Cell and Developmental Biology (Schier)
Publications
207 found
Show per page
McNamara, Harold M. et al. (2025) ‘Optogenetic control of Nodal signaling patterns’, Development (Cambridge), 152(9). Available at: https://doi.org/10.1242/dev.204506.
McNamara, Harold M. et al. (2025) ‘Optogenetic control of Nodal signaling patterns’, Development (Cambridge), 152(9). Available at: https://doi.org/10.1242/dev.204506.
Wang, Yiqun et al. (2025) ‘Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish’, Developmental Cell. 25.11.2024, 60, pp. 581–598.e9. Available at: https://doi.org/10.1016/j.devcel.2024.10.015.
Wang, Yiqun et al. (2025) ‘Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish’, Developmental Cell. 25.11.2024, 60, pp. 581–598.e9. Available at: https://doi.org/10.1016/j.devcel.2024.10.015.
Bayer, Emily A et al. (2025) ‘The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2025.01.01.631014.
Bayer, Emily A et al. (2025) ‘The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2025.01.01.631014.
Reimão-Pinto, Madalena M. et al. (2025) ‘The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis’, Developmental Cell [Preprint]. Available at: https://doi.org/10.1016/j.devcel.2024.12.038.
Reimão-Pinto, Madalena M. et al. (2025) ‘The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis’, Developmental Cell [Preprint]. Available at: https://doi.org/10.1016/j.devcel.2024.12.038.
Askary, Amjad et al. (2024) ‘The lives of cells, recorded’, Nature Reviews Genetics [Preprint]. Available at: https://doi.org/10.1038/s41576-024-00788-w.
Askary, Amjad et al. (2024) ‘The lives of cells, recorded’, Nature Reviews Genetics [Preprint]. Available at: https://doi.org/10.1038/s41576-024-00788-w.
Liu, Jialin et al. (2024) ‘Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.27.609971.
Liu, Jialin et al. (2024) ‘Dissecting the regulatory logic of specification and differentiation during vertebrate embryogenesis’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.27.609971.
Wan, Yinan et al. (2024) ‘Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.27.609868.
Wan, Yinan et al. (2024) ‘Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis’, bioRxiv [Preprint]. bioRxiv: Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.08.27.609868.
Liberali, Prisca and Schier, Alexander F. (2024) ‘The evolution of developmental biology through conceptual and technological revolutions’, Cell, 187(14), pp. 3461–3495. Available at: https://doi.org/10.1016/j.cell.2024.05.053.
Liberali, Prisca and Schier, Alexander F. (2024) ‘The evolution of developmental biology through conceptual and technological revolutions’, Cell, 187(14), pp. 3461–3495. Available at: https://doi.org/10.1016/j.cell.2024.05.053.
Abitua, Philip B. et al. (2024) ‘Axis formation in annual killifish: Nodal and β-catenin regulate morphogenesis without Huluwa prepatterning’, Science (New York, N.Y.), 384(6700), pp. 1105–1110. Available at: https://doi.org/10.1126/science.ado7604.
Abitua, Philip B. et al. (2024) ‘Axis formation in annual killifish: Nodal and β-catenin regulate morphogenesis without Huluwa prepatterning’, Science (New York, N.Y.), 384(6700), pp. 1105–1110. Available at: https://doi.org/10.1126/science.ado7604.
Nichols, Annika L. A. et al. (2024) ‘Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.05.29.596472.
Nichols, Annika L. A. et al. (2024) ‘Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.05.29.596472.
Okur, Zeynep et al. (2024) ‘Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling’, Nature, 629(8011), pp. 402–409. Available at: https://doi.org/10.1038/s41586-024-07317-z.
Okur, Zeynep et al. (2024) ‘Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling’, Nature, 629(8011), pp. 402–409. Available at: https://doi.org/10.1038/s41586-024-07317-z.
McNamara, Harold M. et al. (2024) ‘Optogenetic control of Nodal signaling patterns’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.04.11.588875.
McNamara, Harold M. et al. (2024) ‘Optogenetic control of Nodal signaling patterns’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2024.04.11.588875.
Bitsikas, Vassilis, Cubizolles, Fabien and Schier, Alexander F. (2024) ‘A vertebrate family without a functional Hypocretin/Orexin arousal system’, Current Biology, 34(7), pp. 1532–1540.e4. Available at: https://doi.org/10.1016/j.cub.2024.02.022.
Bitsikas, Vassilis, Cubizolles, Fabien and Schier, Alexander F. (2024) ‘A vertebrate family without a functional Hypocretin/Orexin arousal system’, Current Biology, 34(7), pp. 1532–1540.e4. Available at: https://doi.org/10.1016/j.cub.2024.02.022.
Qiu, Chengxiang et al. (2024) ‘A single-cell time-lapse of mouse prenatal development from gastrula to birth’, Nature, 626(8001), pp. 1084–1093. Available at: https://doi.org/10.1038/s41586-024-07069-w.
Qiu, Chengxiang et al. (2024) ‘A single-cell time-lapse of mouse prenatal development from gastrula to birth’, Nature, 626(8001), pp. 1084–1093. Available at: https://doi.org/10.1038/s41586-024-07069-w.
Wang, Yiqun et al. (2023) ‘Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.12.29.573643.
Wang, Yiqun et al. (2023) ‘Gene module reconstruction elucidates cellular differentiation processes and the regulatory logic of specialized secretion’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.12.29.573643.
Navajas Acedo, Joaquín (2023) ‘Persistence of the primary somatosensory system in zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.12.19.572352.
Navajas Acedo, Joaquín (2023) ‘Persistence of the primary somatosensory system in zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/2023.12.19.572352.
Reimão-Pinto, M.M. et al. (2023) ‘The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis’. bioRxiv. Available at: https://doi.org/10.1101/2023.11.23.568470.
Reimão-Pinto, M.M. et al. (2023) ‘The regulatory landscape of 5′ UTRs in translational control during zebrafish embryogenesis’. bioRxiv. Available at: https://doi.org/10.1101/2023.11.23.568470.
Shafer, M.E.R. et al. (2023) ‘Frequent transitions from night-to-day activity after mass extinctions’. bioRxiv. Available at: https://doi.org/10.1101/2023.10.27.564421.
Shafer, M.E.R. et al. (2023) ‘Frequent transitions from night-to-day activity after mass extinctions’. bioRxiv. Available at: https://doi.org/10.1101/2023.10.27.564421.
Qiu, C. et al. (2023) ‘A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup’. bioRxiv. Available at: https://doi.org/10.1101/2023.04.05.535726.
Qiu, C. et al. (2023) ‘A single-cell transcriptional timelapse of mouse embryonic development, from gastrula to pup’. bioRxiv. Available at: https://doi.org/10.1101/2023.04.05.535726.
P. Dingal, P.C.D. et al. (2023) ‘Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1’, Proceedings of the National Academy of Sciences of the United States of America, 120(43). Available at: https://doi.org/10.1073/pnas.2307203120.
P. Dingal, P.C.D. et al. (2023) ‘Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1’, Proceedings of the National Academy of Sciences of the United States of America, 120(43). Available at: https://doi.org/10.1073/pnas.2307203120.
Sfeir, Agnel et al. (2022) ‘Basic science under threat: Lessons from the Skirball Institute’, Cell, 185(5), pp. 755–758. Available at: https://doi.org/10.1016/j.cell.2022.02.008.
Sfeir, Agnel et al. (2022) ‘Basic science under threat: Lessons from the Skirball Institute’, Cell, 185(5), pp. 755–758. Available at: https://doi.org/10.1016/j.cell.2022.02.008.
Shafer, Maxwell Eric Robert, Sawh, Ahilya N. and Schier, Alexander F. (2022) ‘Gene family evolution underlies cell type diversification in the hypothalamus of teleosts’, Nature ecology & evolution, 6(1), pp. 63–76. Available at: https://doi.org/10.1038/s41559-021-01580-3.
Shafer, Maxwell Eric Robert, Sawh, Ahilya N. and Schier, Alexander F. (2022) ‘Gene family evolution underlies cell type diversification in the hypothalamus of teleosts’, Nature ecology & evolution, 6(1), pp. 63–76. Available at: https://doi.org/10.1038/s41559-021-01580-3.
Abitua, Philipp B., Aksel, Deniz C. and Schier, Alexander F. (2021) ‘Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning’. bioRxiv. Available at: https://doi.org/10.1101/2021.04.16.440199.
Abitua, Philipp B., Aksel, Deniz C. and Schier, Alexander F. (2021) ‘Axis formation in annual killifish: Nodal coordinates morphogenesis in absence of Huluwa prepatterning’. bioRxiv. Available at: https://doi.org/10.1101/2021.04.16.440199.
Dingal, P. C. Dave P. et al. (2021) ‘Regulation of Vg1 biogenesis during mesendoderm induction’. bioRxiv. Available at: https://doi.org/10.1101/2021.04.25.441333.
Dingal, P. C. Dave P. et al. (2021) ‘Regulation of Vg1 biogenesis during mesendoderm induction’. bioRxiv. Available at: https://doi.org/10.1101/2021.04.25.441333.
Lord, Nathan D. et al. (2021) ‘The pattern of nodal morphogen signaling is shaped by co-receptor expression’, eLife, 10, p. 54894. Available at: https://doi.org/10.7554/elife.54894.
Lord, Nathan D. et al. (2021) ‘The pattern of nodal morphogen signaling is shaped by co-receptor expression’, eLife, 10, p. 54894. Available at: https://doi.org/10.7554/elife.54894.
Shafer, Maxwell E. R., Sawh, Ahilya N. and Schier, Alexander F. (2021) ‘Gene family evolution underlies cell type diversification in the hypothalamus of teleosts’. bioRxiv. Available at: https://doi.org/10.1101/2020.12.13.414557.
Shafer, Maxwell E. R., Sawh, Ahilya N. and Schier, Alexander F. (2021) ‘Gene family evolution underlies cell type diversification in the hypothalamus of teleosts’. bioRxiv. Available at: https://doi.org/10.1101/2020.12.13.414557.
Lin, Qian et al. (2020) ‘Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level’, Cell, 180(3), pp. 536–551.e17. Available at: https://doi.org/10.1016/j.cell.2019.12.018.
Lin, Qian et al. (2020) ‘Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level’, Cell, 180(3), pp. 536–551.e17. Available at: https://doi.org/10.1016/j.cell.2019.12.018.
Ma, Manxiu et al. (2020) ‘Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function’, Journal of Neuroscience, 40(1), pp. 143–158. Available at: https://doi.org/10.1523/jneurosci.1783-19.2019.
Ma, Manxiu et al. (2020) ‘Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function’, Journal of Neuroscience, 40(1), pp. 143–158. Available at: https://doi.org/10.1523/jneurosci.1783-19.2019.
Raj, Bushra et al. (2020) ‘Emergence of Neuronal Diversity during Vertebrate Brain Development’, Neuron, 108(6), pp. 1058–1074.e6. Available at: https://doi.org/10.1016/j.neuron.2020.09.023.
Raj, Bushra et al. (2020) ‘Emergence of Neuronal Diversity during Vertebrate Brain Development’, Neuron, 108(6), pp. 1058–1074.e6. Available at: https://doi.org/10.1016/j.neuron.2020.09.023.
Schier, Alexander F. (2020) ‘Single-cell biology: beyond the sum of its parts’, Nature Methods, 17(1), pp. 17–20. Available at: https://doi.org/10.1038/s41592-019-0693-3.
Schier, Alexander F. (2020) ‘Single-cell biology: beyond the sum of its parts’, Nature Methods, 17(1), pp. 17–20. Available at: https://doi.org/10.1038/s41592-019-0693-3.
Raj, Bushra et al. (2019) ‘Emergence of neuronal diversity during vertebrate brain development’. bioRxiv. Available at: https://doi.org/10.1101/839860.
Raj, Bushra et al. (2019) ‘Emergence of neuronal diversity during vertebrate brain development’. bioRxiv. Available at: https://doi.org/10.1101/839860.
Lin, Qian et al. (2019) ‘Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level’. bioRxiv. Available at: https://doi.org/10.1101/833889.
Lin, Qian et al. (2019) ‘Cerebellar neurodynamics during motor planning predict decision timing and outcome on single-trial level’. bioRxiv. Available at: https://doi.org/10.1101/833889.
Ma, Manxiu et al. (2019) ‘Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits’. bioRxiv. Available at: https://doi.org/10.1101/658161.
Ma, Manxiu et al. (2019) ‘Zebrafish Dscaml1 is Essential for Retinal Patterning and Function of Oculomotor Subcircuits’. bioRxiv. Available at: https://doi.org/10.1101/658161.
Goudarzi, Mehdi et al. (2019) ‘Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility’, eLife, 8, p. 8:e40815. Available at: https://doi.org/10.7554/elife.40815.
Goudarzi, Mehdi et al. (2019) ‘Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility’, eLife, 8, p. 8:e40815. Available at: https://doi.org/10.7554/elife.40815.
Haesemeyer, Martin, Schier, Alexander F. and Engert, Florian (2019) ‘Convergent Temperature Representations in Artificial and Biological Neural Networks’, Neuron, 103(6), pp. 1123–1134.e6. Available at: https://doi.org/10.1016/j.neuron.2019.07.003.
Haesemeyer, Martin, Schier, Alexander F. and Engert, Florian (2019) ‘Convergent Temperature Representations in Artificial and Biological Neural Networks’, Neuron, 103(6), pp. 1123–1134.e6. Available at: https://doi.org/10.1016/j.neuron.2019.07.003.
Lord, Nathan D. et al. (2019) ‘The pattern of nodal morphogen signaling is shaped by co-receptor expression’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2019.12.30.891101.
Lord, Nathan D. et al. (2019) ‘The pattern of nodal morphogen signaling is shaped by co-receptor expression’. Cold Spring Harbor Laboratory. Available at: https://doi.org/10.1101/2019.12.30.891101.
Randlett, Owen et al. (2019) ‘Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish’, Current biology : CB, 29(8), pp. 1337–1345.e4. Available at: https://doi.org/10.1016/j.cub.2019.02.039.
Randlett, Owen et al. (2019) ‘Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish’, Current biology : CB, 29(8), pp. 1337–1345.e4. Available at: https://doi.org/10.1016/j.cub.2019.02.039.
Shafer, Maxwell E. R. (2019) ‘Cross-Species Analysis of Single-Cell Transcriptomic Data’, Frontiers in Cell and Developmental Biology, 7, p. 175. Available at: https://doi.org/10.3389/fcell.2019.00175.
Shafer, Maxwell E. R. (2019) ‘Cross-Species Analysis of Single-Cell Transcriptomic Data’, Frontiers in Cell and Developmental Biology, 7, p. 175. Available at: https://doi.org/10.3389/fcell.2019.00175.
Thyme, Summer B. et al. (2019) ‘Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions’, Cell, 177(2), pp. 478–491.e20. Available at: https://doi.org/10.1016/j.cell.2019.01.048.
Thyme, Summer B. et al. (2019) ‘Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions’, Cell, 177(2), pp. 478–491.e20. Available at: https://doi.org/10.1016/j.cell.2019.01.048.
Wee, Caroline L. et al. (2019) ‘Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets’, Nature neuroscience, 22(9), pp. 1477–1492. Available at: https://doi.org/10.1038/s41593-019-0452-x.
Wee, Caroline L. et al. (2019) ‘Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets’, Nature neuroscience, 22(9), pp. 1477–1492. Available at: https://doi.org/10.1038/s41593-019-0452-x.
Thyme, Summer B. et al. (2018) ‘Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/360677.
Thyme, Summer B. et al. (2018) ‘Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/360677.
Rabani, M. et al. (2018) ‘Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014))’, Molecular Cell, 70(3). Available at: https://doi.org/10.1016/j.molcel.2018.04.013.
Rabani, M. et al. (2018) ‘Erratum: A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation (Molecular Cell (2017) 68(6) (1083–1094.e5) (S1097276517308730) (10.1016/j.molcel.2017.11.014))’, Molecular Cell, 70(3). Available at: https://doi.org/10.1016/j.molcel.2018.04.013.
Almuedo-Castillo, María et al. (2018) ‘Scale-invariant patterning by size-dependent inhibition of Nodal signalling’, Nature cell biology, 20(9), pp. 1032–1042. Available at: https://doi.org/10.1038/s41556-018-0155-7.
Almuedo-Castillo, María et al. (2018) ‘Scale-invariant patterning by size-dependent inhibition of Nodal signalling’, Nature cell biology, 20(9), pp. 1032–1042. Available at: https://doi.org/10.1038/s41556-018-0155-7.
Farrell, Jeffrey A. et al. (2018) ‘Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis’, Science (New York, N.Y.), 360(6392), p. 979–+. Available at: https://doi.org/10.1126/science.aar3131.
Farrell, Jeffrey A. et al. (2018) ‘Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis’, Science (New York, N.Y.), 360(6392), p. 979–+. Available at: https://doi.org/10.1126/science.aar3131.
Gagnon, James A., Obbad, Kamal and Schier, Alexander F. (2018) ‘The primary role of zebrafish nanog is in extra-embryonic tissue’, Development (Cambridge, England), 145(1), p. 9. Available at: https://doi.org/10.1242/dev.147793.
Gagnon, James A., Obbad, Kamal and Schier, Alexander F. (2018) ‘The primary role of zebrafish nanog is in extra-embryonic tissue’, Development (Cambridge, England), 145(1), p. 9. Available at: https://doi.org/10.1242/dev.147793.
Haesemeyer, Martin et al. (2018) ‘A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish’, Neuron, 98(4), p. 817–+. Available at: https://doi.org/10.1016/j.neuron.2018.04.013.
Haesemeyer, Martin et al. (2018) ‘A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish’, Neuron, 98(4), p. 817–+. Available at: https://doi.org/10.1016/j.neuron.2018.04.013.
Montague, Tessa G., Gagnon, James A. and Schier, Alexander F. (2018) ‘Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse’, Development (Cambridge, England), 145(24), p. 9. Available at: https://doi.org/10.1242/dev.171090.
Montague, Tessa G., Gagnon, James A. and Schier, Alexander F. (2018) ‘Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse’, Development (Cambridge, England), 145(24), p. 9. Available at: https://doi.org/10.1242/dev.171090.
Pandey, Shristi et al. (2018) ‘Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq’, Current biology : CB, 28(7), pp. 1052–1065.e7. Available at: https://doi.org/10.1016/j.cub.2018.02.040.
Pandey, Shristi et al. (2018) ‘Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq’, Current biology : CB, 28(7), pp. 1052–1065.e7. Available at: https://doi.org/10.1016/j.cub.2018.02.040.
Raj, Bushra, Gagnon, James A. and Schier, Alexander F. (2018) ‘Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT’, Nature protocols, 13(11), pp. 2685–2713. Available at: https://doi.org/10.1038/s41596-018-0058-x.
Raj, Bushra, Gagnon, James A. and Schier, Alexander F. (2018) ‘Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT’, Nature protocols, 13(11), pp. 2685–2713. Available at: https://doi.org/10.1038/s41596-018-0058-x.
Raj, Bushra et al. (2018) ‘Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain’, Nature biotechnology, 36(5), pp. 442–450. Available at: https://doi.org/10.1038/nbt.4103.
Raj, Bushra et al. (2018) ‘Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain’, Nature biotechnology, 36(5), pp. 442–450. Available at: https://doi.org/10.1038/nbt.4103.
Raj, Bushra et al. (2017) ‘Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/205534.
Raj, Bushra et al. (2017) ‘Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/205534.
Haesemeyer, Martin et al. (2017) ‘A brain wide circuit model of heat evoked swimming behavior in larval zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/190447.
Haesemeyer, Martin et al. (2017) ‘A brain wide circuit model of heat evoked swimming behavior in larval zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/190447.
Schoppik, David et al. (2017) ‘Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/151548.
Schoppik, David et al. (2017) ‘Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/151548.
Hildebrand, David Grant Colburn et al. (2017) ‘Whole-brain serial-section electron microscopy in larval zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/134882.
Hildebrand, David Grant Colburn et al. (2017) ‘Whole-brain serial-section electron microscopy in larval zebrafish’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/134882.
Escamilla, Christine Ochoa et al. (2017) ‘Kctd13 deletion reduces synaptic transmission via increased RhoA’, Nature, 551(7679), pp. 227–231. Available at: https://doi.org/10.1038/nature24470.
Escamilla, Christine Ochoa et al. (2017) ‘Kctd13 deletion reduces synaptic transmission via increased RhoA’, Nature, 551(7679), pp. 227–231. Available at: https://doi.org/10.1038/nature24470.
Freyer, Laina et al. (2017) ‘Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives’, Cell reports, 20(9), pp. 2116–2130. Available at: https://doi.org/10.1016/j.celrep.2017.08.014.
Freyer, Laina et al. (2017) ‘Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives’, Cell reports, 20(9), pp. 2116–2130. Available at: https://doi.org/10.1016/j.celrep.2017.08.014.
Hildebrand, David Grant Colburn et al. (2017) ‘Whole-brain serial-section electron microscopy in larval zebrafish’, Nature, 545(7654), pp. 345–349. Available at: https://doi.org/10.1038/nature22356.
Hildebrand, David Grant Colburn et al. (2017) ‘Whole-brain serial-section electron microscopy in larval zebrafish’, Nature, 545(7654), pp. 345–349. Available at: https://doi.org/10.1038/nature22356.
Montague, Tessa G. and Schier, Alexander F. (2017) ‘Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm’, eLife, 6, p. 6:e28183. Available at: https://doi.org/10.7554/elife.28183.
Montague, Tessa G. and Schier, Alexander F. (2017) ‘Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm’, eLife, 6, p. 6:e28183. Available at: https://doi.org/10.7554/elife.28183.
Norris, Megan L. et al. (2017) ‘Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling’, eLife, 6, p. 6:e22626. Available at: https://doi.org/10.7554/elife.22626.
Norris, Megan L. et al. (2017) ‘Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling’, eLife, 6, p. 6:e22626. Available at: https://doi.org/10.7554/elife.22626.
Rabani, Michal et al. (2017) ‘A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation’, Molecular Cell, 68(6), p. 1083–+. Available at: https://doi.org/10.1016/j.molcel.2017.11.014.
Rabani, Michal et al. (2017) ‘A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation’, Molecular Cell, 68(6), p. 1083–+. Available at: https://doi.org/10.1016/j.molcel.2017.11.014.
Rogers, Katherine W. et al. (2017) ‘Nodal patterning without Lefty inhibitory feedback is functional but fragile’, eLife, 6, p. 6:e28785. Available at: https://doi.org/10.7554/elife.28785.
Rogers, Katherine W. et al. (2017) ‘Nodal patterning without Lefty inhibitory feedback is functional but fragile’, eLife, 6, p. 6:e28785. Available at: https://doi.org/10.7554/elife.28785.
Schoppik, David et al. (2017) ‘Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools’, The Journal of Neuroscience, 37(47), pp. 11353–11365. Available at: https://doi.org/10.1523/jneurosci.1711-17.2017.
Schoppik, David et al. (2017) ‘Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools’, The Journal of Neuroscience, 37(47), pp. 11353–11365. Available at: https://doi.org/10.1523/jneurosci.1711-17.2017.
Gagnon, James A., Obbad, Kamal and Schier, Alexander F. (2016) ‘Zebrafish Nanog is not required in embryonic cells’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/091504.
Gagnon, James A., Obbad, Kamal and Schier, Alexander F. (2016) ‘Zebrafish Nanog is not required in embryonic cells’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/091504.
Thyme, S.B. and Schier, A.F. (2016) ‘Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089’, Cell Reports, 15(7), pp. 1611–1613. Available at: https://doi.org/10.1016/j.celrep.2016.04.089.
Thyme, S.B. and Schier, A.F. (2016) ‘Correction to Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development [Cell Reports, 15, (2016), 707-714] doi: 10.1016/j.celrep.2016.04.089’, Cell Reports, 15(7), pp. 1611–1613. Available at: https://doi.org/10.1016/j.celrep.2016.04.089.
McKenna, Aaron et al. (2016) ‘Whole organism lineage tracing by combinatorial and cumulative genome editing’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/052712.
McKenna, Aaron et al. (2016) ‘Whole organism lineage tracing by combinatorial and cumulative genome editing’, bioRxiv [Preprint]. Cold Spring Harbor Laboratory (bioRxiv). Available at: https://doi.org/10.1101/052712.
Dunn, Timothy W et al. (2016) ‘Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion’. peer-review. eLife Sciences Publications, Ltd. Available at: https://doi.org/10.7554/elife.12741.032.
Dunn, Timothy W et al. (2016) ‘Author response: Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion’. peer-review. eLife Sciences Publications, Ltd. Available at: https://doi.org/10.7554/elife.12741.032.
Chew, Guo-Liang, Pauli, Andrea and Schier, Alexander F. (2016) ‘Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish’, Nature communications, 7, p. 11663. Available at: https://doi.org/10.1038/ncomms11663.
Chew, Guo-Liang, Pauli, Andrea and Schier, Alexander F. (2016) ‘Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish’, Nature communications, 7, p. 11663. Available at: https://doi.org/10.1038/ncomms11663.
Chiu, Cindy N. et al. (2016) ‘A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States’, Neuron, 89(4), pp. 842–856. Available at: https://doi.org/10.1016/j.neuron.2016.01.007.
Chiu, Cindy N. et al. (2016) ‘A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States’, Neuron, 89(4), pp. 842–856. Available at: https://doi.org/10.1016/j.neuron.2016.01.007.
Dunn, Timothy W. et al. (2016) ‘Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion’, eLife, 5, p. e12741. Available at: https://doi.org/10.7554/elife.12741.
Dunn, Timothy W. et al. (2016) ‘Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion’, eLife, 5, p. e12741. Available at: https://doi.org/10.7554/elife.12741.
Li-Villarreal, Nanbing et al. (2016) ‘Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis’, Development, 143(10), p. 1832. Available at: https://doi.org/10.1242/dev.138859.
Li-Villarreal, Nanbing et al. (2016) ‘Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis’, Development, 143(10), p. 1832. Available at: https://doi.org/10.1242/dev.138859.
McKenna, Aaron et al. (2016) ‘Whole-organism lineage tracing by combinatorial and cumulative genome editing’, Science (New York, N.Y.), 353(6298), p. aaf7907. Available at: https://doi.org/10.1126/science.aaf7907.
McKenna, Aaron et al. (2016) ‘Whole-organism lineage tracing by combinatorial and cumulative genome editing’, Science (New York, N.Y.), 353(6298), p. aaf7907. Available at: https://doi.org/10.1126/science.aaf7907.
Thyme, Summer B. et al. (2016) ‘Internal guide RNA interactions interfere with Cas9-mediated cleavage’, Nature communications, 7, p. 11750. Available at: https://doi.org/10.1038/ncomms11750.
Thyme, Summer B. et al. (2016) ‘Internal guide RNA interactions interfere with Cas9-mediated cleavage’, Nature communications, 7, p. 11750. Available at: https://doi.org/10.1038/ncomms11750.
Thyme, Summer B. and Schier, Alexander F. (2016) ‘Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development’, Cell reports, 15(4), pp. 707–714. Available at: https://doi.org/10.1016/j.celrep.2016.03.072.
Thyme, Summer B. and Schier, Alexander F. (2016) ‘Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development’, Cell reports, 15(4), pp. 707–714. Available at: https://doi.org/10.1016/j.celrep.2016.03.072.
Dubrulle, Julien et al. (2015) ‘Response to Nodal morphogen gradient is determined by the kinetics of target gene induction’, eLife, 4, p. e05042. Available at: https://doi.org/10.7554/elife.05042.
Dubrulle, Julien et al. (2015) ‘Response to Nodal morphogen gradient is determined by the kinetics of target gene induction’, eLife, 4, p. e05042. Available at: https://doi.org/10.7554/elife.05042.
Haesemeyer, Martin et al. (2015) ‘The structure and timescales of heat perception in larval zebrafish’, Cell Systems, 1(5), pp. 338–348. Available at: https://doi.org/10.1016/j.cels.2015.10.010.
Haesemeyer, Martin et al. (2015) ‘The structure and timescales of heat perception in larval zebrafish’, Cell Systems, 1(5), pp. 338–348. Available at: https://doi.org/10.1016/j.cels.2015.10.010.
Haesemeyer, Martin and Schier, Alexander F. (2015) ‘The study of psychiatric disease genes and drugs in zebrafish’, Current Opinion in Neurobiology, 30, pp. 122–130. Available at: https://doi.org/10.1016/j.conb.2014.12.002.
Haesemeyer, Martin and Schier, Alexander F. (2015) ‘The study of psychiatric disease genes and drugs in zebrafish’, Current Opinion in Neurobiology, 30, pp. 122–130. Available at: https://doi.org/10.1016/j.conb.2014.12.002.
Lacoste, Alix M. B. et al. (2015) ‘A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes’, Current biology : CB, 25(11), pp. 1526–1534. Available at: https://doi.org/10.1016/j.cub.2015.04.025.
Lacoste, Alix M. B. et al. (2015) ‘A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes’, Current biology : CB, 25(11), pp. 1526–1534. Available at: https://doi.org/10.1016/j.cub.2015.04.025.
Liu, Justin et al. (2015) ‘Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9’, Development, 142(6), pp. 1113–24. Available at: https://doi.org/10.1242/dev.117424.
Liu, Justin et al. (2015) ‘Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9’, Development, 142(6), pp. 1113–24. Available at: https://doi.org/10.1242/dev.117424.
Li-Villarreal, Nanbing et al. (2015) ‘Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis’, Development, 142(15), pp. 2704–18. Available at: https://doi.org/10.1242/dev.119800.
Li-Villarreal, Nanbing et al. (2015) ‘Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis’, Development, 142(15), pp. 2704–18. Available at: https://doi.org/10.1242/dev.119800.
Merkle, Florian T. et al. (2015) ‘Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells’, Development (Cambridge, England), 142(4), pp. 633–43. Available at: https://doi.org/10.1242/dev.117978.
Merkle, Florian T. et al. (2015) ‘Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells’, Development (Cambridge, England), 142(4), pp. 633–43. Available at: https://doi.org/10.1242/dev.117978.
Merkle, Florian T. et al. (2015) ‘Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus’, Cell Reports, 11(6), pp. 875–883. Available at: https://doi.org/10.1016/j.celrep.2015.04.007.
Merkle, Florian T. et al. (2015) ‘Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus’, Cell Reports, 11(6), pp. 875–883. Available at: https://doi.org/10.1016/j.celrep.2015.04.007.
Mundell, Nathan A. et al. (2015) ‘Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms’, Journal of Comparative Neurology, 523(11), pp. 1639–63. Available at: https://doi.org/10.1002/cne.23761.
Mundell, Nathan A. et al. (2015) ‘Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms’, Journal of Comparative Neurology, 523(11), pp. 1639–63. Available at: https://doi.org/10.1002/cne.23761.
Pauli, Andrea et al. (2015) ‘Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish’, PloS one, 10(10), p. e0139504. Available at: https://doi.org/10.1371/journal.pone.0139504.
Pauli, Andrea et al. (2015) ‘Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish’, PloS one, 10(10), p. e0139504. Available at: https://doi.org/10.1371/journal.pone.0139504.
Pauli, Andrea, Valen, Eivind and Schier, Alexander F. (2015) ‘Identifying (non-)coding RNAs and small peptides: challenges and opportunities’, BioEssays : news and reviews in molecular, cellular and developmental biology, 37(1), pp. 103–12. Available at: https://doi.org/10.1002/bies.201400103.
Pauli, Andrea, Valen, Eivind and Schier, Alexander F. (2015) ‘Identifying (non-)coding RNAs and small peptides: challenges and opportunities’, BioEssays : news and reviews in molecular, cellular and developmental biology, 37(1), pp. 103–12. Available at: https://doi.org/10.1002/bies.201400103.
Randlett, Owen et al. (2015) ‘Whole-brain activity mapping onto a zebrafish brain atlas’, Nature Methods, 12(11), pp. 1039–46. Available at: https://doi.org/10.1038/nmeth.3581.
Randlett, Owen et al. (2015) ‘Whole-brain activity mapping onto a zebrafish brain atlas’, Nature Methods, 12(11), pp. 1039–46. Available at: https://doi.org/10.1038/nmeth.3581.
Rogers, Katherine W. et al. (2015) ‘Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP)’, Journal of visualized experiments, (95), p. 52266. Available at: https://doi.org/10.3791/52266.
Rogers, Katherine W. et al. (2015) ‘Measuring protein stability in living zebrafish embryos using fluorescence decay after photoconversion (FDAP)’, Journal of visualized experiments, (95), p. 52266. Available at: https://doi.org/10.3791/52266.
Satija, Rahul et al. (2015) ‘Spatial reconstruction of single-cell gene expression data’, Nature biotechnology, 33(5), pp. 495–502. Available at: https://doi.org/10.1038/nbt.3192.
Satija, Rahul et al. (2015) ‘Spatial reconstruction of single-cell gene expression data’, Nature biotechnology, 33(5), pp. 495–502. Available at: https://doi.org/10.1038/nbt.3192.
Gagnon, James A. et al. (2014) ‘Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs’, PLoS ONE, 9(5), p. e98186. Available at: https://doi.org/10.1371/journal.pone.0098186.
Gagnon, James A. et al. (2014) ‘Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs’, PLoS ONE, 9(5), p. e98186. Available at: https://doi.org/10.1371/journal.pone.0098186.
Pauli, Andrea et al. (2014) ‘Toddler: an embryonic signal that promotes cell movement via Apelin receptors’, Science, 343(6172), p. 1248636. Available at: https://doi.org/10.1126/science.1248636.
Pauli, Andrea et al. (2014) ‘Toddler: an embryonic signal that promotes cell movement via Apelin receptors’, Science, 343(6172), p. 1248636. Available at: https://doi.org/10.1126/science.1248636.
Rabani, Michal et al. (2014) ‘High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies’, Cell, 159(7), pp. 1698–710. Available at: https://doi.org/10.1016/j.cell.2014.11.015.
Rabani, Michal et al. (2014) ‘High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies’, Cell, 159(7), pp. 1698–710. Available at: https://doi.org/10.1016/j.cell.2014.11.015.
Richter, Constance, Woods, Ian G. and Schier, Alexander F. (2014) ‘Neuropeptidergic control of sleep and wakefulness’, Annual Review of Neuroscience, 37, pp. 503–31. Available at: https://doi.org/10.1146/annurev-neuro-062111-150447.
Richter, Constance, Woods, Ian G. and Schier, Alexander F. (2014) ‘Neuropeptidergic control of sleep and wakefulness’, Annual Review of Neuroscience, 37, pp. 503–31. Available at: https://doi.org/10.1146/annurev-neuro-062111-150447.
Schier, Alexander F. (2014) ‘Obituary: Walter J. Gehring (1939-2014)’, Development, 141(17), pp. 3289–91. Available at: https://doi.org/10.1242/dev.115402.
Schier, Alexander F. (2014) ‘Obituary: Walter J. Gehring (1939-2014)’, Development, 141(17), pp. 3289–91. Available at: https://doi.org/10.1242/dev.115402.
Woods, Ian G. et al. (2014) ‘Neuropeptidergic signaling partitions arousal behaviors in zebrafish’, Journal of Neuroscience, 34(9), pp. 3142–60. Available at: https://doi.org/10.1523/jneurosci.3529-13.2014.
Woods, Ian G. et al. (2014) ‘Neuropeptidergic signaling partitions arousal behaviors in zebrafish’, Journal of Neuroscience, 34(9), pp. 3142–60. Available at: https://doi.org/10.1523/jneurosci.3529-13.2014.
Zhang, Yong et al. (2014) ‘Canonical nucleosome organization at promoters forms during genome activation’, Genome Research, 24(2), pp. 260–6. Available at: https://doi.org/10.1101/gr.157750.113.
Zhang, Yong et al. (2014) ‘Canonical nucleosome organization at promoters forms during genome activation’, Genome Research, 24(2), pp. 260–6. Available at: https://doi.org/10.1101/gr.157750.113.
Chew, Guo-Liang et al. (2013) ‘Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs’, Development, 140(13), pp. 2828–34. Available at: https://doi.org/10.1242/dev.098343.
Chew, Guo-Liang et al. (2013) ‘Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs’, Development, 140(13), pp. 2828–34. Available at: https://doi.org/10.1242/dev.098343.
Levitz, Joshua et al. (2013) ‘Optical control of metabotropic glutamate receptors’, Nature neuroscience, 16(4), pp. 507–16. Available at: https://doi.org/10.1038/nn.3346.
Levitz, Joshua et al. (2013) ‘Optical control of metabotropic glutamate receptors’, Nature neuroscience, 16(4), pp. 507–16. Available at: https://doi.org/10.1038/nn.3346.
Müller, Patrick et al. (2013) ‘Morphogen transport’, Development (Cambridge, England), 140(8), pp. 1621–1638. Available at: https://doi.org/10.1242/dev.083519.
Müller, Patrick et al. (2013) ‘Morphogen transport’, Development (Cambridge, England), 140(8), pp. 1621–1638. Available at: https://doi.org/10.1242/dev.083519.
Pan, Y. Albert et al. (2013) ‘Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish’, Development, 140(13), pp. 2835–46. Available at: https://doi.org/10.1242/dev.094631.
Pan, Y. Albert et al. (2013) ‘Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish’, Development, 140(13), pp. 2835–46. Available at: https://doi.org/10.1242/dev.094631.
Rihel, Jason and Schier, Alexander F. (2013) ‘Sites of action of sleep and wake drugs: insights from model organisms’, Current Opinion in Neurobiology, 23(5), pp. 831–40. Available at: https://doi.org/10.1016/j.conb.2013.04.010.
Rihel, Jason and Schier, Alexander F. (2013) ‘Sites of action of sleep and wake drugs: insights from model organisms’, Current Opinion in Neurobiology, 23(5), pp. 831–40. Available at: https://doi.org/10.1016/j.conb.2013.04.010.
Schier, Alexander F. (2013) ‘Should I stay or should I go: neuromodulators of behavioral states’, Cell, 154(5), pp. 955–956. Available at: https://doi.org/10.1016/j.cell.2013.08.017.
Schier, Alexander F. (2013) ‘Should I stay or should I go: neuromodulators of behavioral states’, Cell, 154(5), pp. 955–956. Available at: https://doi.org/10.1016/j.cell.2013.08.017.