equations’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 5).
Grote, Marcus J. and Mitkova, Teodora (2010) ‘Explicit local time-stepping for Maxwell’s equations’, Journal of computational and applied mathematics, 234(12), pp. 3283–3302. Available at: https://doi.org/10.1016/j.cam.2010.04.028.
Grote, Marcus J. and Mitkova, Teodora (2010) ‘Explicit local time-stepping for Maxwell’s equations’, Journal of computational and applied mathematics, 234(12), pp. 3283–3302. Available at: https://doi.org/10.1016/j.cam.2010.04.028.
Grote, Marcus J. and Mitkova, Teodora (2010) ‘Discontinuous galerkin methods and local time stepping for wave propagation’, in Psihoyios, G; Tsitouras, C (ed.). American Institute of Physics (AIP): American Institute of Physics (AIP). Available at: https://doi.org/10.1063/1.3498464.
Grote, Marcus J. and Mitkova, Teodora (2010) ‘Discontinuous galerkin methods and local time stepping for wave propagation’, in Psihoyios, G; Tsitouras, C (ed.). American Institute of Physics (AIP): American Institute of Physics (AIP). Available at: https://doi.org/10.1063/1.3498464.
Grote, M. and Sim, I. (2010) ‘Local Nonreflecting Boundary Conditionfor Time-Dependent Multiple Scattering’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 4).
Grote, M. and Sim, I. (2010) ‘Local Nonreflecting Boundary Conditionfor Time-Dependent Multiple Scattering’, Preprints Fachbereich Mathematik. Universität Basel (Preprints Fachbereich Mathematik, 4).
Palumberi, V. (2010) Chondrocyte growth dynamics and spatial pattern formation. Available at: https://doi.org/10.5451/unibas-005551365.
Palumberi, V. (2010) Chondrocyte growth dynamics and spatial pattern formation. Available at: https://doi.org/10.5451/unibas-005551365.
Sim, I. (2010) Nonreflecting boundary conditions for time-dependent wave propagation. Available at: https://doi.org/10.5451/unibas-005269594.
Sim, I. (2010) Nonreflecting boundary conditions for time-dependent wave propagation. Available at: https://doi.org/10.5451/unibas-005269594.
Bollhoefer, Matthias, Grote, Marcus J. and Schenk, Olaf (2009) ‘Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media’, SIAM journal on scientific computing, 31(5), pp. 3781–3805. Available at: https://doi.org/10.1137/080725702.
Bollhoefer, Matthias, Grote, Marcus J. and Schenk, Olaf (2009) ‘Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media’, SIAM journal on scientific computing, 31(5), pp. 3781–3805. Available at: https://doi.org/10.1137/080725702.
Diaz, Julien and Grote, Marcus J. (2009) ‘Energy conserving explicit local time-stepping for second-order wave equations’, SIAM journal on scientific computing, 31(3), pp. 1985–2014. Available at: https://doi.org/10.1137/070709414.
Diaz, Julien and Grote, Marcus J. (2009) ‘Energy conserving explicit local time-stepping for second-order wave equations’, SIAM journal on scientific computing, 31(3), pp. 1985–2014. Available at: https://doi.org/10.1137/070709414.
Grote, Marcus J. and Schoetzau, Dominik (2009) ‘Optimal error estimates for the fully discrete interior penalty DG method for the wave equation’, Journal of scientific computing, 40(1-3), pp. 257–272. Available at: https://doi.org/10.1007/s10915-008-9247-z.
Grote, Marcus J. and Schoetzau, Dominik (2009) ‘Optimal error estimates for the fully discrete interior penalty DG method for the wave equation’, Journal of scientific computing, 40(1-3), pp. 257–272. Available at: https://doi.org/10.1007/s10915-008-9247-z.
Grote, Marcus J. and Sim, Imbo (2009) ‘On local nonreflecting boundary conditions for time-dependent wave propagation’, Chinese annals of mathematics. Ser. B, 30(5), pp. 589–606. Available at: https://doi.org/10.1007/s11401-009-0203-5.
Grote, Marcus J. and Sim, Imbo (2009) ‘On local nonreflecting boundary conditions for time-dependent wave propagation’, Chinese annals of mathematics. Ser. B, 30(5), pp. 589–606. Available at: https://doi.org/10.1007/s11401-009-0203-5.
Grote, M. and Mitkova, T. (2009) ‘Explicit local time-stepping for transient electromagnetic waves’, in Barucq, H.; Bonnet-Bendhia, A.-S.; Cohen, G.; Diaz, J.; Ezziani, A.; Joly, P. (ed.). INRIA: INRIA.
Grote, M. and Mitkova, T. (2009) ‘Explicit local time-stepping for transient electromagnetic waves’, in Barucq, H.; Bonnet-Bendhia, A.-S.; Cohen, G.; Diaz, J.; Ezziani, A.; Joly, P. (ed.). INRIA: INRIA.