[FG] Translational Medicine Breath Research
Publications
152 found
Show per page
Žarković, M. et al. (2024) ‘Assessing pulmonary function in children and adolescents after cancer treatment: protocol for a multicenter cohort study (SCCSS FollowUp–Pulmo) (Preprint)’. JMIR Publications Inc. Available at: https://doi.org/10.2196/preprints.69743.
Žarković, M. et al. (2024) ‘Assessing pulmonary function in children and adolescents after cancer treatment: protocol for a multicenter cohort study (SCCSS FollowUp–Pulmo) (Preprint)’. JMIR Publications Inc. Available at: https://doi.org/10.2196/preprints.69743.
Basler, S. et al. (2024) ‘Molecular breath profile of acute COPD exacerbations’, Journal of Breath Research [Preprint]. Available at: https://doi.org/10.1088/1752-7163/ad9ac4.
Basler, S. et al. (2024) ‘Molecular breath profile of acute COPD exacerbations’, Journal of Breath Research [Preprint]. Available at: https://doi.org/10.1088/1752-7163/ad9ac4.
Zeng, J. et al. (2024) ‘Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness’, iScience, p. 111446. Available at: https://doi.org/10.1016/j.isci.2024.111446.
Zeng, J. et al. (2024) ‘Pharmacometabolomics via real-time breath analysis captures metabotypes of asthmatic children associated with salbutamol responsiveness’, iScience, p. 111446. Available at: https://doi.org/10.1016/j.isci.2024.111446.
Baur, Diego M., Dornbierer, Dario A. and Landolt, Hans‐Peter (2024) ‘Concentration–effect relationships of plasma caffeine on EEG delta power and cardiac autonomic activity during human sleep’, Journal of Sleep Research, 33(5). Available at: https://doi.org/10.1111/jsr.14140.
Baur, Diego M., Dornbierer, Dario A. and Landolt, Hans‐Peter (2024) ‘Concentration–effect relationships of plasma caffeine on EEG delta power and cardiac autonomic activity during human sleep’, Journal of Sleep Research, 33(5). Available at: https://doi.org/10.1111/jsr.14140.
Nahum, Uri et al. (2024) ‘Symptom trajectories in infancy for the prediction of subsequent wheeze and asthma in the BILD and PASTURE cohorts: a dynamic network analysis’, The Lancet Digital Health, 6(10), pp. e718–e728. Available at: https://doi.org/10.1016/s2589-7500(24)00147-x.
Nahum, Uri et al. (2024) ‘Symptom trajectories in infancy for the prediction of subsequent wheeze and asthma in the BILD and PASTURE cohorts: a dynamic network analysis’, The Lancet Digital Health, 6(10), pp. e718–e728. Available at: https://doi.org/10.1016/s2589-7500(24)00147-x.
Steinberg, R. et al. (2024) ‘Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on the oropharyngeal metagenome in adolescents with cystic fibrosis’, Journal of Cystic Fibrosis [Preprint]. Available at: https://doi.org/10.1016/j.jcf.2024.10.001.
Steinberg, R. et al. (2024) ‘Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on the oropharyngeal metagenome in adolescents with cystic fibrosis’, Journal of Cystic Fibrosis [Preprint]. Available at: https://doi.org/10.1016/j.jcf.2024.10.001.
Usemann, J. et al. (2024) ‘Air pollution exposure during pregnancy and lung function in childhood: The LUIS study’, Pediatric Pulmonology [Preprint]. Available at: https://doi.org/10.1002/ppul.27169.
Usemann, J. et al. (2024) ‘Air pollution exposure during pregnancy and lung function in childhood: The LUIS study’, Pediatric Pulmonology [Preprint]. Available at: https://doi.org/10.1002/ppul.27169.
Künstle, Noëmi et al. (2024) ‘Differences in autophagy marker levels at birth in preterm vs. term infants’, Pediatric Research [Preprint]. 29.05.2024. Available at: https://doi.org/10.1038/s41390-024-03273-6.
Künstle, Noëmi et al. (2024) ‘Differences in autophagy marker levels at birth in preterm vs. term infants’, Pediatric Research [Preprint]. 29.05.2024. Available at: https://doi.org/10.1038/s41390-024-03273-6.
Korten, I. et al. (2024) ‘Early nasal microbiota and subsequent respiratory tract infections in infants with cystic fibrosis’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3998780/v1.
Korten, I. et al. (2024) ‘Early nasal microbiota and subsequent respiratory tract infections in infants with cystic fibrosis’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-3998780/v1.
Kentgens, A.-C. et al. (2024) ‘Evaluation of the Double-Tracer Gas Single-Breath Washout Test in a Pediatric Field Study’. Elsevier Inc., pp. 396–404. Available at: https://doi.org/10.1016/j.chest.2023.09.006.
Kentgens, A.-C. et al. (2024) ‘Evaluation of the Double-Tracer Gas Single-Breath Washout Test in a Pediatric Field Study’. Elsevier Inc., pp. 396–404. Available at: https://doi.org/10.1016/j.chest.2023.09.006.
Awchi, Mo et al. (2024) ‘Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis’, Frontiers in Endocrinology, 15. Available at: https://doi.org/10.3389/fendo.2024.1360989.
Awchi, Mo et al. (2024) ‘Metabolic trajectories of diabetic ketoacidosis onset described by breath analysis’, Frontiers in Endocrinology, 15. Available at: https://doi.org/10.3389/fendo.2024.1360989.
Frauchiger, Bettina S. et al. (2024) ‘Lung structural and functional impairments in young children with cystic fibrosis diagnosed following newborn screening – A nationwide observational study’, Journal of Cystic Fibrosis [Preprint]. Available at: https://doi.org/10.1016/j.jcf.2024.05.010.
Frauchiger, Bettina S. et al. (2024) ‘Lung structural and functional impairments in young children with cystic fibrosis diagnosed following newborn screening – A nationwide observational study’, Journal of Cystic Fibrosis [Preprint]. Available at: https://doi.org/10.1016/j.jcf.2024.05.010.
Sola-Martínez, R.A. et al. (2024) ‘Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study’, Journal of Breath Research, 18(1). Available at: https://doi.org/10.1088/1752-7163/ad10e1.
Sola-Martínez, R.A. et al. (2024) ‘Preservation of exhaled breath samples for analysis by off-line SESI-HRMS: proof-of-concept study’, Journal of Breath Research, 18(1). Available at: https://doi.org/10.1088/1752-7163/ad10e1.
Sonneveld, N. et al. (2023) ‘Multiple breath washout and oscillometry after allogenic HSCT: a scoping review’, European Respiratory Review, 32(169). Available at: https://doi.org/10.1183/16000617.0251-2022.
Sonneveld, N. et al. (2023) ‘Multiple breath washout and oscillometry after allogenic HSCT: a scoping review’, European Respiratory Review, 32(169). Available at: https://doi.org/10.1183/16000617.0251-2022.
Moesch M et al. (2023) ‘Associations of Mucosal Nerve Fiber Innervation Density with Hirschsprung-Associated Enterocolitis: A Retrospective Three-Center Cohort Study.’, European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie, 33(4), pp. 299–309. Available at: https://doi.org/10.1055/a-1889-6355.
Moesch M et al. (2023) ‘Associations of Mucosal Nerve Fiber Innervation Density with Hirschsprung-Associated Enterocolitis: A Retrospective Three-Center Cohort Study.’, European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie, 33(4), pp. 299–309. Available at: https://doi.org/10.1055/a-1889-6355.
Awchi M et al. (2023) ‘UHPLC-MS/MS-Based Identity Confirmation of Amino Acids Involved in Response to and Side Effects from Antiseizure Medications.’, Journal of proteome research, 22(3), pp. 990–995. Available at: https://doi.org/10.1021/acs.jproteome.2c00835.
Awchi M et al. (2023) ‘UHPLC-MS/MS-Based Identity Confirmation of Amino Acids Involved in Response to and Side Effects from Antiseizure Medications.’, Journal of proteome research, 22(3), pp. 990–995. Available at: https://doi.org/10.1021/acs.jproteome.2c00835.
Arnold, Kim et al. (2023) ‘Real-Time Volatile Metabolomics Analysis of Dendritic Cells’, Analytical Chemistry, 95, pp. 9415–9421. Available at: https://doi.org/10.1021/acs.analchem.3c00516.
Arnold, Kim et al. (2023) ‘Real-Time Volatile Metabolomics Analysis of Dendritic Cells’, Analytical Chemistry, 95, pp. 9415–9421. Available at: https://doi.org/10.1021/acs.analchem.3c00516.
Awchi, M. et al. (2023) ‘Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents’, Journal of Breath Research, 17. Available at: https://doi.org/10.1088/1752-7163/acf782.
Awchi, M. et al. (2023) ‘Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents’, Journal of Breath Research, 17. Available at: https://doi.org/10.1088/1752-7163/acf782.
Frauchiger, B.S. et al. (2023) ‘Variability of clinically measured lung clearance index in children with cystic fibrosis’, Pediatric Pulmonology, 58(1), pp. 197–205. Available at: https://doi.org/10.1002/ppul.26180.
Frauchiger, B.S. et al. (2023) ‘Variability of clinically measured lung clearance index in children with cystic fibrosis’, Pediatric Pulmonology, 58(1), pp. 197–205. Available at: https://doi.org/10.1002/ppul.26180.
Gisler A. et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12). Available at: https://doi.org/10.1016/j.isci.2022.105557.
Gisler A. et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12). Available at: https://doi.org/10.1016/j.isci.2022.105557.
Gisler, Amanda et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12), p. 105557. Available at: https://doi.org/10.1016/j.isci.2022.105557.
Gisler, Amanda et al. (2022) ‘An interoperability framework for multicentric breath metabolomic studies’, iScience, 25(12), p. 105557. Available at: https://doi.org/10.1016/j.isci.2022.105557.
Berger, D.O. et al. (2022) ‘External validation of the Predicting Asthma Risk in Children tool in a clinical cohort’, Pediatric Pulmonology, 57(11), pp. 2715–2723. Available at: https://doi.org/10.1002/ppul.26088.
Berger, D.O. et al. (2022) ‘External validation of the Predicting Asthma Risk in Children tool in a clinical cohort’, Pediatric Pulmonology, 57(11), pp. 2715–2723. Available at: https://doi.org/10.1002/ppul.26088.
Gomez-Mejia A. et al. (2022) ‘Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites’, iScience, 25(10). Available at: https://doi.org/10.1016/j.isci.2022.105080.
Gomez-Mejia A. et al. (2022) ‘Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites’, iScience, 25(10). Available at: https://doi.org/10.1016/j.isci.2022.105080.
van Meel ER et al. (2022) ‘Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children.’, The European respiratory journal, 60(4). Available at: https://doi.org/10.1183/13993003.02395-2021.
van Meel ER et al. (2022) ‘Early-life respiratory tract infections and the risk of school-age lower lung function and asthma: a meta-analysis of 150 000 European children.’, The European respiratory journal, 60(4). Available at: https://doi.org/10.1183/13993003.02395-2021.
Arnold K. et al. (2022) ‘In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O’, Journal of Bio-X Research, 5(2), pp. 81–89. Available at: https://doi.org/10.1097/jbr.0000000000000121.
Arnold K. et al. (2022) ‘In vivo detection of metabolic 2H-incorporation upon ingestion of 2H2O’, Journal of Bio-X Research, 5(2), pp. 81–89. Available at: https://doi.org/10.1097/jbr.0000000000000121.
Mozun R et al. (2022) ‘Age and body mass index affect fit of spirometry Global Lung Function Initiative references in schoolchildren.’, ERJ open research, 8(2). Available at: https://doi.org/10.1183/23120541.00618-2021.
Mozun R et al. (2022) ‘Age and body mass index affect fit of spirometry Global Lung Function Initiative references in schoolchildren.’, ERJ open research, 8(2). Available at: https://doi.org/10.1183/23120541.00618-2021.
Zeng J. et al. (2022) ‘Comparison of Plasma Ionization- and Secondary Electrospray IonizationHigh-resolution Mass Spectrometry for Real-time Breath Analysis’, Chimia, 76(1-2), pp. 127–132. Available at: https://doi.org/10.2533/chimia.2022.127.
Zeng J. et al. (2022) ‘Comparison of Plasma Ionization- and Secondary Electrospray IonizationHigh-resolution Mass Spectrometry for Real-time Breath Analysis’, Chimia, 76(1-2), pp. 127–132. Available at: https://doi.org/10.2533/chimia.2022.127.
Otth M et al. (2022) ‘Longitudinal lung function in childhood cancer survivors after hematopoietic stem cell transplantation.’, Bone marrow transplantation, 57(2), pp. 207–214. Available at: https://doi.org/10.1038/s41409-021-01509-1.
Otth M et al. (2022) ‘Longitudinal lung function in childhood cancer survivors after hematopoietic stem cell transplantation.’, Bone marrow transplantation, 57(2), pp. 207–214. Available at: https://doi.org/10.1038/s41409-021-01509-1.
Salem Y et al. (2022) ‘Are children born by cesarean delivery at higher risk for respiratory sequelae?’, American journal of obstetrics and gynecology, 226(2), p. 257.e1–257.e11. Available at: https://doi.org/10.1016/j.ajog.2021.07.027.
Salem Y et al. (2022) ‘Are children born by cesarean delivery at higher risk for respiratory sequelae?’, American journal of obstetrics and gynecology, 226(2), p. 257.e1–257.e11. Available at: https://doi.org/10.1016/j.ajog.2021.07.027.
Benitez B.K. et al. (2022) ‘Continuous circular closure in unilateral cleft lip and plate repair in one surgery’, Journal of Cranio-Maxillofacial Surgery, 50, pp. 76–85. Available at: https://doi.org/10.1016/j.jcms.2021.07.002.
Benitez B.K. et al. (2022) ‘Continuous circular closure in unilateral cleft lip and plate repair in one surgery’, Journal of Cranio-Maxillofacial Surgery, 50, pp. 76–85. Available at: https://doi.org/10.1016/j.jcms.2021.07.002.
Buechel F et al. (2022) ‘Feasibility of nasal NO screening in healthy newborns.’, Pediatric pulmonology, 57(1), pp. 231–238. Available at: https://doi.org/10.1002/ppul.25702.
Buechel F et al. (2022) ‘Feasibility of nasal NO screening in healthy newborns.’, Pediatric pulmonology, 57(1), pp. 231–238. Available at: https://doi.org/10.1002/ppul.25702.
Decrue, F. et al. (2022) ‘Increased impact of air pollution on lung function in preterm versus term infants: the BILD study’, Am J Respir Crit Care Med, 205(1), pp. 99–107. Available at: https://doi.org/10.1164/rccm.202102-0272oc.
Decrue, F. et al. (2022) ‘Increased impact of air pollution on lung function in preterm versus term infants: the BILD study’, Am J Respir Crit Care Med, 205(1), pp. 99–107. Available at: https://doi.org/10.1164/rccm.202102-0272oc.
Gisler, A. et al. (2022) ‘Pollen exposure is associated with risk of respiratory symptoms during the first year of life’, Allergy, 77(12), pp. 3606–3616. Available at: https://doi.org/10.1111/all.15284.
Gisler, A. et al. (2022) ‘Pollen exposure is associated with risk of respiratory symptoms during the first year of life’, Allergy, 77(12), pp. 3606–3616. Available at: https://doi.org/10.1111/all.15284.
Gorlanova, O. et al. (2022) ‘Ambient prenatal air pollution exposure is associated with low cord blood IL-17a in infants’, Pediatric allergy and immunology, 34, p. e13902. Available at: https://doi.org/10.1111/pai.13902.
Gorlanova, O. et al. (2022) ‘Ambient prenatal air pollution exposure is associated with low cord blood IL-17a in infants’, Pediatric allergy and immunology, 34, p. e13902. Available at: https://doi.org/10.1111/pai.13902.
Schmidt, F. et al. (2022) ‘Lung cancer diagnostics with real-time breath analysis: an innovative case-control study (LUCAbreath)’, Oncology research and treatment, 45, p. 270.
Schmidt, F. et al. (2022) ‘Lung cancer diagnostics with real-time breath analysis: an innovative case-control study (LUCAbreath)’, Oncology research and treatment, 45, p. 270.
Osswald M et al. (2021) ‘Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath.’, Metabolites, 11(12). Available at: https://doi.org/10.3390/metabo11120856.
Osswald M et al. (2021) ‘Real-Time Monitoring of Metabolism during Exercise by Exhaled Breath.’, Metabolites, 11(12). Available at: https://doi.org/10.3390/metabo11120856.
Mozun R et al. (2021) ‘Agreement of parent- and child-reported wheeze and its association with measurable asthma traits.’, Pediatric pulmonology, 56(12), pp. 3813–3821. Available at: https://doi.org/10.1002/ppul.25690.
Mozun R et al. (2021) ‘Agreement of parent- and child-reported wheeze and its association with measurable asthma traits.’, Pediatric pulmonology, 56(12), pp. 3813–3821. Available at: https://doi.org/10.1002/ppul.25690.
Decrue F et al. (2021) ‘Combination of Exhaled Breath Analysis with Parallel Lung Function and FeNO Measurements in Infants.’, Analytical chemistry, 93(47), pp. 15579–15583. Available at: https://doi.org/10.1021/acs.analchem.1c02036.
Decrue F et al. (2021) ‘Combination of Exhaled Breath Analysis with Parallel Lung Function and FeNO Measurements in Infants.’, Analytical chemistry, 93(47), pp. 15579–15583. Available at: https://doi.org/10.1021/acs.analchem.1c02036.
Nowak N et al. (2021) ‘Rapid and reversible control of human metabolism by individual sleep states’, Cell Reports, 37(4), p. 109903. Available at: https://doi.org/10.1016/j.celrep.2021.109903.
Nowak N et al. (2021) ‘Rapid and reversible control of human metabolism by individual sleep states’, Cell Reports, 37(4), p. 109903. Available at: https://doi.org/10.1016/j.celrep.2021.109903.
López-Lorente CI et al. (2021) ‘Real-time pharmacokinetics via online analysis of exhaled breath’, Journal of Pharmaceutical and Biomedical Analysis, 205, p. 114311. Available at: https://doi.org/10.1016/j.jpba.2021.114311.
López-Lorente CI et al. (2021) ‘Real-time pharmacokinetics via online analysis of exhaled breath’, Journal of Pharmaceutical and Biomedical Analysis, 205, p. 114311. Available at: https://doi.org/10.1016/j.jpba.2021.114311.
Liu C et al. (2021) ‘Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry’, Analytica Chimica Acta, 1180, p. 338876. Available at: https://doi.org/10.1016/j.aca.2021.338876.
Liu C et al. (2021) ‘Quantification of volatile organic compounds by secondary electrospray ionization-high resolution mass spectrometry’, Analytica Chimica Acta, 1180, p. 338876. Available at: https://doi.org/10.1016/j.aca.2021.338876.
Alexander S.P.H. et al. (2021) ‘THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors’, British Journal of Pharmacology, 178(S1), pp. S27–S156. Available at: https://doi.org/10.1111/bph.15538.
Alexander S.P.H. et al. (2021) ‘THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors’, British Journal of Pharmacology, 178(S1), pp. S27–S156. Available at: https://doi.org/10.1111/bph.15538.
de Gouveia Belinelo P et al. (2021) ‘Maternal asthma is associated with reduced lung function in male infants in a combined analysis of the BLT and BILD cohorts.’, Thorax, 76(10), pp. 996–1001. Available at: https://doi.org/10.1136/thoraxjnl-2020-215526.
de Gouveia Belinelo P et al. (2021) ‘Maternal asthma is associated with reduced lung function in male infants in a combined analysis of the BLT and BILD cohorts.’, Thorax, 76(10), pp. 996–1001. Available at: https://doi.org/10.1136/thoraxjnl-2020-215526.
Gaillard EA et al. (2021) ‘European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5-16 years.’, The European respiratory journal, 58(5). Available at: https://doi.org/10.1183/13993003.04173-2020.
Gaillard EA et al. (2021) ‘European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5-16 years.’, The European respiratory journal, 58(5). Available at: https://doi.org/10.1183/13993003.04173-2020.
Decrue, F. et al. (2021) ‘Increased impact of air pollution on lung function in preterm vs. term infants: the BILD study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.oa2958.
Decrue, F. et al. (2021) ‘Increased impact of air pollution on lung function in preterm vs. term infants: the BILD study’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.oa2958.
Osswald, M. et al. (2021) ‘Exercise metabolism: the key to performance’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.pa3226.
Osswald, M. et al. (2021) ‘Exercise metabolism: the key to performance’. European Respiratory Society. Available at: https://doi.org/10.1183/13993003.congress-2021.pa3226.
Müller L et al. (2021) ‘Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection.’, Physiological reports, 9(18), p. e14994. Available at: https://doi.org/10.14814/phy2.14994.
Müller L et al. (2021) ‘Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection.’, Physiological reports, 9(18), p. e14994. Available at: https://doi.org/10.14814/phy2.14994.
Nowak N et al. (2021) ‘Validation of breath biomarkers for obstructive sleep apnea’, Sleep Medicine, 85, pp. 75–86. Available at: https://doi.org/10.1016/j.sleep.2021.06.040.
Nowak N et al. (2021) ‘Validation of breath biomarkers for obstructive sleep apnea’, Sleep Medicine, 85, pp. 75–86. Available at: https://doi.org/10.1016/j.sleep.2021.06.040.
Yin Z et al. (2021) ‘In vivomonitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection’, Chemical Communications, 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Yin Z et al. (2021) ‘In vivomonitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection’, Chemical Communications, 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Chen X et al. (2021) ‘Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath’, Analytical Chemistry, 93(12), pp. 5005–5008. Available at: https://doi.org/10.1021/acs.analchem.1c00509.
Chen X et al. (2021) ‘Online Real-Time Monitoring of Exhaled Breath Particles Reveals Unnoticed Transport of Nonvolatile Drugs from Blood to Breath’, Analytical Chemistry, 93(12), pp. 5005–5008. Available at: https://doi.org/10.1021/acs.analchem.1c00509.
Schindera C et al. (2021) ‘Pulmonary Dysfunction after Treatment for Childhood Cancer. Comparing Multiple-Breath Washout with Spirometry.’, Annals of the American Thoracic Society, 18(2), pp. 281–289. Available at: https://doi.org/10.1513/annalsats.202003-211oc.
Schindera C et al. (2021) ‘Pulmonary Dysfunction after Treatment for Childhood Cancer. Comparing Multiple-Breath Washout with Spirometry.’, Annals of the American Thoracic Society, 18(2), pp. 281–289. Available at: https://doi.org/10.1513/annalsats.202003-211oc.
Blume, Christine et al. (2021) ‘Association of transportation noise with sleep during the first year of life: a longitudinal study’, Environmental Research, 203, p. 111776. Available at: https://doi.org/10.1016/j.envres.2021.111776.
Blume, Christine et al. (2021) ‘Association of transportation noise with sleep during the first year of life: a longitudinal study’, Environmental Research, 203, p. 111776. Available at: https://doi.org/10.1016/j.envres.2021.111776.
Brown SA and Sinues P (2021) ‘Circadian Metabolomics from Breath’, Methods in Molecular Biology, 2130, pp. 149–156. Available at: https://doi.org/10.1007/978-1-0716-0381-9_11.
Brown SA and Sinues P (2021) ‘Circadian Metabolomics from Breath’, Methods in Molecular Biology, 2130, pp. 149–156. Available at: https://doi.org/10.1007/978-1-0716-0381-9_11.
Gisler, Amanda et al. (2021) ‘Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study’, Environmental Research, 202, p. 111633. Available at: https://doi.org/10.1016/j.envres.2021.111633.
Gisler, Amanda et al. (2021) ‘Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study’, Environmental Research, 202, p. 111633. Available at: https://doi.org/10.1016/j.envres.2021.111633.
Jochmann A et al. (2021) ‘A 3-month period of electronic monitoring can provide important information to the healthcare team to assess adherence and improve asthma control’, ERJ Open Research, 7(3). Available at: https://doi.org/10.1183/23120541.00726-2020.
Jochmann A et al. (2021) ‘A 3-month period of electronic monitoring can provide important information to the healthcare team to assess adherence and improve asthma control’, ERJ Open Research, 7(3). Available at: https://doi.org/10.1183/23120541.00726-2020.
Keck S et al. (2021) ‘Lack of Mucosal Cholinergic Innervation Is Associated With Increased Risk of Enterocolitis in Hirschsprung’s Disease’, Cellular and Molecular Gastroenterology and Hepatology, 12(2), pp. 507–545. Available at: https://doi.org/10.1016/j.jcmgh.2021.03.004.
Keck S et al. (2021) ‘Lack of Mucosal Cholinergic Innervation Is Associated With Increased Risk of Enterocolitis in Hirschsprung’s Disease’, Cellular and Molecular Gastroenterology and Hepatology, 12(2), pp. 507–545. Available at: https://doi.org/10.1016/j.jcmgh.2021.03.004.
Lan J et al. (2021) ‘Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/ab9f8a.
Lan J et al. (2021) ‘Monitoring peppermint washout in the breath metabolome by secondary electrospray ionization-high resolution mass spectrometry’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/ab9f8a.
Mozun, R. et al. (2021) ‘LuftiBus in the school (LUIS): a population-based study on respiratory health in schoolchildren’, Swiss Med Wkly, 151, p. w20544. Available at: https://doi.org/10.4414/smw.2021.20544.
Mozun, R. et al. (2021) ‘LuftiBus in the school (LUIS): a population-based study on respiratory health in schoolchildren’, Swiss Med Wkly, 151, p. w20544. Available at: https://doi.org/10.4414/smw.2021.20544.
Singh KD et al. (2021) ‘Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics.’, Communications medicine, 1, p. 21. Available at: https://doi.org/10.1038/s43856-021-00021-3.
Singh KD et al. (2021) ‘Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics.’, Communications medicine, 1, p. 21. Available at: https://doi.org/10.1038/s43856-021-00021-3.
Soti, A. L. et al. (2021) ‘Can biomarkers in umbilical cord blood predict atopic disease at school age?’, Pediatr Res, 89(2), pp. 389–392. Available at: https://doi.org/10.1038/s41390-019-0686-z.
Soti, A. L. et al. (2021) ‘Can biomarkers in umbilical cord blood predict atopic disease at school age?’, Pediatr Res, 89(2), pp. 389–392. Available at: https://doi.org/10.1038/s41390-019-0686-z.
Wilkinson M. et al. (2021) ‘The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/abd28c.
Wilkinson M. et al. (2021) ‘The peppermint breath test: A benchmarking protocol for breath sampling and analysis using GC-MS’, Journal of Breath Research, 15(2). Available at: https://doi.org/10.1088/1752-7163/abd28c.
Yin, Zhihong et al. (2021) ‘In vivo monitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection’, Chemical Communications, 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Yin, Zhihong et al. (2021) ‘In vivo monitoring of volatile metabolic trajectories enables rapid diagnosis of influenza A infection’, Chemical Communications, 57(39), pp. 4791–4794. Available at: https://doi.org/10.1039/d1cc01061a.
Zeng, J. et al. (2020) ‘A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry’, Environmental Science and Technology, 54(21), pp. 13478–13487. Available at: https://doi.org/10.1021/acs.est.0c05100.
Zeng, J. et al. (2020) ‘A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry’, Environmental Science and Technology, 54(21), pp. 13478–13487. Available at: https://doi.org/10.1021/acs.est.0c05100.
Usemann J et al. (2020) ‘Age-dependent response of the human nasal epithelium to rhinovirus infection’, 56(5). Available at: https://doi.org/10.1183/13993003.00877-2020.
Usemann J et al. (2020) ‘Age-dependent response of the human nasal epithelium to rhinovirus infection’, 56(5). Available at: https://doi.org/10.1183/13993003.00877-2020.
Henderson B et al. (2020) ‘A benchmarking protocol for breath analysis: The peppermint experiment’, Journal of Breath Research, 14(4), p. 046008. Available at: https://doi.org/10.1088/1752-7163/aba130.
Henderson B et al. (2020) ‘A benchmarking protocol for breath analysis: The peppermint experiment’, Journal of Breath Research, 14(4), p. 046008. Available at: https://doi.org/10.1088/1752-7163/aba130.
Mozun R et al. (2020) ‘Cigarette, shisha, and electronic smoking and respiratory symptoms in Swiss children: The LUIS study.’, Pediatric pulmonology, 55(10), pp. 2806–2815. Available at: https://doi.org/10.1002/ppul.24985.
Mozun R et al. (2020) ‘Cigarette, shisha, and electronic smoking and respiratory symptoms in Swiss children: The LUIS study.’, Pediatric pulmonology, 55(10), pp. 2806–2815. Available at: https://doi.org/10.1002/ppul.24985.
Anagnostopoulou P et al. (2020) ‘Normative data for multiple breath washout outcomes in school-aged Caucasian children.’, The European respiratory journal, 55(4). Available at: https://doi.org/10.1183/13993003.01302-2019.
Anagnostopoulou P et al. (2020) ‘Normative data for multiple breath washout outcomes in school-aged Caucasian children.’, The European respiratory journal, 55(4). Available at: https://doi.org/10.1183/13993003.01302-2019.
Decrue F et al. (2020) ‘Correction to: Lung functional development and asthma trajectories.’, Seminars in immunopathology, 42(2), p. 227. Available at: https://doi.org/10.1007/s00281-020-00795-z.
Decrue F et al. (2020) ‘Correction to: Lung functional development and asthma trajectories.’, Seminars in immunopathology, 42(2), p. 227. Available at: https://doi.org/10.1007/s00281-020-00795-z.
Zeng, J. et al. (2020) ‘Evolution of Indoor Cooking Emissions Captured by Using Secondary Electrospray Ionization High-Resolution Mass Spectrometry’, Environmental Science & Technology Letters, 7(2), pp. 76–81. Available at: https://doi.org/10.1021/acs.estlett.0c00044.
Zeng, J. et al. (2020) ‘Evolution of Indoor Cooking Emissions Captured by Using Secondary Electrospray Ionization High-Resolution Mass Spectrometry’, Environmental Science & Technology Letters, 7(2), pp. 76–81. Available at: https://doi.org/10.1021/acs.estlett.0c00044.
Decrue, Fabienne et al. (2020) ‘Lung functional development and asthma trajectories’, Seminars in Immunopathology, 42(1), pp. 17–27. Available at: https://doi.org/10.1007/s00281-020-00784-2.
Decrue, Fabienne et al. (2020) ‘Lung functional development and asthma trajectories’, Seminars in Immunopathology, 42(1), pp. 17–27. Available at: https://doi.org/10.1007/s00281-020-00784-2.
Gisler, Amanda et al. (2020) ‘Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: technical aspects’, Journal of Breath Research, 14(4), p. 046001. Available at: https://doi.org/10.1088/1752-7163/ab9f8b.
Gisler, Amanda et al. (2020) ‘Real-time breath analysis of exhaled compounds upon peppermint oil ingestion by secondary electrospray ionization-high resolution mass spectrometry: technical aspects’, Journal of Breath Research, 14(4), p. 046001. Available at: https://doi.org/10.1088/1752-7163/ab9f8b.
Gorlanova, Olga et al. (2020) ‘Effect of breastfeeding duration on lung function, respiratory symptoms and allergic diseases in school-age children’, Pediatric Pulmonology, 55(6), pp. 1448–1455. Available at: https://doi.org/10.1002/ppul.24733.
Gorlanova, Olga et al. (2020) ‘Effect of breastfeeding duration on lung function, respiratory symptoms and allergic diseases in school-age children’, Pediatric Pulmonology, 55(6), pp. 1448–1455. Available at: https://doi.org/10.1002/ppul.24733.
Hebestreit H et al. (2019) ‘Cardiopulmonary exercise testing provides additional prognostic information in cystic fibrosis’, American Journal of Respiratory and Critical Care Medicine, 199(8), pp. 987–995. Available at: https://doi.org/10.1164/rccm.201806-1110oc.
Hebestreit H et al. (2019) ‘Cardiopulmonary exercise testing provides additional prognostic information in cystic fibrosis’, American Journal of Respiratory and Critical Care Medicine, 199(8), pp. 987–995. Available at: https://doi.org/10.1164/rccm.201806-1110oc.
Korten I et al. (2019) ‘Nasal microbiota and respiratory tract infections: The role of viral detection’, 199(7). Available at: https://doi.org/10.1164/rccm.201710-2020le.
Korten I et al. (2019) ‘Nasal microbiota and respiratory tract infections: The role of viral detection’, 199(7). Available at: https://doi.org/10.1164/rccm.201710-2020le.
Frey, Urs and Usemann, Jakob (2019) ‘Addressing the complexity of prenatal and postnatal environmental exposures affecting childhood lung function’, The Lancet Planetary Health, 3(2), pp. e51–e52. Available at: https://doi.org/10.1016/s2542-5196(19)30011-7.
Frey, Urs and Usemann, Jakob (2019) ‘Addressing the complexity of prenatal and postnatal environmental exposures affecting childhood lung function’, The Lancet Planetary Health, 3(2), pp. e51–e52. Available at: https://doi.org/10.1016/s2542-5196(19)30011-7.
Gaugg, Martin Thomas et al. (2019) ‘Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis’, Respirology (Carlton, Vic.), 24(5), pp. 437–444. Available at: https://doi.org/10.1111/resp.13465.
Gaugg, Martin Thomas et al. (2019) ‘Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis’, Respirology (Carlton, Vic.), 24(5), pp. 437–444. Available at: https://doi.org/10.1111/resp.13465.
Gaugg, Martin Thomas et al. (2019) ‘Real-Time Breath Analysis Reveals Specific Metabolic Signatures of COPD Exacerbations’, Chest, 156(2), pp. 269–276. Available at: https://doi.org/10.1016/j.chest.2018.12.023.
Gaugg, Martin Thomas et al. (2019) ‘Real-Time Breath Analysis Reveals Specific Metabolic Signatures of COPD Exacerbations’, Chest, 156(2), pp. 269–276. Available at: https://doi.org/10.1016/j.chest.2018.12.023.
Köchli, Sabrina et al. (2019) ‘Lung function, obesity and physical fitness in young children: The EXAMIN YOUTH study’, Respiratory Medicine, 159, p. 105813. Available at: https://doi.org/10.1016/j.rmed.2019.105813.
Köchli, Sabrina et al. (2019) ‘Lung function, obesity and physical fitness in young children: The EXAMIN YOUTH study’, Respiratory Medicine, 159, p. 105813. Available at: https://doi.org/10.1016/j.rmed.2019.105813.
Sendoel, Ataman et al. (2019) ‘MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans’, Cell Death & Differentiation subscription, 26(10), pp. 2157–2178. Available at: https://doi.org/10.1038/s41418-019-0291-z.
Sendoel, Ataman et al. (2019) ‘MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans’, Cell Death & Differentiation subscription, 26(10), pp. 2157–2178. Available at: https://doi.org/10.1038/s41418-019-0291-z.
Singh, Kapil Dev et al. (2019) ‘Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry’, Analytical and Bioanalytical Chemistry, 411(19), pp. 4883–4898. Available at: https://doi.org/10.1007/s00216-019-01764-8.
Singh, Kapil Dev et al. (2019) ‘Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry’, Analytical and Bioanalytical Chemistry, 411(19), pp. 4883–4898. Available at: https://doi.org/10.1007/s00216-019-01764-8.
Usemann, Jakob et al. (2019) ‘Exposure to moderate air pollution and associations with lung function at school-age: A birth cohort study’, Environment International, 126, pp. 682–689. Available at: https://doi.org/10.1016/j.envint.2018.12.019.
Usemann, Jakob et al. (2019) ‘Exposure to moderate air pollution and associations with lung function at school-age: A birth cohort study’, Environment International, 126, pp. 682–689. Available at: https://doi.org/10.1016/j.envint.2018.12.019.
Usemann, Jakob et al. (2019) ‘Variability of Tidal Breathing Parameters in Preterm Infants and Associations with Respiratory Morbidity during Infancy: A Cohort Study’, Journal of Pediatrics, 205, pp. 61–69.e1. Available at: https://doi.org/10.1016/j.jpeds.2018.10.002.
Usemann, Jakob et al. (2019) ‘Variability of Tidal Breathing Parameters in Preterm Infants and Associations with Respiratory Morbidity during Infancy: A Cohort Study’, Journal of Pediatrics, 205, pp. 61–69.e1. Available at: https://doi.org/10.1016/j.jpeds.2018.10.002.
Usemann, J. et al. (2019) ‘Cost-effectiveness of tuberculosis screening for migrant children in a low-incidence country’, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 23(5), pp. 579–586. Available at: https://doi.org/10.5588/ijtld.18.0356.
Usemann, J. et al. (2019) ‘Cost-effectiveness of tuberculosis screening for migrant children in a low-incidence country’, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 23(5), pp. 579–586. Available at: https://doi.org/10.5588/ijtld.18.0356.
Neumann RP et al. (2018) ‘Nasal microbiota and symptom persistence in acute respiratory tract infections in infants.’, ERJ open research. 03.12.2018, 4(4). Available at: https://doi.org/10.1183/23120541.00066-2018.
Neumann RP et al. (2018) ‘Nasal microbiota and symptom persistence in acute respiratory tract infections in infants.’, ERJ open research. 03.12.2018, 4(4). Available at: https://doi.org/10.1183/23120541.00066-2018.
Gaisl, Thomas et al. (2018) ‘Real-time exhaled breath analysis in patients with cystic fibrosis and controls.’, Journal of breath research. 30.04.2018, 12(3), p. 036013. Available at: https://doi.org/10.1088/1752-7163/aab7fd.
Gaisl, Thomas et al. (2018) ‘Real-time exhaled breath analysis in patients with cystic fibrosis and controls.’, Journal of breath research. 30.04.2018, 12(3), p. 036013. Available at: https://doi.org/10.1088/1752-7163/aab7fd.
Usemann J et al. (2018) ‘Gasoline particle filter reduces oxidative DNA damage in bronchial epithelial cells after whole gasoline exhaust exposure in vitro.’, Scientific reports. 02.02.2018, 8(1), p. 2297. Available at: https://doi.org/10.1038/s41598-018-20736-z.
Usemann J et al. (2018) ‘Gasoline particle filter reduces oxidative DNA damage in bronchial epithelial cells after whole gasoline exhaust exposure in vitro.’, Scientific reports. 02.02.2018, 8(1), p. 2297. Available at: https://doi.org/10.1038/s41598-018-20736-z.
Radtke T et al. (2018) ‘CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.’, Annals of the American Thoracic Society, 15(2), pp. 209–216. Available at: https://doi.org/10.1513/annalsats.201707-570oc.
Radtke T et al. (2018) ‘CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.’, Annals of the American Thoracic Society, 15(2), pp. 209–216. Available at: https://doi.org/10.1513/annalsats.201707-570oc.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Bregy, Lukas et al. (2018) ‘Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath’, Clinical Mass Spectrometry, 7, pp. 29–35. Available at: https://doi.org/10.1016/j.clinms.2018.02.003.
Cantuaria, Manuella Lech et al. (2018) ‘Glucocorticoid metabolites in newborns : a marker for traffic noise related stress?’, Environment international, 117, pp. 319–326. Available at: https://doi.org/10.1016/j.envint.2018.05.002.
Cantuaria, Manuella Lech et al. (2018) ‘Glucocorticoid metabolites in newborns : a marker for traffic noise related stress?’, Environment international, 117, pp. 319–326. Available at: https://doi.org/10.1016/j.envint.2018.05.002.
Gorlanova, O. Illi et al. (2018) ‘Protective effects of breastfeeding on respiratory symptoms in infants with 17q21 asthma risk variants’, Allergy, 73(12), pp. 2388–2392. Available at: https://doi.org/10.1111/all.13568.
Gorlanova, O. Illi et al. (2018) ‘Protective effects of breastfeeding on respiratory symptoms in infants with 17q21 asthma risk variants’, Allergy, 73(12), pp. 2388–2392. Available at: https://doi.org/10.1111/all.13568.
Korten, Insa et al. (2018) ‘Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls’, Journal of Cystic Fibrosis, 17(1), pp. 105–108. Available at: https://doi.org/10.1016/j.jcf.2017.05.005.
Korten, Insa et al. (2018) ‘Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls’, Journal of Cystic Fibrosis, 17(1), pp. 105–108. Available at: https://doi.org/10.1016/j.jcf.2017.05.005.
Singh, Kapil Dev et al. (2018) ‘Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment’, Journal of Breath Research, 12(2), p. 027113. Available at: https://doi.org/10.1088/1752-7163/aa9ee3.
Singh, Kapil Dev et al. (2018) ‘Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment’, Journal of Breath Research, 12(2), p. 027113. Available at: https://doi.org/10.1088/1752-7163/aa9ee3.
Tejero Rioseras, Alberto et al. (2018) ‘Real-Time Monitoring of Tricarboxylic Acid Metabolites in Exhaled Breath’, Analytical chemistry, 90(11), pp. 6453–6460. Available at: https://doi.org/10.1021/acs.analchem.7b04600.
Tejero Rioseras, Alberto et al. (2018) ‘Real-Time Monitoring of Tricarboxylic Acid Metabolites in Exhaled Breath’, Analytical chemistry, 90(11), pp. 6453–6460. Available at: https://doi.org/10.1021/acs.analchem.7b04600.
Usemann, Jakob et al. (2018) ‘Dynamics of respiratory symptoms during infancy and associations with wheezing at school age’, ERJ open research, 4(4), pp. 00037–2018. Available at: https://doi.org/10.1183/23120541.00037-2018.
Usemann, Jakob et al. (2018) ‘Dynamics of respiratory symptoms during infancy and associations with wheezing at school age’, ERJ open research, 4(4), pp. 00037–2018. Available at: https://doi.org/10.1183/23120541.00037-2018.
Roth M et al. (2017) ‘Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.’, Toxicology in vitro : an international journal published in association with BIBRA, 45(Pt 1), pp. 101–110. Available at: https://doi.org/10.1016/j.tiv.2017.08.016.
Roth M et al. (2017) ‘Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.’, Toxicology in vitro : an international journal published in association with BIBRA, 45(Pt 1), pp. 101–110. Available at: https://doi.org/10.1016/j.tiv.2017.08.016.
Farrell, Ross R. et al. (2017) ‘Rapid fingerprinting of grape volatile composition using secondary electrospray ionization orbitrap mass spectrometry: A preliminary study of grape ripening’, Food Control, 81, pp. 107–112. Available at: https://doi.org/10.1016/j.foodcont.2017.04.041.
Farrell, Ross R. et al. (2017) ‘Rapid fingerprinting of grape volatile composition using secondary electrospray ionization orbitrap mass spectrometry: A preliminary study of grape ripening’, Food Control, 81, pp. 107–112. Available at: https://doi.org/10.1016/j.foodcont.2017.04.041.
Gaugg, Martin Thomas et al. (2017) ‘Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath.’, Analytical chemistry. 14.09.2017, 89(19), pp. 10329–10334. Available at: https://doi.org/10.1021/acs.analchem.7b02092.
Gaugg, Martin Thomas et al. (2017) ‘Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath.’, Analytical chemistry. 14.09.2017, 89(19), pp. 10329–10334. Available at: https://doi.org/10.1021/acs.analchem.7b02092.
Tejero Rioseras, Alberto, Thomas Gaugg, Martin and Martinez-Lozano Sinues, Pablo (2017) ‘Secondary electrospray ionization proceeds via gas-phase chemical ionization’, ANALYTICAL METHODS. WOS.SCI, 9, pp. 5052–5057. Available at: https://doi.org/10.1039/c7ay01121k.
Tejero Rioseras, Alberto, Thomas Gaugg, Martin and Martinez-Lozano Sinues, Pablo (2017) ‘Secondary electrospray ionization proceeds via gas-phase chemical ionization’, ANALYTICAL METHODS. WOS.SCI, 9, pp. 5052–5057. Available at: https://doi.org/10.1039/c7ay01121k.
Gaugg, Martin T et al. (2017) ‘Metabolic effects of inhaled salbutamol determined by exhaled breath analysis.’, Journal of breath research. 13.09.2017, 11(4), p. 046004. Available at: https://doi.org/10.1088/1752-7163/aa7caa.
Gaugg, Martin T et al. (2017) ‘Metabolic effects of inhaled salbutamol determined by exhaled breath analysis.’, Journal of breath research. 13.09.2017, 11(4), p. 046004. Available at: https://doi.org/10.1088/1752-7163/aa7caa.