Cell Biology (Scheiffele)
Publications
102 found
Show per page
van Oostrum, Marc and Schuman, Erin M. (2024) ‘Understanding the molecular diversity of synapses’, Nature Reviews Neuroscience, p. Online ahead of print. Available at: https://doi.org/10.1038/s41583-024-00888-w.
van Oostrum, Marc and Schuman, Erin M. (2024) ‘Understanding the molecular diversity of synapses’, Nature Reviews Neuroscience, p. Online ahead of print. Available at: https://doi.org/10.1038/s41583-024-00888-w.
Scheiffele, Peter (2024) ‘Thoughts on Mentoring Trainees in Neuroscience’. Authorea, Inc. Available at: https://doi.org/10.22541/au.172945326.60444509/v1.
Scheiffele, Peter (2024) ‘Thoughts on Mentoring Trainees in Neuroscience’. Authorea, Inc. Available at: https://doi.org/10.22541/au.172945326.60444509/v1.
Okur, Zeynep et al. (2024) ‘Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling’, Nature, 629(8011), pp. 402–409. Available at: https://doi.org/10.1038/s41586-024-07317-z.
Okur, Zeynep et al. (2024) ‘Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling’, Nature, 629(8011), pp. 402–409. Available at: https://doi.org/10.1038/s41586-024-07317-z.
Bartolomei, G.D. et al. (2023) ‘Dilated cardiomyopathy-associated RNA Binding Motif Protein 20 regulates long pre-mRNAs in neurons’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.06.570345.
Bartolomei, G.D. et al. (2023) ‘Dilated cardiomyopathy-associated RNA Binding Motif Protein 20 regulates long pre-mRNAs in neurons’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2023.12.06.570345.
Oleari, R. et al. (2023) ‘Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency’, DMM Disease Models and Mechanisms, 16(3). Available at: https://doi.org/10.1242/dmm.049996.
Oleari, R. et al. (2023) ‘Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency’, DMM Disease Models and Mechanisms, 16(3). Available at: https://doi.org/10.1242/dmm.049996.
Traunmüller, Lisa et al. (2023) ‘A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner’, Cell reports, 42(3), p. 112173. Available at: https://doi.org/10.1016/j.celrep.2023.112173.
Traunmüller, Lisa et al. (2023) ‘A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner’, Cell reports, 42(3), p. 112173. Available at: https://doi.org/10.1016/j.celrep.2023.112173.
Zeynep , Okur et al. (2023) ‘Control of neuronal excitation-inhibition balance by BMP-SMAD1 signaling’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.11.532164.
Zeynep , Okur et al. (2023) ‘Control of neuronal excitation-inhibition balance by BMP-SMAD1 signaling’. bioRxiv. Available at: https://doi.org/10.1101/2023.03.11.532164.
Czernecki, Charlotte et al. (2022) ‘Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders’. bioRxiv. Available at: https://doi.org/10.1101/2022.11.16.516849.
Czernecki, Charlotte et al. (2022) ‘Cell type-specific assessment of cholesterol distribution in models of neurodevelopmental disorders’. bioRxiv. Available at: https://doi.org/10.1101/2022.11.16.516849.
Hauser, David et al. (2022) ‘Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition’, Neuron, 110(13), pp. 2094–2109.e10. Available at: https://doi.org/10.1016/j.neuron.2022.04.017.
Hauser, David et al. (2022) ‘Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition’, Neuron, 110(13), pp. 2094–2109.e10. Available at: https://doi.org/10.1016/j.neuron.2022.04.017.
Mazille, Maxime, Scheiffele, Peter and Mauger, Oriane (2022) ‘Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts’, The EMBO Journal, 41(21), p. e110192. Available at: https://doi.org/10.15252/embj.2021110192.
Mazille, Maxime, Scheiffele, Peter and Mauger, Oriane (2022) ‘Stimulus-specific remodeling of the neuronal transcriptome through nuclear intron-retaining transcripts’, The EMBO Journal, 41(21), p. e110192. Available at: https://doi.org/10.15252/embj.2021110192.
Traunmüller, Lisa et al. (2022) ‘Trans-cellular control of synapse properties by a cell type-specific splicing regulator’. bioRxiv. Available at: https://doi.org/10.1101/2022.12.07.519444.
Traunmüller, Lisa et al. (2022) ‘Trans-cellular control of synapse properties by a cell type-specific splicing regulator’. bioRxiv. Available at: https://doi.org/10.1101/2022.12.07.519444.
Di Bartolomei, Giulia and Scheiffele, Peter (2022) ‘An Optimized Protocol for the Mapping of Cell Type-Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 37–49. Available at: https://doi.org/10.1007/978-1-0716-2521-7_3.
Di Bartolomei, Giulia and Scheiffele, Peter (2022) ‘An Optimized Protocol for the Mapping of Cell Type-Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions’, in Scheiffele, Peter; Mauger, Oriane (ed.) Alternative Splicing: Methods and Protocols. New York, NY: Springer (Methods in Molecular Biology), pp. 37–49. Available at: https://doi.org/10.1007/978-1-0716-2521-7_3.
Gomez, Andrea M., Traunmüller, Lisa and Scheiffele, Peter (2021) ‘Neurexins: molecular codes for shaping neuronal synapses’, Nature reviews. Neuroscience, 22(3), pp. 137–151. Available at: https://doi.org/10.1038/s41583-020-00415-7.
Gomez, Andrea M., Traunmüller, Lisa and Scheiffele, Peter (2021) ‘Neurexins: molecular codes for shaping neuronal synapses’, Nature reviews. Neuroscience, 22(3), pp. 137–151. Available at: https://doi.org/10.1038/s41583-020-00415-7.
Hörnberg, H. et al. (2020) ‘Rescue of oxytocin response and social behaviour in a mouse model of autism ’, Nature, 584, pp. 252–256. Available at: https://doi.org/10.1038/s41586-020-2563-7.
Hörnberg, H. et al. (2020) ‘Rescue of oxytocin response and social behaviour in a mouse model of autism ’, Nature, 584, pp. 252–256. Available at: https://doi.org/10.1038/s41586-020-2563-7.
Luo, Lin et al. (2020) ‘Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors’, Neuron, 106(1), pp. 37–65.e5. Available at: https://doi.org/10.1016/j.neuron.2020.01.008.
Luo, Lin et al. (2020) ‘Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors’, Neuron, 106(1), pp. 37–65.e5. Available at: https://doi.org/10.1016/j.neuron.2020.01.008.
Vickers, Evan et al. (2020) ‘LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling’, Scientific Reports, 10(1), p. 10047. Available at: https://doi.org/10.1038/s41598-020-66862-5.
Vickers, Evan et al. (2020) ‘LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling’, Scientific Reports, 10(1), p. 10047. Available at: https://doi.org/10.1038/s41598-020-66862-5.
Falkner, Susanne and Scheiffele, Peter (2019) ‘Architects of neuronal wiring’, Science, 364(6439), pp. 437–438. Available at: https://doi.org/10.1126/science.aax3221.
Falkner, Susanne and Scheiffele, Peter (2019) ‘Architects of neuronal wiring’, Science, 364(6439), pp. 437–438. Available at: https://doi.org/10.1126/science.aax3221.
Furlanis, Elisabetta et al. (2019) ‘Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs’, Nature neuroscience, 22(10), pp. 1709–1717. Available at: https://doi.org/10.1038/s41593-019-0465-5.
Furlanis, Elisabetta et al. (2019) ‘Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs’, Nature neuroscience, 22(10), pp. 1709–1717. Available at: https://doi.org/10.1038/s41593-019-0465-5.
Iijima, Yoko et al. (2019) ‘SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3′ UTR Isoforms in the Nervous System’, iScience, 22, pp. 318–335. Available at: https://doi.org/10.1016/j.isci.2019.11.028.
Iijima, Yoko et al. (2019) ‘SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3′ UTR Isoforms in the Nervous System’, iScience, 22, pp. 318–335. Available at: https://doi.org/10.1016/j.isci.2019.11.028.
Okur, Zeynep and Scheiffele, Peter (2019) ‘The Yin and Yang of Arnt2 in Activity-Dependent Transcription’, Neuron, 102(2), pp. 270–272. Available at: https://doi.org/10.1016/j.neuron.2019.04.006.
Okur, Zeynep and Scheiffele, Peter (2019) ‘The Yin and Yang of Arnt2 in Activity-Dependent Transcription’, Neuron, 102(2), pp. 270–272. Available at: https://doi.org/10.1016/j.neuron.2019.04.006.
Stachniak, Tevye Jason et al. (2019) ‘Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of SOM interneurons’, Journal of Neuroscience, 39(23), pp. 4461–4474. Available at: https://doi.org/10.1523/jneurosci.2276-18.2019.
Stachniak, Tevye Jason et al. (2019) ‘Elfn1-induced constitutive activation of mGluR7 determines frequency-dependent recruitment of SOM interneurons’, Journal of Neuroscience, 39(23), pp. 4461–4474. Available at: https://doi.org/10.1523/jneurosci.2276-18.2019.
Bariselli, Sebastiano et al. (2018) ‘Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction’, Nature communications, 9(1), p. 3173. Available at: https://doi.org/10.1038/s41467-018-05382-3.
Bariselli, Sebastiano et al. (2018) ‘Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction’, Nature communications, 9(1), p. 3173. Available at: https://doi.org/10.1038/s41467-018-05382-3.
Furlanis, Elisabetta and Scheiffele, Peter (2018) ‘Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing’, Annual review of cell and developmental biology, 34, pp. 451–469. Available at: https://doi.org/10.1146/annurev-cellbio-100617-062826.
Furlanis, Elisabetta and Scheiffele, Peter (2018) ‘Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing’, Annual review of cell and developmental biology, 34, pp. 451–469. Available at: https://doi.org/10.1146/annurev-cellbio-100617-062826.
Witte, Harald, Schreiner, Dietmar and Scheiffele, Peter (2018) ‘A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes’, The European journal of neuroscience, p. doi:10.1111/ejn.14332. Available at: https://doi.org/10.1111/ejn.14332.
Witte, Harald, Schreiner, Dietmar and Scheiffele, Peter (2018) ‘A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes’, The European journal of neuroscience, p. doi:10.1111/ejn.14332. Available at: https://doi.org/10.1111/ejn.14332.
Xiao, Le et al. (2018) ‘Regulation of striatal cells and goal-directed behavior by cerebellar outputs’, Nature communications, 9(1), p. 3133. Available at: https://doi.org/10.1038/s41467-018-05565-y.
Xiao, Le et al. (2018) ‘Regulation of striatal cells and goal-directed behavior by cerebellar outputs’, Nature communications, 9(1), p. 3133. Available at: https://doi.org/10.1038/s41467-018-05565-y.
Xiao, Le and Scheiffele, Peter (2018) ‘Local and long-range circuit elements for cerebellar function’, Current opinion in neurobiology, 48, pp. 146–152. Available at: https://doi.org/10.1016/j.conb.2017.12.016.
Xiao, Le and Scheiffele, Peter (2018) ‘Local and long-range circuit elements for cerebellar function’, Current opinion in neurobiology, 48, pp. 146–152. Available at: https://doi.org/10.1016/j.conb.2017.12.016.
Mauger, Oriane and Scheiffele, Peter (2017) ‘Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics’, Current Opinion in Neurobiology, 45, pp. 162–168. Available at: https://doi.org/10.1016/j.conb.2017.05.012.
Mauger, Oriane and Scheiffele, Peter (2017) ‘Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics’, Current Opinion in Neurobiology, 45, pp. 162–168. Available at: https://doi.org/10.1016/j.conb.2017.05.012.
Nguyen, Thi-Minh et al. (2017) ‘Correction: An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus’, eLife, 6, p. e28013. Available at: https://doi.org/10.7554/elife.28013.
Nguyen, Thi-Minh et al. (2017) ‘Correction: An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus’, eLife, 6, p. e28013. Available at: https://doi.org/10.7554/elife.28013.
Tora, David et al. (2017) ‘Cellular Functions of the Autism Risk Factor PTCHD1 in Mice’, Journal of Neuroscience, 37(49), pp. 11993–12005. Available at: https://doi.org/10.1523/jneurosci.1393-17.2017.
Tora, David et al. (2017) ‘Cellular Functions of the Autism Risk Factor PTCHD1 in Mice’, Journal of Neuroscience, 37(49), pp. 11993–12005. Available at: https://doi.org/10.1523/jneurosci.1393-17.2017.
Furlanis, Elisabetta and Scheiffele, Peter (2016) ‘Synaptic Ménage à Trois’, Neuron, 90(4), pp. 665–667. Available at: https://doi.org/10.1016/j.neuron.2016.05.007.
Furlanis, Elisabetta and Scheiffele, Peter (2016) ‘Synaptic Ménage à Trois’, Neuron, 90(4), pp. 665–667. Available at: https://doi.org/10.1016/j.neuron.2016.05.007.
Iijima, Yoko et al. (2016) ‘Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure’, Scientific Reports, 6, p. 27400. Available at: https://doi.org/10.1038/srep27400.
Iijima, Yoko et al. (2016) ‘Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure’, Scientific Reports, 6, p. 27400. Available at: https://doi.org/10.1038/srep27400.
Mauger, Oriane, Lemoine, Frédéric and Scheiffele, Peter (2016) ‘Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity’, Neuron, 92(6), pp. 1266–1278. Available at: https://doi.org/10.1016/j.neuron.2016.11.032.
Mauger, Oriane, Lemoine, Frédéric and Scheiffele, Peter (2016) ‘Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity’, Neuron, 92(6), pp. 1266–1278. Available at: https://doi.org/10.1016/j.neuron.2016.11.032.
Nguyen, Thi-Minh et al. (2016) ‘An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.’, eLife, 5, p. e22757. Available at: https://doi.org/10.7554/elife.22757.
Nguyen, Thi-Minh et al. (2016) ‘An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus.’, eLife, 5, p. e22757. Available at: https://doi.org/10.7554/elife.22757.
Singh, Sandeep K et al. (2016) ‘Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin’, Cell, 164(1-2), pp. 183–96. Available at: https://doi.org/10.1016/j.cell.2015.11.034.
Singh, Sandeep K et al. (2016) ‘Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin’, Cell, 164(1-2), pp. 183–96. Available at: https://doi.org/10.1016/j.cell.2015.11.034.
Traunmüller, Lisa et al. (2016) ‘Control of neuronal synapse specification by a highly dedicated alternative splicing program’, Science, 352(6288), pp. 982–6. Available at: https://doi.org/10.1126/science.aaf2397.
Traunmüller, Lisa et al. (2016) ‘Control of neuronal synapse specification by a highly dedicated alternative splicing program’, Science, 352(6288), pp. 982–6. Available at: https://doi.org/10.1126/science.aaf2397.
de la Mata, Manuel et al. (2015) ‘Potent degradation of neuronal miRNAs induced by highly complementary targets’, EMBO reports, 16(4), pp. 500–11. Available at: https://doi.org/10.15252/embr.201540078.
de la Mata, Manuel et al. (2015) ‘Potent degradation of neuronal miRNAs induced by highly complementary targets’, EMBO reports, 16(4), pp. 500–11. Available at: https://doi.org/10.15252/embr.201540078.
Muhammad, Karzan et al. (2015) ‘Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function’, Nature communications, 6, p. 8362. Available at: https://doi.org/10.1038/ncomms9362.
Muhammad, Karzan et al. (2015) ‘Presynaptic spinophilin tunes neurexin signalling to control active zone architecture and function’, Nature communications, 6, p. 8362. Available at: https://doi.org/10.1038/ncomms9362.
Schreiner, Dietmar et al. (2015) ‘Quantitative isoform-profiling of highly diversified recognition molecules’, eLife, 4, p. e07794. Available at: https://doi.org/10.7554/elife.07794.
Schreiner, Dietmar et al. (2015) ‘Quantitative isoform-profiling of highly diversified recognition molecules’, eLife, 4, p. e07794. Available at: https://doi.org/10.7554/elife.07794.
Iijima, Takatoshi et al. (2014) ‘Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1’, Journal of cell biology, 204(3), pp. 331–42. Available at: https://doi.org/10.1083/jcb.201310136.
Iijima, Takatoshi et al. (2014) ‘Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1’, Journal of cell biology, 204(3), pp. 331–42. Available at: https://doi.org/10.1083/jcb.201310136.
Kleijer, Kristel T E et al. (2014) ‘Neurobiology of autism gene products : towards pathogenesis and drug targets’, Psychopharmacology, 231(6), pp. 1037–62. Available at: https://doi.org/10.1007/s00213-013-3403-3.
Kleijer, Kristel T E et al. (2014) ‘Neurobiology of autism gene products : towards pathogenesis and drug targets’, Psychopharmacology, 231(6), pp. 1037–62. Available at: https://doi.org/10.1007/s00213-013-3403-3.
Schreiner, Dietmar et al. (2014) ‘Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins’, Neuron, 84(2), pp. 386–98. Available at: https://doi.org/10.1016/j.neuron.2014.09.011.
Schreiner, Dietmar et al. (2014) ‘Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins’, Neuron, 84(2), pp. 386–98. Available at: https://doi.org/10.1016/j.neuron.2014.09.011.
Schreiner, Dietmar, Nguyen, Thi-Minh and Scheiffele, Peter (2014) ‘Polymorphic receptors: neuronal functions and molecular mechanisms of diversification’, Current opinion in neurobiology, 27, pp. 25–30. Available at: https://doi.org/10.1016/j.conb.2014.02.009.
Schreiner, Dietmar, Nguyen, Thi-Minh and Scheiffele, Peter (2014) ‘Polymorphic receptors: neuronal functions and molecular mechanisms of diversification’, Current opinion in neurobiology, 27, pp. 25–30. Available at: https://doi.org/10.1016/j.conb.2014.02.009.
Traunmüller, L., Bornmann, C. and Scheiffele, P. (2014) ‘Alternative Splicing Coupled Nonsense-Mediated Decay Generates Neuronal Cell Type-Specific Expression of SLM Proteins’, Journal of Neuroscience, 34(50), pp. 16755–61. Available at: https://doi.org/10.1523/jneurosci.3395-14.2014.
Traunmüller, L., Bornmann, C. and Scheiffele, P. (2014) ‘Alternative Splicing Coupled Nonsense-Mediated Decay Generates Neuronal Cell Type-Specific Expression of SLM Proteins’, Journal of Neuroscience, 34(50), pp. 16755–61. Available at: https://doi.org/10.1523/jneurosci.3395-14.2014.
Schreiner, D. and Scheiffele, P. (2013) ‘Neuroligins and Neurexins’. Elsevier Inc., pp. 671–686. Available at: https://doi.org/10.1016/b978-0-12-397266-8.00206-4.
Schreiner, D. and Scheiffele, P. (2013) ‘Neuroligins and Neurexins’. Elsevier Inc., pp. 671–686. Available at: https://doi.org/10.1016/b978-0-12-397266-8.00206-4.
Budreck, Elaine C et al. (2013) ‘Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling’, Proceedings of the National Academy of Sciences of the United States of America, 110(2), pp. 725–30. Available at: https://doi.org/10.1073/pnas.1214718110.
Budreck, Elaine C et al. (2013) ‘Neuroligin-1 controls synaptic abundance of NMDA-type glutamate receptors through extracellular coupling’, Proceedings of the National Academy of Sciences of the United States of America, 110(2), pp. 725–30. Available at: https://doi.org/10.1073/pnas.1214718110.
Burch, Patrick et al. (2013) ‘Total Synthesis of Gelsemiol’, Chemistry - A European Journal, 19(8), pp. 2589–2591. Available at: https://doi.org/10.1002/chem.201203746.
Burch, Patrick et al. (2013) ‘Total Synthesis of Gelsemiol’, Chemistry - A European Journal, 19(8), pp. 2589–2591. Available at: https://doi.org/10.1002/chem.201203746.
Kiebler, Michael A, Scheiffele, Peter and Ule, Jernej (2013) ‘What, where, and when: the importance of post-transcriptional regulation in the brain’, Frontiers in neuroscience, 7, p. 192. Available at: https://doi.org/10.3389/fnins.2013.00192.
Kiebler, Michael A, Scheiffele, Peter and Ule, Jernej (2013) ‘What, where, and when: the importance of post-transcriptional regulation in the brain’, Frontiers in neuroscience, 7, p. 192. Available at: https://doi.org/10.3389/fnins.2013.00192.
Scheiffele, Peter (2013) ‘Preparing for your future as you grow’, Neuron, 78(5), pp. 751–2. Available at: https://doi.org/10.1016/j.neuron.2013.05.031.
Scheiffele, Peter (2013) ‘Preparing for your future as you grow’, Neuron, 78(5), pp. 751–2. Available at: https://doi.org/10.1016/j.neuron.2013.05.031.
Sylwestrak, Emily and Scheiffele, Peter (2013) ‘Neuroscience: Sculpting neuronal connectivity’, Nature, 503(7474), pp. 42–3. Available at: https://doi.org/10.1038/503042a.
Sylwestrak, Emily and Scheiffele, Peter (2013) ‘Neuroscience: Sculpting neuronal connectivity’, Nature, 503(7474), pp. 42–3. Available at: https://doi.org/10.1038/503042a.
Wentzel, Corinna et al. (2013) ‘mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking’, Neuron, 78(6), pp. 1012–23. Available at: https://doi.org/10.1016/j.neuron.2013.05.010.
Wentzel, Corinna et al. (2013) ‘mSYD1A, a Mammalian Synapse-Defective-1 Protein, Regulates Synaptogenic Signaling and Vesicle Docking’, Neuron, 78(6), pp. 1012–23. Available at: https://doi.org/10.1016/j.neuron.2013.05.010.
Baudouin, Stéphane J et al. (2012) ‘Shared synaptic pathophysiology in syndromic and non-syndromic rodent models of autism’, Science, 338(6103), pp. 128–32. Available at: https://doi.org/10.1126/science.1224159.
Baudouin, Stéphane J et al. (2012) ‘Shared synaptic pathophysiology in syndromic and non-syndromic rodent models of autism’, Science, 338(6103), pp. 128–32. Available at: https://doi.org/10.1126/science.1224159.
Feltrin, Daniel et al. (2012) ‘Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation’, PLoS biology, 10(12), p. e1001439. Available at: https://doi.org/10.1371/journal.pbio.1001439.
Feltrin, Daniel et al. (2012) ‘Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation’, PLoS biology, 10(12), p. e1001439. Available at: https://doi.org/10.1371/journal.pbio.1001439.
Scheiffele, Peter and Iijima, Takatoshi (2012) ‘Choreographing the axo-dendritic dance’, Developmental cell, 23(5), pp. 923–924. Available at: https://doi.org/10.1016/j.devcel.2012.10.020.
Scheiffele, Peter and Iijima, Takatoshi (2012) ‘Choreographing the axo-dendritic dance’, Developmental cell, 23(5), pp. 923–924. Available at: https://doi.org/10.1016/j.devcel.2012.10.020.
Iijima, Takatoshi et al. (2011) ‘SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1’, Cell, 147(7), pp. 1601–14. Available at: https://doi.org/10.1016/j.cell.2011.11.028.
Iijima, Takatoshi et al. (2011) ‘SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1’, Cell, 147(7), pp. 1601–14. Available at: https://doi.org/10.1016/j.cell.2011.11.028.
Kalinovsky, Anna et al. (2011) ‘Development of axon-target specificity of ponto-cerebellar afferents’, PLoS Biology, 9(2), p. e1001013. Available at: https://doi.org/10.1371/journal.pbio.1001013.
Kalinovsky, Anna et al. (2011) ‘Development of axon-target specificity of ponto-cerebellar afferents’, PLoS Biology, 9(2), p. e1001013. Available at: https://doi.org/10.1371/journal.pbio.1001013.
Panzanelli, Patrizia et al. (2011) ‘Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells’, The Journal of Physiology, 589(Pt 20), pp. 4959–80. Available at: https://doi.org/10.1113/jphysiol.2011.216028.
Panzanelli, Patrizia et al. (2011) ‘Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo-axonic synapses on CA1 pyramidal cells’, The Journal of Physiology, 589(Pt 20), pp. 4959–80. Available at: https://doi.org/10.1113/jphysiol.2011.216028.
Asante, Curtis Oware et al. (2010) ‘Cortical control of adaptive locomotion in wild type mice and mutant mice lacking the Ephrin-Eph effector protein alpha2-Chimaerin’, Journal of Neurophysiology, 104(6), pp. 3189–202. Available at: https://doi.org/10.1152/jn.00671.2010.
Asante, Curtis Oware et al. (2010) ‘Cortical control of adaptive locomotion in wild type mice and mutant mice lacking the Ephrin-Eph effector protein alpha2-Chimaerin’, Journal of Neurophysiology, 104(6), pp. 3189–202. Available at: https://doi.org/10.1152/jn.00671.2010.
Baudouin, Stephane and Scheiffele, Peter (2010) ‘SnapShot: Neuroligin-neurexin complexes’, Cell, 141(5), pp. 908–U187. Available at: https://doi.org/10.1016/j.cell.2010.05.024.
Baudouin, Stephane and Scheiffele, Peter (2010) ‘SnapShot: Neuroligin-neurexin complexes’, Cell, 141(5), pp. 908–U187. Available at: https://doi.org/10.1016/j.cell.2010.05.024.
Scheiffele, Peter and Beg, Asim A (2010) ‘Neuroscience : Angelman syndrome connections’, Nature, 468(7326), pp. 907–8. Available at: https://doi.org/10.1038/468907a.
Scheiffele, Peter and Beg, Asim A (2010) ‘Neuroscience : Angelman syndrome connections’, Nature, 468(7326), pp. 907–8. Available at: https://doi.org/10.1038/468907a.
Scheiffele, Peter and Yuzaki, Michizuke (2010) ‘Recent excitements about excitatory synapses’, The European journal of neuroscience, 32(2), pp. 179–80. Available at: https://doi.org/10.1111/j.1460-9568.2010.07360.x.
Scheiffele, Peter and Yuzaki, Michizuke (2010) ‘Recent excitements about excitatory synapses’, The European journal of neuroscience, 32(2), pp. 179–80. Available at: https://doi.org/10.1111/j.1460-9568.2010.07360.x.
Shen, Kang and Scheiffele, Peter (2010) ‘Genetics and cell biology of building specific synaptic connectivity’, Annual Review of Neuroscience, 33, pp. 473–507. Available at: https://doi.org/10.1146/annurev.neuro.051508.135302.
Shen, Kang and Scheiffele, Peter (2010) ‘Genetics and cell biology of building specific synaptic connectivity’, Annual Review of Neuroscience, 33, pp. 473–507. Available at: https://doi.org/10.1146/annurev.neuro.051508.135302.
Tanaka, Kenji F et al. (2010) ‘Flexible Accelerated STOP Tetracycline Operator-knockin (FAST) : a versatile and efficient new gene modulating system’, Biological Psychiatry, 67(8), pp. 770–3. Available at: https://doi.org/10.1016/j.biopsych.2009.12.020.
Tanaka, Kenji F et al. (2010) ‘Flexible Accelerated STOP Tetracycline Operator-knockin (FAST) : a versatile and efficient new gene modulating system’, Biological Psychiatry, 67(8), pp. 770–3. Available at: https://doi.org/10.1016/j.biopsych.2009.12.020.
Dean, Camin and Scheiffele, Peter (2009) ‘Imaging synaptogenesis by measuring accumulation of synaptic proteins’, Cold Spring Harbor Protocols, 2009(11), p. pdb.prot5315. Available at: https://doi.org/10.1101/pdb.prot5315.
Dean, Camin and Scheiffele, Peter (2009) ‘Imaging synaptogenesis by measuring accumulation of synaptic proteins’, Cold Spring Harbor Protocols, 2009(11), p. pdb.prot5315. Available at: https://doi.org/10.1101/pdb.prot5315.
Caroni, P. and Scheiffele, P. (2008) ‘Editorial overview’, Current Opinion in Neurobiology, 18(5), pp. 469–471. Available at: https://doi.org/10.1016/j.conb.2008.10.004.
Caroni, P. and Scheiffele, P. (2008) ‘Editorial overview’, Current Opinion in Neurobiology, 18(5), pp. 469–471. Available at: https://doi.org/10.1016/j.conb.2008.10.004.
Futai, K. et al. (2008) ‘Corrigendum: Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin (Nature Neuroscience (2007) 10 (186-195))’, Nature Neuroscience, 11(2). Available at: https://doi.org/10.1038/nn0208-238b.
Futai, K. et al. (2008) ‘Corrigendum: Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin (Nature Neuroscience (2007) 10 (186-195))’, Nature Neuroscience, 11(2). Available at: https://doi.org/10.1038/nn0208-238b.
Caroni, Pico and Scheiffelle, Peter (2008) ‘Editorial overview’, Current opinion in neurobiology, 18(5), pp. 469–471. Available at: https://doi.org/10.1016/j.conb.2008.10.004.
Caroni, Pico and Scheiffelle, Peter (2008) ‘Editorial overview’, Current opinion in neurobiology, 18(5), pp. 469–471. Available at: https://doi.org/10.1016/j.conb.2008.10.004.
Gascón, Sergio et al. (2008) ‘Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons’, Journal of neuroscience methods, 168(1), pp. 104–12. Available at: https://doi.org/10.1016/j.jneumeth.2007.09.023.
Gascón, Sergio et al. (2008) ‘Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons’, Journal of neuroscience methods, 168(1), pp. 104–12. Available at: https://doi.org/10.1016/j.jneumeth.2007.09.023.
Huang, Z Josh and Scheiffele, Peter (2008) ‘GABA and neuroligin signaling : linking synaptic activity and adhesion in inhibitory synapse development’, Current Opinion in Neurobiology, 18(1), pp. 77–83. Available at: https://doi.org/10.1016/j.conb.2008.05.008.
Huang, Z Josh and Scheiffele, Peter (2008) ‘GABA and neuroligin signaling : linking synaptic activity and adhesion in inhibitory synapse development’, Current Opinion in Neurobiology, 18(1), pp. 77–83. Available at: https://doi.org/10.1016/j.conb.2008.05.008.
Kim, Juhyun et al. (2008) ‘Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals’, Proceedings of the National Academy of Sciences of the United States of America, 105(26), pp. 9087–92. Available at: https://doi.org/10.1073/pnas.0803448105.
Kim, Juhyun et al. (2008) ‘Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals’, Proceedings of the National Academy of Sciences of the United States of America, 105(26), pp. 9087–92. Available at: https://doi.org/10.1073/pnas.0803448105.
Koehnke, Jesko et al. (2008) ‘Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2’, Proceedings of the National Academy of Sciences of the United States of America, 105(6), pp. 1873–8. Available at: https://doi.org/10.1073/pnas.0711701105.
Koehnke, Jesko et al. (2008) ‘Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2’, Proceedings of the National Academy of Sciences of the United States of America, 105(6), pp. 1873–8. Available at: https://doi.org/10.1073/pnas.0711701105.
Koehnke, Jesko et al. (2008) ‘Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4’, Structure: with folding and design, 16(3), pp. 410–21. Available at: https://doi.org/10.1016/j.str.2007.12.024.
Koehnke, Jesko et al. (2008) ‘Crystal structures of beta-neurexin 1 and beta-neurexin 2 ectodomains and dynamics of splice insertion sequence 4’, Structure: with folding and design, 16(3), pp. 410–21. Available at: https://doi.org/10.1016/j.str.2007.12.024.
Robakis, Thalia et al. (2008) ‘An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin-domain protein’, Journal of Biological Chemistry, 283(52), pp. 36369–76. Available at: https://doi.org/10.1074/jbc.m807527200.
Robakis, Thalia et al. (2008) ‘An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin-domain protein’, Journal of Biological Chemistry, 283(52), pp. 36369–76. Available at: https://doi.org/10.1074/jbc.m807527200.
Beg, Asim A et al. (2007) ‘alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits’, Neuron, 55(5), pp. 768–78. Available at: https://doi.org/10.1016/j.neuron.2007.07.036.
Beg, Asim A et al. (2007) ‘alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits’, Neuron, 55(5), pp. 768–78. Available at: https://doi.org/10.1016/j.neuron.2007.07.036.
Biederer, Thomas and Scheiffele, Peter (2007) ‘Mixed-culture assays for analyzing neuronal synapse formation’, Nature protocols, 2(3), pp. 670–6. Available at: https://doi.org/10.1038/nprot.2007.92.
Biederer, Thomas and Scheiffele, Peter (2007) ‘Mixed-culture assays for analyzing neuronal synapse formation’, Nature protocols, 2(3), pp. 670–6. Available at: https://doi.org/10.1038/nprot.2007.92.
Budreck, Elaine C and Scheiffele, Peter (2007) ‘Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses’, The European journal of neuroscience, 26(7), pp. 1738–48. Available at: https://doi.org/10.1111/j.1460-9568.2007.05842.x.
Budreck, Elaine C and Scheiffele, Peter (2007) ‘Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses’, The European journal of neuroscience, 26(7), pp. 1738–48. Available at: https://doi.org/10.1111/j.1460-9568.2007.05842.x.
Futai, Kensuke et al. (2007) ‘Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin’, Nature neuroscience, 10(2), pp. 186–95. Available at: https://doi.org/10.1038/nn1837.
Futai, Kensuke et al. (2007) ‘Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin’, Nature neuroscience, 10(2), pp. 186–95. Available at: https://doi.org/10.1038/nn1837.
Taniguchi, H. et al. (2007) ‘Silencing of neuroligin function by postsynaptic neurexins’, Journal of Neuroscience, 27(11), pp. 2815–24. Available at: https://doi.org/10.1523/jneurosci.0032-07.2007.
Taniguchi, H. et al. (2007) ‘Silencing of neuroligin function by postsynaptic neurexins’, Journal of Neuroscience, 27(11), pp. 2815–24. Available at: https://doi.org/10.1523/jneurosci.0032-07.2007.
Beg, Asim A and Scheiffele, Peter (2006) ‘SUMO wrestles the synapse’, Science, 311(5763), pp. 962–3. Available at: https://doi.org/10.1126/science.1124541.
Beg, Asim A and Scheiffele, Peter (2006) ‘SUMO wrestles the synapse’, Science, 311(5763), pp. 962–3. Available at: https://doi.org/10.1126/science.1124541.
Buttery, Philip et al. (2006) ‘The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology’, Proceedings of the National Academy of Sciences of the United States of America, 103(6), pp. 1924–9. Available at: https://doi.org/10.1073/pnas.0510655103.
Buttery, Philip et al. (2006) ‘The diacylglycerol-binding protein alpha1-chimaerin regulates dendritic morphology’, Proceedings of the National Academy of Sciences of the United States of America, 103(6), pp. 1924–9. Available at: https://doi.org/10.1073/pnas.0510655103.
Chih, Ben, Gollan, Leora and Scheiffele, Peter (2006) ‘Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex’, Neuron, 51(2), pp. 171–8. Available at: https://doi.org/10.1016/j.neuron.2006.06.005.
Chih, Ben, Gollan, Leora and Scheiffele, Peter (2006) ‘Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex’, Neuron, 51(2), pp. 171–8. Available at: https://doi.org/10.1016/j.neuron.2006.06.005.
Chih, Ben, Engelman, Holly and Scheiffele, Peter (2005) ‘Control of excitatory and inhibitory synapse formation by neuroligins’, Science, 307(5713), pp. 1324–8. Available at: https://doi.org/10.1126/science.1107470.
Chih, Ben, Engelman, Holly and Scheiffele, Peter (2005) ‘Control of excitatory and inhibitory synapse formation by neuroligins’, Science, 307(5713), pp. 1324–8. Available at: https://doi.org/10.1126/science.1107470.
Rosales, Carlos R et al. (2005) ‘A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons’, The European journal of neuroscience, 22(9), pp. 2381–6. Available at: https://doi.org/10.1111/j.1460-9568.2005.04400.x.
Rosales, Carlos R et al. (2005) ‘A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons’, The European journal of neuroscience, 22(9), pp. 2381–6. Available at: https://doi.org/10.1111/j.1460-9568.2005.04400.x.
Chih, Ben et al. (2004) ‘Disorder-associated mutations lead to functional inactivation of neuroligins’, Human molecular genetics, 13(14), pp. 1471–7. Available at: https://doi.org/10.1093/hmg/ddh158.
Chih, Ben et al. (2004) ‘Disorder-associated mutations lead to functional inactivation of neuroligins’, Human molecular genetics, 13(14), pp. 1471–7. Available at: https://doi.org/10.1093/hmg/ddh158.
Kalinovsky, A. and Scheiffele, P. (2004) ‘Transcriptional control of synaptic differentiation by retrograde signals’, Current Opinion in Neurobiology, 14(3), pp. 272–9. Available at: https://doi.org/10.1016/j.conb.2004.05.011.
Kalinovsky, A. and Scheiffele, P. (2004) ‘Transcriptional control of synaptic differentiation by retrograde signals’, Current Opinion in Neurobiology, 14(3), pp. 272–9. Available at: https://doi.org/10.1016/j.conb.2004.05.011.
Washbourne, Philip et al. (2004) ‘Cell adhesion molecules in synapse formation’, Journal of neuroscience, 24(42), pp. 9244–9. Available at: https://doi.org/10.1523/jneurosci.3339-04.2004.
Washbourne, Philip et al. (2004) ‘Cell adhesion molecules in synapse formation’, Journal of neuroscience, 24(42), pp. 9244–9. Available at: https://doi.org/10.1523/jneurosci.3339-04.2004.
Chih, Ben and Scheiffele, Peter (2003) ‘Is reelin the answer to synapse elimination at the neuromuscular junction?’, Science’s STKE, 2003(205), p. pe45. Available at: https://doi.org/10.1126/stke.2003.205.pe45.
Chih, Ben and Scheiffele, Peter (2003) ‘Is reelin the answer to synapse elimination at the neuromuscular junction?’, Science’s STKE, 2003(205), p. pe45. Available at: https://doi.org/10.1126/stke.2003.205.pe45.
Dean, Camin et al. (2003) ‘Neurexin mediates the assembly of presynaptic terminals’, Nature Neuroscience, 6(7), pp. 708–16. Available at: https://doi.org/10.1038/nn1074.
Dean, Camin et al. (2003) ‘Neurexin mediates the assembly of presynaptic terminals’, Nature Neuroscience, 6(7), pp. 708–16. Available at: https://doi.org/10.1038/nn1074.
Scheiffele, Peter (2003) ‘Cell-cell signaling during synapse formation in the CNS’, Annual Review of Neuroscience, 26, pp. 485–508. Available at: https://doi.org/10.1146/annurev.neuro.26.043002.094940.
Scheiffele, Peter (2003) ‘Cell-cell signaling during synapse formation in the CNS’, Annual Review of Neuroscience, 26, pp. 485–508. Available at: https://doi.org/10.1146/annurev.neuro.26.043002.094940.
Scholl, Francisco G and Scheiffele, Peter (2003) ‘Making connections : cholinesterase-domain proteins in the CNS’, Trends in neurosciences, 26(11), pp. 618–24. Available at: https://doi.org/10.1016/j.tins.2003.09.004.
Scholl, Francisco G and Scheiffele, Peter (2003) ‘Making connections : cholinesterase-domain proteins in the CNS’, Trends in neurosciences, 26(11), pp. 618–24. Available at: https://doi.org/10.1016/j.tins.2003.09.004.
Breuza, Lionel et al. (2002) ‘The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells’, Journal of cell science, 115(Pt 23), pp. 4457–67. Available at: https://doi.org/10.1242/jcs.00130.
Breuza, Lionel et al. (2002) ‘The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells’, Journal of cell science, 115(Pt 23), pp. 4457–67. Available at: https://doi.org/10.1242/jcs.00130.
Diaz, E. et al. (2002) ‘Molecular analysis of gene expression in the developing pontocerebellar projection system’, Neuron, 36(3), pp. 417–34. Available at: https://doi.org/10.1016/s0896-6273(02)01016-4.
Diaz, E. et al. (2002) ‘Molecular analysis of gene expression in the developing pontocerebellar projection system’, Neuron, 36(3), pp. 417–34. Available at: https://doi.org/10.1016/s0896-6273(02)01016-4.
Scheiffele, P. et al. (2000) ‘Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons’, Cell, 101(6), pp. 657–69. Available at: https://doi.org/10.1016/s0092-8674(00)80877-6.
Scheiffele, P. et al. (2000) ‘Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons’, Cell, 101(6), pp. 657–69. Available at: https://doi.org/10.1016/s0092-8674(00)80877-6.
Scheiffele, P and Fullekrug, J (2000) ‘Glycosylation and protein transport’, Essays in Biochemistry, 36, pp. 27–35. Available at: https://doi.org/10.1042/bse0360027.
Scheiffele, P and Fullekrug, J (2000) ‘Glycosylation and protein transport’, Essays in Biochemistry, 36, pp. 27–35. Available at: https://doi.org/10.1042/bse0360027.
Brückner, K et al. (1999) ‘EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains’, Neuron, 22(3), pp. 511–24. Available at: https://doi.org/10.1016/s0896-6273(00)80706-0.
Brückner, K et al. (1999) ‘EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains’, Neuron, 22(3), pp. 511–24. Available at: https://doi.org/10.1016/s0896-6273(00)80706-0.
Fullekrug, J., Scheiffele, P. and Simons, K. (1999) ‘VIP36 localisation to the early secretory pathway’, Journal of Cell Science, 112 ( Pt 17)(17), pp. 2813–21. Available at: http://jcs.biologists.org/content/joces/112/17/2813.full.pdf.
Fullekrug, J., Scheiffele, P. and Simons, K. (1999) ‘VIP36 localisation to the early secretory pathway’, Journal of Cell Science, 112 ( Pt 17)(17), pp. 2813–21. Available at: http://jcs.biologists.org/content/joces/112/17/2813.full.pdf.
Scheiffele, P et al. (1999) ‘Influenza viruses select ordered lipid domains during budding from the plasma membrane’, Journal of Biological Chemistry, 274(4), pp. 2038–44. Available at: https://doi.org/10.1074/jbc.274.4.2038.
Scheiffele, P et al. (1999) ‘Influenza viruses select ordered lipid domains during budding from the plasma membrane’, Journal of Biological Chemistry, 274(4), pp. 2038–44. Available at: https://doi.org/10.1074/jbc.274.4.2038.
Harder, T. et al. (1998) ‘Lipid domain structure of the plasma membrane revealed by patching of membrane components’, Journal of Cell Biology, 141(4), pp. 929–42. Available at: https://doi.org/10.1083/jcb.141.4.929.
Harder, T. et al. (1998) ‘Lipid domain structure of the plasma membrane revealed by patching of membrane components’, Journal of Cell Biology, 141(4), pp. 929–42. Available at: https://doi.org/10.1083/jcb.141.4.929.
Scheiffele, P et al. (1998) ‘Caveolin-1 and -2 in the exocytic pathway of MDCK cells’, The Journal of cell biology, 140(4), pp. 795–806. Available at: https://doi.org/10.1083/jcb.140.4.795.
Scheiffele, P et al. (1998) ‘Caveolin-1 and -2 in the exocytic pathway of MDCK cells’, The Journal of cell biology, 140(4), pp. 795–806. Available at: https://doi.org/10.1083/jcb.140.4.795.
Scheiffele, P., Roth, M. G. and Simons, K. (1997) ‘Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain’, The EMBO Journal, 16(18), pp. 5501–8. Available at: https://doi.org/10.1093/emboj/16.18.5501.
Scheiffele, P., Roth, M. G. and Simons, K. (1997) ‘Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain’, The EMBO Journal, 16(18), pp. 5501–8. Available at: https://doi.org/10.1093/emboj/16.18.5501.
Shevchenko, A et al. (1997) ‘Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry’, Electrophoresis, 18(14), pp. 2591–600. Available at: https://doi.org/10.1002/elps.1150181415.
Shevchenko, A et al. (1997) ‘Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry’, Electrophoresis, 18(14), pp. 2591–600. Available at: https://doi.org/10.1002/elps.1150181415.