[FG] Swiss MAM – Medical Additive Manufacturing
Publications
357 found
Show per page
Yoshikawa, O. et al. (2025) ‘Electrospun Polycaprolactone-Curcumin Scaffolds: Optimization of fiber production for enhanced Nanotopography and improved biological cell adhesion’, European Polymer Journal, 222. Available at: https://doi.org/10.1016/j.eurpolymj.2024.113616.
Yoshikawa, O. et al. (2025) ‘Electrospun Polycaprolactone-Curcumin Scaffolds: Optimization of fiber production for enhanced Nanotopography and improved biological cell adhesion’, European Polymer Journal, 222. Available at: https://doi.org/10.1016/j.eurpolymj.2024.113616.
Leung, Y.Y., Fan, K. and Thieringer, F.M. (2025) ‘Craniomaxillofacial Trauma and Reconstruction: A New Era in Open Access Publishing’, Craniomaxillofacial Trauma & Reconstruction, 18(1), p. 1. Available at: https://doi.org/10.3390/cmtr18010001.
Leung, Y.Y., Fan, K. and Thieringer, F.M. (2025) ‘Craniomaxillofacial Trauma and Reconstruction: A New Era in Open Access Publishing’, Craniomaxillofacial Trauma & Reconstruction, 18(1), p. 1. Available at: https://doi.org/10.3390/cmtr18010001.
Honigmann, Philipp et al. (2025) ‘Patient-specific scaphoid prosthesis: surgical technique’, Archives of Orthopaedic and Trauma Surgery, 145. Available at: https://doi.org/10.1007/s00402-024-05609-7.
Honigmann, Philipp et al. (2025) ‘Patient-specific scaphoid prosthesis: surgical technique’, Archives of Orthopaedic and Trauma Surgery, 145. Available at: https://doi.org/10.1007/s00402-024-05609-7.
von Haller, Marianne, Couchman, Louise and Honigmann, Philipp (2024) ‘Production time and practicability of 3D-Printed wrist orthoses versus low temperature thermoplastic wrist orthoses’, Hand Therapy, 29(4), pp. 188–194. Available at: https://doi.org/10.1177/17589983241287069.
von Haller, Marianne, Couchman, Louise and Honigmann, Philipp (2024) ‘Production time and practicability of 3D-Printed wrist orthoses versus low temperature thermoplastic wrist orthoses’, Hand Therapy, 29(4), pp. 188–194. Available at: https://doi.org/10.1177/17589983241287069.
Seifert, L.B. et al. (2024) ‘Comparative Accuracy of Stationary and Smartphone-Based Photogrammetry in Oral and Maxillofacial Surgery: A Clinical Study’, Journal of Clinical Medicine, 13(22), p. 6678. Available at: https://doi.org/10.3390/jcm13226678.
Seifert, L.B. et al. (2024) ‘Comparative Accuracy of Stationary and Smartphone-Based Photogrammetry in Oral and Maxillofacial Surgery: A Clinical Study’, Journal of Clinical Medicine, 13(22), p. 6678. Available at: https://doi.org/10.3390/jcm13226678.
Harbrecht, A. et al. (2024) ‘Morbus Dupuytren’, Die Orthopädie, 53(11), pp. 893–902. Available at: https://doi.org/10.1007/s00132-024-04553-z.
Harbrecht, A. et al. (2024) ‘Morbus Dupuytren’, Die Orthopädie, 53(11), pp. 893–902. Available at: https://doi.org/10.1007/s00132-024-04553-z.
Msallem, B. et al. (2024) ‘Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology’, Journal of Clinical Medicine, 13(19), p. 5848. Available at: https://doi.org/10.3390/jcm13195848.
Msallem, B. et al. (2024) ‘Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology’, Journal of Clinical Medicine, 13(19), p. 5848. Available at: https://doi.org/10.3390/jcm13195848.
Keller, Marco, Rohner, Meret and Honigmann, Philipp (2024) ‘The potential benefit of artificial intelligence regarding clinical decision-making in the treatment of wrist trauma patients’, Journal of Orthopaedic Surgery and Research, 19(1). Available at: https://doi.org/10.1186/s13018-024-05063-6.
Keller, Marco, Rohner, Meret and Honigmann, Philipp (2024) ‘The potential benefit of artificial intelligence regarding clinical decision-making in the treatment of wrist trauma patients’, Journal of Orthopaedic Surgery and Research, 19(1). Available at: https://doi.org/10.1186/s13018-024-05063-6.
Keller, M. et al. (2024) ‘Three-Dimensional Analysis of the First Metacarpal Axes in Healthy Individuals and Early-Stage Thumb Carpometacarpal Osteoarthritis Patients—Potential Implication on First Metacarpal Corrective Osteotomy’, Journal of Clinical Medicine, 13(18), p. 5513. Available at: https://doi.org/10.3390/jcm13185513.
Keller, M. et al. (2024) ‘Three-Dimensional Analysis of the First Metacarpal Axes in Healthy Individuals and Early-Stage Thumb Carpometacarpal Osteoarthritis Patients—Potential Implication on First Metacarpal Corrective Osteotomy’, Journal of Clinical Medicine, 13(18), p. 5513. Available at: https://doi.org/10.3390/jcm13185513.
Msallem, B. et al. (2024) ‘Evaluation of the Dimensional Accuracy of Robot-Guided Laser Osteotomy in Reconstruction with Patient-Specific Implants—An Accuracy Study of Digital High-Tech Procedures’, Journal of Clinical Medicine, 13(12), p. 3594. Available at: https://doi.org/10.3390/jcm13123594.
Msallem, B. et al. (2024) ‘Evaluation of the Dimensional Accuracy of Robot-Guided Laser Osteotomy in Reconstruction with Patient-Specific Implants—An Accuracy Study of Digital High-Tech Procedures’, Journal of Clinical Medicine, 13(12), p. 3594. Available at: https://doi.org/10.3390/jcm13123594.
Jakimiuk, A. et al. (2024) 3D-printed Patient-Specific Implants made of Polylactide (PLDLLA) and β-Tricalcium Phosphate (β-TCP) for Corrective Osteotomies of The Distal Radius. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4145453/v1.
Jakimiuk, A. et al. (2024) 3D-printed Patient-Specific Implants made of Polylactide (PLDLLA) and β-Tricalcium Phosphate (β-TCP) for Corrective Osteotomies of The Distal Radius. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4145453/v1.
Honigmann, P. et al. (2024) ‘Comparative CT-Based Assessment of Segmentation Accuracy and Volumetric Variability in Scaphoids from Frozen and Thawed Cadaver Arms for Scaphoid Prosthesis Modeling’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4049296/v1.
Honigmann, P. et al. (2024) ‘Comparative CT-Based Assessment of Segmentation Accuracy and Volumetric Variability in Scaphoids from Frozen and Thawed Cadaver Arms for Scaphoid Prosthesis Modeling’. Research Square Platform LLC. Available at: https://doi.org/10.21203/rs.3.rs-4049296/v1.
de Macêdo Santos, José Wittor et al. (2024) ‘Intraosseous myofibroma mimicking an odontogenic lesion: case report, literature review, and differential diagnosis’, World Journal of Surgical Oncology, 22. Available at: https://doi.org/10.1186/s12957-024-03520-4.
de Macêdo Santos, José Wittor et al. (2024) ‘Intraosseous myofibroma mimicking an odontogenic lesion: case report, literature review, and differential diagnosis’, World Journal of Surgical Oncology, 22. Available at: https://doi.org/10.1186/s12957-024-03520-4.
Hobert, Marc et al. (2024) ‘Case report: One-stage craniectomy and cranioplasty digital workflow for three-dimensional printed polyetheretherketone implant for an extensive skull multilobular osteochondosarcoma in a dog’, Frontiers in Veterinary Science, 11. Available at: https://doi.org/10.3389/fvets.2024.1459272.
Hobert, Marc et al. (2024) ‘Case report: One-stage craniectomy and cranioplasty digital workflow for three-dimensional printed polyetheretherketone implant for an extensive skull multilobular osteochondosarcoma in a dog’, Frontiers in Veterinary Science, 11. Available at: https://doi.org/10.3389/fvets.2024.1459272.
Honigmann, Philipp et al. (2024) ‘Patient-Specific Treatment in Hand Surgery: Smart Innovations and Rapid Translation into the Point of Care’, pp. 97–121. Available at: https://doi.org/10.1007/978-3-031-47768-3_7.
Honigmann, Philipp et al. (2024) ‘Patient-Specific Treatment in Hand Surgery: Smart Innovations and Rapid Translation into the Point of Care’, pp. 97–121. Available at: https://doi.org/10.1007/978-3-031-47768-3_7.
Jakimiuk, Adam et al. (2024) ‘3D-printed patient-specific implants made of polylactide (PLDLLA) and β-tricalcium phosphate (β-TCP) for corrective osteotomies of the distal radius’, 3D Printing in Medicine, 10. Available at: https://doi.org/10.1186/s41205-024-00240-z.
Jakimiuk, Adam et al. (2024) ‘3D-printed patient-specific implants made of polylactide (PLDLLA) and β-tricalcium phosphate (β-TCP) for corrective osteotomies of the distal radius’, 3D Printing in Medicine, 10. Available at: https://doi.org/10.1186/s41205-024-00240-z.
Keller, Marco, Thieringer, Florian M. and Honigmann, Philipp (2024) ‘Artificial Intelligence in Musculoskeletal Medical Imaging’, pp. 149–168. Available at: https://doi.org/10.1007/978-3-031-47768-3_9.
Keller, Marco, Thieringer, Florian M. and Honigmann, Philipp (2024) ‘Artificial Intelligence in Musculoskeletal Medical Imaging’, pp. 149–168. Available at: https://doi.org/10.1007/978-3-031-47768-3_9.
Maintz, Michaela et al. (2024) ‘Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment’, International Journal of Computer Assisted Radiology and Surgery [Preprint]. Available at: https://doi.org/10.1007/s11548-024-03298-6.
Maintz, Michaela et al. (2024) ‘Fronto-orbital advancement with patient-specific 3D-printed implants and robot-guided laser osteotomy: an in vitro accuracy assessment’, International Journal of Computer Assisted Radiology and Surgery [Preprint]. Available at: https://doi.org/10.1007/s11548-024-03298-6.
Maintz, Michaela et al. (2024) ‘In situ minimally invasive 3D printing for bone and cartilage regeneration - A scoping review’, pp. 66–70. Available at: https://doi.org/10.1515/cdbme-2024-1069.
Maintz, Michaela et al. (2024) ‘In situ minimally invasive 3D printing for bone and cartilage regeneration - A scoping review’, pp. 66–70. Available at: https://doi.org/10.1515/cdbme-2024-1069.
Maintz, Michaela et al. (2024) ‘Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application’, 3D Printing in Medicine, 10(1). Available at: https://doi.org/10.1186/s41205-024-00207-0.
Maintz, Michaela et al. (2024) ‘Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application’, 3D Printing in Medicine, 10(1). Available at: https://doi.org/10.1186/s41205-024-00207-0.
Miazza, Jules et al. (2024) ‘Aortic root rotation: morphological analysis of the aortic root with three-dimensional computed tomography’, European Journal of Cardio-thoracic Surgery, 65. Available at: https://doi.org/10.1093/ejcts/ezae040.
Miazza, Jules et al. (2024) ‘Aortic root rotation: morphological analysis of the aortic root with three-dimensional computed tomography’, European Journal of Cardio-thoracic Surgery, 65. Available at: https://doi.org/10.1093/ejcts/ezae040.
Saemann, A. et al. (2024) ‘Innovating neurosurgical training: a comprehensive evaluation of a 3D-printed intraventricular neuroendoscopy simulator and systematic review of the literature’, Frontiers in Surgery, 11. Available at: https://doi.org/10.3389/fsurg.2024.1446067.
Saemann, A. et al. (2024) ‘Innovating neurosurgical training: a comprehensive evaluation of a 3D-printed intraventricular neuroendoscopy simulator and systematic review of the literature’, Frontiers in Surgery, 11. Available at: https://doi.org/10.3389/fsurg.2024.1446067.
Saemann, A. et al. (2024) ‘3D-Printed Intraventricular Neuroendoscopy Simulator: Development, Validation, and future Training Applications’, Brain and Spine, 4, p. 103454. Available at: https://doi.org/10.1016/j.bas.2024.103454.
Saemann, A. et al. (2024) ‘3D-Printed Intraventricular Neuroendoscopy Simulator: Development, Validation, and future Training Applications’, Brain and Spine, 4, p. 103454. Available at: https://doi.org/10.1016/j.bas.2024.103454.
Wang, Kenneth C. et al. (2024) ‘Demographics, Utilization, Workflow, and Outcomes Based on Observational Data From the RSNA-ACR 3D Printing Registry’, Journal of the American College of Radiology [Preprint]. Available at: https://doi.org/10.1016/j.jacr.2024.07.019.
Wang, Kenneth C. et al. (2024) ‘Demographics, Utilization, Workflow, and Outcomes Based on Observational Data From the RSNA-ACR 3D Printing Registry’, Journal of the American College of Radiology [Preprint]. Available at: https://doi.org/10.1016/j.jacr.2024.07.019.
Xingting Han et al. (2024) ‘A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating’, Dental Materials [Preprint]. Available at: https://doi.org/10.1016/j.dental.2024.02.011.
Xingting Han et al. (2024) ‘A balance of biocompatibility and antibacterial capability of 3D printed PEEK implants with natural totarol coating’, Dental Materials [Preprint]. Available at: https://doi.org/10.1016/j.dental.2024.02.011.
Żelechowski, M. et al. (2024) ‘Augmented reality navigation in orthognathic surgery: Comparative analysis and a paradigm shift’, Healthcare Technology Letters [Preprint]. Available at: https://doi.org/10.1049/htl2.12109.
Żelechowski, M. et al. (2024) ‘Augmented reality navigation in orthognathic surgery: Comparative analysis and a paradigm shift’, Healthcare Technology Letters [Preprint]. Available at: https://doi.org/10.1049/htl2.12109.
Al-Nawas B et al. (2023) ‘Group 3 ITI Consensus Report: Materials and antiresorptive drug-associated outcomes in implant dentistry.’, Clinical oral implants research, 34 Suppl 26, pp. 169–176. Available at: https://doi.org/10.1111/clr.14135.
Al-Nawas B et al. (2023) ‘Group 3 ITI Consensus Report: Materials and antiresorptive drug-associated outcomes in implant dentistry.’, Clinical oral implants research, 34 Suppl 26, pp. 169–176. Available at: https://doi.org/10.1111/clr.14135.
Honigmann P et al. (2023) ‘Extension osteotomy of the metacarpal I and ligamentoplasty of the trapeziometacarpal joint for the treatment of early-stage osteoarthritis and instability of the trapeziometacarpal joint’, Archives of Orthopaedic and Trauma Surgery, 143(9), pp. 6011–6018. Available at: https://doi.org/10.1007/s00402-023-04883-1.
Honigmann P et al. (2023) ‘Extension osteotomy of the metacarpal I and ligamentoplasty of the trapeziometacarpal joint for the treatment of early-stage osteoarthritis and instability of the trapeziometacarpal joint’, Archives of Orthopaedic and Trauma Surgery, 143(9), pp. 6011–6018. Available at: https://doi.org/10.1007/s00402-023-04883-1.
Honigmann P et al. (2023) ‘Correction to: Extension osteotomy of the metacarpal I and ligamentoplasty of the trapeziometacarpal joint for the treatment of early‑stage osteoarthritis and instability of the trapeziometacarpal joint.’, 143(9). Available at: https://doi.org/10.1007/s00402-023-04942-7.
Honigmann P et al. (2023) ‘Correction to: Extension osteotomy of the metacarpal I and ligamentoplasty of the trapeziometacarpal joint for the treatment of early‑stage osteoarthritis and instability of the trapeziometacarpal joint.’, 143(9). Available at: https://doi.org/10.1007/s00402-023-04942-7.
Laleman I et al. (2023) ‘The effect of different abutment materials on peri-implant tissues-A systematic review and meta-analysis.’, 34 Suppl 26. Available at: https://doi.org/10.1111/clr.14159.
Laleman I et al. (2023) ‘The effect of different abutment materials on peri-implant tissues-A systematic review and meta-analysis.’, 34 Suppl 26. Available at: https://doi.org/10.1111/clr.14159.
Roehling S et al. (2023) ‘Clinical and radiographic outcomes of zirconia dental implants-A systematic review and meta-analysis.’, 34 Suppl 26. Available at: https://doi.org/10.1111/clr.14133.
Roehling S et al. (2023) ‘Clinical and radiographic outcomes of zirconia dental implants-A systematic review and meta-analysis.’, 34 Suppl 26. Available at: https://doi.org/10.1111/clr.14133.
Keller M. et al. (2023) ‘Artificial intelligence in patient-specific hand surgery: a scoping review of literature’, International Journal of Computer Assisted Radiology and Surgery, 18(8), pp. 1393–1403. Available at: https://doi.org/10.1007/s11548-023-02831-3.
Keller M. et al. (2023) ‘Artificial intelligence in patient-specific hand surgery: a scoping review of literature’, International Journal of Computer Assisted Radiology and Surgery, 18(8), pp. 1393–1403. Available at: https://doi.org/10.1007/s11548-023-02831-3.
Guerra RC et al. (2023) ‘Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs.’, Oral and maxillofacial surgery [Preprint]. Available at: https://doi.org/10.1007/s10006-023-01173-3.
Guerra RC et al. (2023) ‘Finite element analysis of low-profile reconstruction plates for atrophic mandibles: a comparison of novel 3D grid and conventional plate designs.’, Oral and maxillofacial surgery [Preprint]. Available at: https://doi.org/10.1007/s10006-023-01173-3.
Guebeli A et al. (2023) ‘In-house 3D-printed custom splints for non-operative treatment of distal radial fractures: a randomized controlled trial.’, The Journal of hand surgery, European volume, p. 17531934231187554. Available at: https://doi.org/10.1177/17531934231187554.
Guebeli A et al. (2023) ‘In-house 3D-printed custom splints for non-operative treatment of distal radial fractures: a randomized controlled trial.’, The Journal of hand surgery, European volume, p. 17531934231187554. Available at: https://doi.org/10.1177/17531934231187554.
Bieger V et al. (2023) ‘Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments’, Journal of Prosthetic Dentistry, 129(6), pp. 939–945. Available at: https://doi.org/10.1016/j.prosdent.2021.08.015.
Bieger V et al. (2023) ‘Fibroblast behavior on conventionally processed, milled, and printed occlusal device materials with different surface treatments’, Journal of Prosthetic Dentistry, 129(6), pp. 939–945. Available at: https://doi.org/10.1016/j.prosdent.2021.08.015.
Meyer S et al. (2023) ‘3D-printable Open-source Cleft Lip and Palate Impression Trays - A Single-Impression-Workflow.’, Plastic and reconstructive surgery [Preprint]. Available at: https://doi.org/10.1097/prs.0000000000010684.
Meyer S et al. (2023) ‘3D-printable Open-source Cleft Lip and Palate Impression Trays - A Single-Impression-Workflow.’, Plastic and reconstructive surgery [Preprint]. Available at: https://doi.org/10.1097/prs.0000000000010684.
Singh A.K. et al. (2023) ‘Is the Pre-Shaping of an Orbital Implant on a Patient-Specific 3D-Printed Model Advantageous Compared to Conventional Free-Hand Shaping? A Systematic Review and Meta-Analysis.’, Journal of clinical medicine, 12(10). Available at: https://doi.org/10.3390/jcm12103426.
Singh A.K. et al. (2023) ‘Is the Pre-Shaping of an Orbital Implant on a Patient-Specific 3D-Printed Model Advantageous Compared to Conventional Free-Hand Shaping? A Systematic Review and Meta-Analysis.’, Journal of clinical medicine, 12(10). Available at: https://doi.org/10.3390/jcm12103426.
Ilesan R.R. et al. (2023) ‘Comparison of Artificial Intelligence-Based Applications for Mandible Segmentation: From Established Platforms to In-House-Developed Software’, Bioengineering, 10(5). Available at: https://doi.org/10.3390/bioengineering10050604.
Ilesan R.R. et al. (2023) ‘Comparison of Artificial Intelligence-Based Applications for Mandible Segmentation: From Established Platforms to In-House-Developed Software’, Bioengineering, 10(5). Available at: https://doi.org/10.3390/bioengineering10050604.
Sommacal A et al. (2023) ‘Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments.’, Journal of clinical medicine, 12(8). Available at: https://doi.org/10.3390/jcm12082952.
Sommacal A et al. (2023) ‘Dental and Maxillofacial Emergency Algorithms in Swiss Emergency Departments.’, Journal of clinical medicine, 12(8). Available at: https://doi.org/10.3390/jcm12082952.
Lüdi S et al. (2023) ‘Radiological, Clinical, and Functional Outcomes of Combined Dorsal and Volar Locking Plate Osteosynthesis for Complex Distal Radius Fractures.’, The Journal of hand surgery, 48(4), pp. 377–387. Available at: https://doi.org/10.1016/j.jhsa.2021.12.002.
Lüdi S et al. (2023) ‘Radiological, Clinical, and Functional Outcomes of Combined Dorsal and Volar Locking Plate Osteosynthesis for Complex Distal Radius Fractures.’, The Journal of hand surgery, 48(4), pp. 377–387. Available at: https://doi.org/10.1016/j.jhsa.2021.12.002.
Sharma N et al. (2023) ‘Can Steam Sterilization Affect the Accuracy of Point-of-Care 3D Printed Polyetheretherketone (PEEK) Customized Cranial Implants? An Investigative Analysis.’, Journal of clinical medicine, 12(7). Available at: https://doi.org/10.3390/jcm12072495.
Sharma N et al. (2023) ‘Can Steam Sterilization Affect the Accuracy of Point-of-Care 3D Printed Polyetheretherketone (PEEK) Customized Cranial Implants? An Investigative Analysis.’, Journal of clinical medicine, 12(7). Available at: https://doi.org/10.3390/jcm12072495.
Honigmann P et al. (2023) ‘Distance mapping in three-dimensional virtual surgical planning in hand, wrist and forearm surgery: a tool to avoid mistakes’, International Journal of Computer Assisted Radiology and Surgery, 18(3), pp. 565–574. Available at: https://doi.org/10.1007/s11548-022-02779-w.
Honigmann P et al. (2023) ‘Distance mapping in three-dimensional virtual surgical planning in hand, wrist and forearm surgery: a tool to avoid mistakes’, International Journal of Computer Assisted Radiology and Surgery, 18(3), pp. 565–574. Available at: https://doi.org/10.1007/s11548-022-02779-w.
Zarean P. et al. (2023) ‘Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care’, Applied Sciences (Switzerland), 13(3). Available at: https://doi.org/10.3390/app13031230.
Zarean P. et al. (2023) ‘Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care’, Applied Sciences (Switzerland), 13(3). Available at: https://doi.org/10.3390/app13031230.
Calderaro S et al. (2023) ‘Medication-Related Osteonecrosis of the Jaw: A Cross-Sectional Survey among Urologists in Switzerland, Germany, and Austria.’, Journal of clinical medicine, 12(2). Available at: https://doi.org/10.3390/jcm12020638.
Calderaro S et al. (2023) ‘Medication-Related Osteonecrosis of the Jaw: A Cross-Sectional Survey among Urologists in Switzerland, Germany, and Austria.’, Journal of clinical medicine, 12(2). Available at: https://doi.org/10.3390/jcm12020638.
Friedrich, P. et al. (2023) ‘Point Cloud Diffusion Models for Automatic Implant Generation’, in 26th International Conference on Medical Image Computing and Computer Assisted Interventions. Vancouver, Canada (26th International Conference on Medical Image Computing and Computer Assisted Interventions), pp. 112–122. Available at: https://doi.org/10.1007/978-3-031-43996-4_11.
Friedrich, P. et al. (2023) ‘Point Cloud Diffusion Models for Automatic Implant Generation’, in 26th International Conference on Medical Image Computing and Computer Assisted Interventions. Vancouver, Canada (26th International Conference on Medical Image Computing and Computer Assisted Interventions), pp. 112–122. Available at: https://doi.org/10.1007/978-3-031-43996-4_11.
Li, Na et al. (2023) ‘Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering’, Materials and Design, 234. Available at: https://doi.org/10.1016/j.matdes.2023.112362.
Li, Na et al. (2023) ‘Building a better bone: The synergy of 2D nanomaterials and 3D printing for bone tissue engineering’, Materials and Design, 234. Available at: https://doi.org/10.1016/j.matdes.2023.112362.
Maintz, Michaela et al. (2023) ‘Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach’, Journal of the Mechanical Behavior of Biomedical Materials, 144. Available at: https://doi.org/10.1016/j.jmbbm.2023.105948.
Maintz, Michaela et al. (2023) ‘Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach’, Journal of the Mechanical Behavior of Biomedical Materials, 144. Available at: https://doi.org/10.1016/j.jmbbm.2023.105948.
Modgill, Vikas et al. (2023) ‘Knowledge Domain and Innovation Trends Concerning Medical 3D Printing for Craniomaxillofacial Surgery Applications: A 30-Year Bibliometric and Visualized Analysis’, Craniomaxillofacial Research and Innovation, 8. Available at: https://doi.org/10.1177/27528464231170964.
Modgill, Vikas et al. (2023) ‘Knowledge Domain and Innovation Trends Concerning Medical 3D Printing for Craniomaxillofacial Surgery Applications: A 30-Year Bibliometric and Visualized Analysis’, Craniomaxillofacial Research and Innovation, 8. Available at: https://doi.org/10.1177/27528464231170964.
Taheri Otaghsara Seyedeh Sahar et al. (2023) ‘Accuracy of dental implant placement using static versus dynamic computer-assisted implant surgery: An in vitro study’, Journal of Dentistry, 132. Available at: https://doi.org/10.1016/j.jdent.2023.104487.
Taheri Otaghsara Seyedeh Sahar et al. (2023) ‘Accuracy of dental implant placement using static versus dynamic computer-assisted implant surgery: An in vitro study’, Journal of Dentistry, 132. Available at: https://doi.org/10.1016/j.jdent.2023.104487.
Tomooka, Yukiko et al. (2023) ‘Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport’, At-Automatisierungstechnik, 71, pp. 562–571. Available at: https://doi.org/10.1515/auto-2023-0060.
Tomooka, Yukiko et al. (2023) ‘Minimal invasives in-situ Bioprinting mittels schlauchbasiertem Materialtransport’, At-Automatisierungstechnik, 71, pp. 562–571. Available at: https://doi.org/10.1515/auto-2023-0060.
Gahlert Michael and Roehling Stefan (2023) ‘Keramik- oder Titanimplantate – Welches Implantat wähle ich in 2023?’, Quintessenz Implantologie, 10(74), pp. 2–10.
Gahlert Michael and Roehling Stefan (2023) ‘Keramik- oder Titanimplantate – Welches Implantat wähle ich in 2023?’, Quintessenz Implantologie, 10(74), pp. 2–10.
Roehling, S and Borer, T (2023) ‘Replacement of a Mandibular Central Incisor
with an Immediately Placed Monotype Zirconia
Implant’, in France Lambert, Adam Hamilton (ed.) Immediate Implant Placement and Loading – Single or Multiple Teeth Requiring Replacement. (ITI Treatment Guide), pp. 198 – 207.
Roehling, S and Borer, T (2023) ‘Replacement of a Mandibular Central Incisor
with an Immediately Placed Monotype Zirconia
Implant’, in France Lambert, Adam Hamilton (ed.) Immediate Implant Placement and Loading – Single or Multiple Teeth Requiring Replacement. (ITI Treatment Guide), pp. 198 – 207.
Wang D et al. (2022) ‘Adhesive Property of 3D-Printed PEEK Abutments: Effects of Surface Treatment and Temporary Crown Material on Shear Bond Strength.’, Journal of functional biomaterials, 13(4). Available at: https://doi.org/10.3390/jfb13040288.
Wang D et al. (2022) ‘Adhesive Property of 3D-Printed PEEK Abutments: Effects of Surface Treatment and Temporary Crown Material on Shear Bond Strength.’, Journal of functional biomaterials, 13(4). Available at: https://doi.org/10.3390/jfb13040288.
Chi M. et al. (2022) ‘Positive regulation of osteogenesis on titanium surface by modification of nanosized Ca2+-exchanged EMT zeolites’, Materials Today Communications, 33. Available at: https://doi.org/10.1016/j.mtcomm.2022.104874.
Chi M. et al. (2022) ‘Positive regulation of osteogenesis on titanium surface by modification of nanosized Ca2+-exchanged EMT zeolites’, Materials Today Communications, 33. Available at: https://doi.org/10.1016/j.mtcomm.2022.104874.
Ostaș D et al. (2022) ‘Point-of-Care Virtual Surgical Planning and 3D Printing in Oral and Cranio-Maxillofacial Surgery: A Narrative Review.’, Journal of clinical medicine, 11(22). Available at: https://doi.org/10.3390/jcm11226625.
Ostaș D et al. (2022) ‘Point-of-Care Virtual Surgical Planning and 3D Printing in Oral and Cranio-Maxillofacial Surgery: A Narrative Review.’, Journal of clinical medicine, 11(22). Available at: https://doi.org/10.3390/jcm11226625.
Honigmann P et al. (2022) ‘Cold ablation robot-guided laser osteotomy in hand, wrist and forearm surgery-A feasibility study.’, The international journal of medical robotics + computer assisted surgery : MRCAS, 18(5), p. e2438. Available at: https://doi.org/10.1002/rcs.2438.
Honigmann P et al. (2022) ‘Cold ablation robot-guided laser osteotomy in hand, wrist and forearm surgery-A feasibility study.’, The international journal of medical robotics + computer assisted surgery : MRCAS, 18(5), p. e2438. Available at: https://doi.org/10.1002/rcs.2438.
Chi M et al. (2022) ‘Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering’, Frontiers in Bioengineering and Biotechnology, 10. Available at: https://doi.org/10.3389/fbioe.2022.989729.
Chi M et al. (2022) ‘Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering’, Frontiers in Bioengineering and Biotechnology, 10. Available at: https://doi.org/10.3389/fbioe.2022.989729.
Zarean P et al. (2022) ‘A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care’, Children, 9(8). Available at: https://doi.org/10.3390/children9081261.
Zarean P et al. (2022) ‘A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care’, Children, 9(8). Available at: https://doi.org/10.3390/children9081261.
Han X et al. (2022) ‘Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization.’, Dental materials : official publication of the Academy of Dental Materials, 38(7), pp. 1083–1098. Available at: https://doi.org/10.1016/j.dental.2022.04.026.
Han X et al. (2022) ‘Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization.’, Dental materials : official publication of the Academy of Dental Materials, 38(7), pp. 1083–1098. Available at: https://doi.org/10.1016/j.dental.2022.04.026.
Murtezani I., Sharma N. and Thieringer F.M. (2022) ‘Medical 3D printing with a focus on Point-of-Care in Cranio- and Maxillofacial Surgery. A systematic review of literature’, Annals of 3D Printed Medicine, 6. Available at: https://doi.org/10.1016/j.stlm.2022.100059.
Murtezani I., Sharma N. and Thieringer F.M. (2022) ‘Medical 3D printing with a focus on Point-of-Care in Cranio- and Maxillofacial Surgery. A systematic review of literature’, Annals of 3D Printed Medicine, 6. Available at: https://doi.org/10.1016/j.stlm.2022.100059.
Wang F et al. (2022) ‘Nomogram predicting long-term overall and cancer-specific survival of patients with buccal mucosa cancer.’, BMC oral health, 22(1), p. 138. Available at: https://doi.org/10.1186/s12903-022-02147-9.
Wang F et al. (2022) ‘Nomogram predicting long-term overall and cancer-specific survival of patients with buccal mucosa cancer.’, BMC oral health, 22(1), p. 138. Available at: https://doi.org/10.1186/s12903-022-02147-9.
Baumhoer D et al. (2022) ‘Recurrent CTNNB1 mutations in craniofacial osteomas’, Modern Pathology, 35(4), pp. 489–494. Available at: https://doi.org/10.1038/s41379-021-00956-x.
Baumhoer D et al. (2022) ‘Recurrent CTNNB1 mutations in craniofacial osteomas’, Modern Pathology, 35(4), pp. 489–494. Available at: https://doi.org/10.1038/s41379-021-00956-x.
Haval Ghafoor et al. (2022) ‘Dorsal Plate Osteosynthesis in Simple and Complex Fractures of the Distal Radius: A Radiological Analysis of 166 Cases.’, Journal of wrist surgery, 11(2), pp. 134–144. Available at: https://doi.org/10.1055/s-0041-1735839.
Haval Ghafoor et al. (2022) ‘Dorsal Plate Osteosynthesis in Simple and Complex Fractures of the Distal Radius: A Radiological Analysis of 166 Cases.’, Journal of wrist surgery, 11(2), pp. 134–144. Available at: https://doi.org/10.1055/s-0041-1735839.
Kaufmann R et al. (2022) ‘Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study’, Journal of Digital Imaging, 35(1), pp. 9–20. Available at: https://doi.org/10.1007/s10278-021-00553-z.
Kaufmann R et al. (2022) ‘Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study’, Journal of Digital Imaging, 35(1), pp. 9–20. Available at: https://doi.org/10.1007/s10278-021-00553-z.
Muff JL et al. (2022) ‘Clinical acceptance of advanced visualization methods: a comparison study of 3D-print, virtual reality glasses, and 3D-display.’, 3D printing in medicine, 8(1), p. 5. Available at: https://doi.org/10.1186/s41205-022-00133-z.
Muff JL et al. (2022) ‘Clinical acceptance of advanced visualization methods: a comparison study of 3D-print, virtual reality glasses, and 3D-display.’, 3D printing in medicine, 8(1), p. 5. Available at: https://doi.org/10.1186/s41205-022-00133-z.
Maintz, Michaela et al. (2022) ‘Topology-optimized patient-specific osteosynthesis plates’, Current Directions in Biomedical Engineering, 8, pp. 177–180. Available at: https://doi.org/10.1515/cdbme-2022-1046.
Maintz, Michaela et al. (2022) ‘Topology-optimized patient-specific osteosynthesis plates’, Current Directions in Biomedical Engineering, 8, pp. 177–180. Available at: https://doi.org/10.1515/cdbme-2022-1046.
Reid G et al. (2022) ‘Planning of graft size and 3D reconstruction using virtual reality technique in aortic valve reimplantation.’, Frontiers in cardiovascular medicine, 9, p. 1064617. Available at: https://doi.org/10.3389/fcvm.2022.1064617.
Reid G et al. (2022) ‘Planning of graft size and 3D reconstruction using virtual reality technique in aortic valve reimplantation.’, Frontiers in cardiovascular medicine, 9, p. 1064617. Available at: https://doi.org/10.3389/fcvm.2022.1064617.
Su YX et al. (2022) ‘Editorial: Virtual surgical planning and 3d printing in head and neck tumor resection and reconstruction.’, 12. Available at: https://doi.org/10.3389/fonc.2022.960545.
Su YX et al. (2022) ‘Editorial: Virtual surgical planning and 3d printing in head and neck tumor resection and reconstruction.’, 12. Available at: https://doi.org/10.3389/fonc.2022.960545.
Thiem, D.G.E. et al. (2022) ‘German S3 guideline on the use of dental ceramic implants’, International Journal of Implant Dentistry, 43(8). Available at: https://doi.org/10.1186/s40729-022-00445-z.
Thiem, D.G.E. et al. (2022) ‘German S3 guideline on the use of dental ceramic implants’, International Journal of Implant Dentistry, 43(8). Available at: https://doi.org/10.1186/s40729-022-00445-z.
Thieringer, Florian M., Honigmann, Philipp and Sharma, Neha (2022) ‘Medical Additive Manufacturing in Surgery: Translating Innovation to the Point of Care’, in The Future Circle of Healthcare: AI, 3D Printing, Longevity, Ethics, and Uncertainty Mitigation. Cham: Springer International Publishing (The Future Circle of Healthcare: AI, 3D Printing, Longevity, Ethics, and Uncertainty Mitigation), pp. 359–376. Available at: https://doi.org/10.1007/978-3-030-99838-7_20.
Thieringer, Florian M., Honigmann, Philipp and Sharma, Neha (2022) ‘Medical Additive Manufacturing in Surgery: Translating Innovation to the Point of Care’, in The Future Circle of Healthcare: AI, 3D Printing, Longevity, Ethics, and Uncertainty Mitigation. Cham: Springer International Publishing (The Future Circle of Healthcare: AI, 3D Printing, Longevity, Ethics, and Uncertainty Mitigation), pp. 359–376. Available at: https://doi.org/10.1007/978-3-030-99838-7_20.
Gahlert, Michael and Röhling Stefan (2022) ‘Einteilige Keramikimplantate aus Zirkonoxid
Ein alternatives Versorgungskonzept zu Titanimplantaten’, Quintessenz Implantologie, 1(2022), pp. 79–91.
Gahlert, Michael and Röhling Stefan (2022) ‘Einteilige Keramikimplantate aus Zirkonoxid
Ein alternatives Versorgungskonzept zu Titanimplantaten’, Quintessenz Implantologie, 1(2022), pp. 79–91.
N. Sharma et al. (2022) ‘Robot-guided laser osteotomy and 3D printing of implants - A symbiotic application of single-stage reconstruction in computer-assisted craniotomy.’, Craniomaxillofacial Trauma and Reconstruction, 15(1)(May 2022 ), pp. 1–49.
N. Sharma et al. (2022) ‘Robot-guided laser osteotomy and 3D printing of implants - A symbiotic application of single-stage reconstruction in computer-assisted craniotomy.’, Craniomaxillofacial Trauma and Reconstruction, 15(1)(May 2022 ), pp. 1–49.
Guebeli A. et al. (2021) ‘A Rare Case of Cutaneous Trichophyton verrucosum of the Forearm in a 51-Year-Old Cattle Farmer’, Journal of Hand Surgery, 46(12), p. 1128.e1–1128.e4. Available at: https://doi.org/10.1016/j.jhsa.2020.12.007.
Guebeli A. et al. (2021) ‘A Rare Case of Cutaneous Trichophyton verrucosum of the Forearm in a 51-Year-Old Cattle Farmer’, Journal of Hand Surgery, 46(12), p. 1128.e1–1128.e4. Available at: https://doi.org/10.1016/j.jhsa.2020.12.007.
Basgul C et al. (2021) ‘Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review’, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), pp. 1924–1941. Available at: https://doi.org/10.1002/jbm.b.34845.
Basgul C et al. (2021) ‘Structure, properties, and bioactivity of 3D printed PAEKs for implant applications: A systematic review’, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), pp. 1924–1941. Available at: https://doi.org/10.1002/jbm.b.34845.
Wegmüller L et al. (2021) ‘Consumer vs. High-end 3D printers for guided implant surgery—An in vitro accuracy assessment study of different 3D printing technologies’, Journal of Clinical Medicine, 10(21). Available at: https://doi.org/10.3390/jcm10214894.
Wegmüller L et al. (2021) ‘Consumer vs. High-end 3D printers for guided implant surgery—An in vitro accuracy assessment study of different 3D printing technologies’, Journal of Clinical Medicine, 10(21). Available at: https://doi.org/10.3390/jcm10214894.
Basgul C., Thieringer F.M. and Kurtz S.M. (2021) ‘Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone’, Additive Manufacturing, 46. Available at: https://doi.org/10.1016/j.addma.2021.102097.
Basgul C., Thieringer F.M. and Kurtz S.M. (2021) ‘Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone’, Additive Manufacturing, 46. Available at: https://doi.org/10.1016/j.addma.2021.102097.
Sharma N et al. (2021) ‘Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants’, International Journal of Molecular Sciences, 22(16). Available at: https://doi.org/10.3390/ijms22168521.
Sharma N et al. (2021) ‘Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants’, International Journal of Molecular Sciences, 22(16). Available at: https://doi.org/10.3390/ijms22168521.
Sigron G.R. et al. (2021) ‘Functional and cosmetic outcome after reconstruction of isolated, unilateral orbital floor fractures (Blow-out fractures) with and without the support of 3D-printed orbital anatomical models’, Journal of Clinical Medicine, 10(16). Available at: https://doi.org/10.3390/jcm10163509.
Sigron G.R. et al. (2021) ‘Functional and cosmetic outcome after reconstruction of isolated, unilateral orbital floor fractures (Blow-out fractures) with and without the support of 3D-printed orbital anatomical models’, Journal of Clinical Medicine, 10(16). Available at: https://doi.org/10.3390/jcm10163509.
Sharma, N. et al. (2021) A Multi-Criteria Assessment Strategy for 3d Printed Porous Polyetheretherketone (Peek) Patient-Specific Implants for Orbital Wall Reconstruction. MDPI AG. Available at: https://doi.org/10.20944/preprints202107.0110.v1.
Sharma, N. et al. (2021) A Multi-Criteria Assessment Strategy for 3d Printed Porous Polyetheretherketone (Peek) Patient-Specific Implants for Orbital Wall Reconstruction. MDPI AG. Available at: https://doi.org/10.20944/preprints202107.0110.v1.
Zhao DW et al. (2021) ‘3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis’, Bone and Joint Research, 10(7), pp. 411–424. Available at: https://doi.org/10.1302/2046-3758.107.BJR-2020-0334.R4.
Zhao DW et al. (2021) ‘3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis’, Bone and Joint Research, 10(7), pp. 411–424. Available at: https://doi.org/10.1302/2046-3758.107.BJR-2020-0334.R4.
Sharma N et al. (2021) ‘Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram’, Frontiers in Physiology, 12, p. 647923. Available at: https://doi.org/10.3389/fphys.2021.647923.
Sharma N et al. (2021) ‘Design and Additive Manufacturing of a Biomimetic Customized Cranial Implant Based on Voronoi Diagram’, Frontiers in Physiology, 12, p. 647923. Available at: https://doi.org/10.3389/fphys.2021.647923.
Frank N et al. (2021) ‘The need for overcorrection: evaluation of computer-assisted, virtually planned, fronto-orbital advancement using postoperative 3D photography’, Neurosurgical Focus, 50(4), pp. 1–9. Available at: https://doi.org/10.3171/2021.1.FOCUS201026.
Frank N et al. (2021) ‘The need for overcorrection: evaluation of computer-assisted, virtually planned, fronto-orbital advancement using postoperative 3D photography’, Neurosurgical Focus, 50(4), pp. 1–9. Available at: https://doi.org/10.3171/2021.1.FOCUS201026.
Schön SN et al. (2021) ‘3D-Printer-Assisted Patient-Specific Polymethyl Methacrylate Cranioplasty: A Case Series of 16 Consecutive Patients’, World Neurosurgery, 148, pp. e356–e362. Available at: https://doi.org/10.1016/j.wneu.2020.12.138.
Schön SN et al. (2021) ‘3D-Printer-Assisted Patient-Specific Polymethyl Methacrylate Cranioplasty: A Case Series of 16 Consecutive Patients’, World Neurosurgery, 148, pp. e356–e362. Available at: https://doi.org/10.1016/j.wneu.2020.12.138.
Eibl D et al. (2021) ‘Universities of Applied Sciences.’, Chimia, 75(3), pp. 215–218. Available at: https://doi.org/10.2533/chimia.2021.215.
Eibl D et al. (2021) ‘Universities of Applied Sciences.’, Chimia, 75(3), pp. 215–218. Available at: https://doi.org/10.2533/chimia.2021.215.
Baek KW et al. (2021) ‘Comparing the Bone Healing After Cold Ablation Robot-Guided Er:YAG Laser Osteotomy and Piezoelectric Osteotomy—A Pilot Study in a Minipig Mandible’. John Wiley and Sons Inc, 53(3). Available at: https://doi.org/10.1002/lsm.23281.
Baek KW et al. (2021) ‘Comparing the Bone Healing After Cold Ablation Robot-Guided Er:YAG Laser Osteotomy and Piezoelectric Osteotomy—A Pilot Study in a Minipig Mandible’. John Wiley and Sons Inc, 53(3). Available at: https://doi.org/10.1002/lsm.23281.
Ureel M et al. (2021) ‘Cold ablation robot-guided laser osteotome (Carlo®): From bench to bedside’, Journal of Clinical Medicine, 10(3), pp. 1–14. Available at: https://doi.org/10.3390/jcm10030450.
Ureel M et al. (2021) ‘Cold ablation robot-guided laser osteotome (Carlo®): From bench to bedside’, Journal of Clinical Medicine, 10(3), pp. 1–14. Available at: https://doi.org/10.3390/jcm10030450.
Ha TT et al. (2021) ‘High Precision Bone Cutting by Er: YAG Lasers Might Minimize the Invasiveness of Navigated Brain Biopsies.’, Frontiers in oncology, 11, p. 690374. Available at: https://doi.org/10.3389/fonc.2021.690374.
Ha TT et al. (2021) ‘High Precision Bone Cutting by Er: YAG Lasers Might Minimize the Invasiveness of Navigated Brain Biopsies.’, Frontiers in oncology, 11, p. 690374. Available at: https://doi.org/10.3389/fonc.2021.690374.
Honigmann P et al. (2021) ‘In-Hospital 3D Printed Scaphoid Prosthesis Using Medical-Grade Polyetheretherketone (PEEK) Biomaterial’, BioMed Research International, 2021, p. 1301028. Available at: https://doi.org/10.1155/2021/1301028.
Honigmann P et al. (2021) ‘In-Hospital 3D Printed Scaphoid Prosthesis Using Medical-Grade Polyetheretherketone (PEEK) Biomaterial’, BioMed Research International, 2021, p. 1301028. Available at: https://doi.org/10.1155/2021/1301028.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Ismail T et al. (2021) ‘Case Report: Reconstruction of a Large Maxillary Defect With an Engineered, Vascularized, Prefabricated Bone Graft.’, 11. Available at: https://doi.org/10.3389/fonc.2021.775136.
Keller M. et al. (2021) ‘Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery’, BioMed research international, 2021, p. 4650245. Available at: https://doi.org/10.1155/2021/4650245.
Keller M. et al. (2021) ‘Overview of In-Hospital 3D Printing and Practical Applications in Hand Surgery’, BioMed research international, 2021, p. 4650245. Available at: https://doi.org/10.1155/2021/4650245.
O’Connor, R.C. et al. (2021) ‘Reconstruction of a Combined Frontal Bone and Orbital Roof Defect With Associated Meningoencephalocele Using 3D Modeling and 3D Navigation’, Craniomaxillofacial Trauma & Reconstruction Open, 6, p. 247275122110233. Available at: https://doi.org/10.1177/24727512211023340.
O’Connor, R.C. et al. (2021) ‘Reconstruction of a Combined Frontal Bone and Orbital Roof Defect With Associated Meningoencephalocele Using 3D Modeling and 3D Navigation’, Craniomaxillofacial Trauma & Reconstruction Open, 6, p. 247275122110233. Available at: https://doi.org/10.1177/24727512211023340.
Thieringer, F.M. et al. (2021) ‘Oral Kaposi’s Sarcoma: A Case Report and Literature Review on Treatment Management’, Craniomaxillofacial Trauma & Reconstruction Open, 6, p. 247275122110363. Available at: https://doi.org/10.1177/24727512211036328.
Thieringer, F.M. et al. (2021) ‘Oral Kaposi’s Sarcoma: A Case Report and Literature Review on Treatment Management’, Craniomaxillofacial Trauma & Reconstruction Open, 6, p. 247275122110363. Available at: https://doi.org/10.1177/24727512211036328.
Thieringer, Florian M. et al. (2021) ‘Navigated digital implantology Possibilities and limitations of innovative technologies’, Implantologie, 29, pp. 269–284.
Thieringer, Florian M. et al. (2021) ‘Navigated digital implantology Possibilities and limitations of innovative technologies’, Implantologie, 29, pp. 269–284.
Basgul Cemile, Thieringer Florian M. and Kurtz Steven M. (2021) ‘Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone’, Additive Manufacturing. 09.06.2021, 46(102097), p. 11. Available at: https://doi.org/10.1016/j.addma.2021.102097.
Basgul Cemile, Thieringer Florian M. and Kurtz Steven M. (2021) ‘Heat transfer-based non-isothermal healing model for the interfacial bonding strength of fused filament fabricated polyetheretherketone’, Additive Manufacturing. 09.06.2021, 46(102097), p. 11. Available at: https://doi.org/10.1016/j.addma.2021.102097.
Keller M., Gubeli A. and Honigmann P (2021) ‘Implant arthroplasty in the metacarpophalangeal and proximal interphalangeal finger joints’, Handchirurgie Mikrochirurgie Plastische Chirurgie, 53, pp. 40–46. Available at: https://doi.org/10.1055/a-1268-8190.
Keller M., Gubeli A. and Honigmann P (2021) ‘Implant arthroplasty in the metacarpophalangeal and proximal interphalangeal finger joints’, Handchirurgie Mikrochirurgie Plastische Chirurgie, 53, pp. 40–46. Available at: https://doi.org/10.1055/a-1268-8190.
Keller M. et al. (2021) ‘In-hospital professional production of patient-specific 3D-printed devices for hand and wrist rehabilitation’, Hand Surgery and Rehabilitation, 40, pp. 126–133. Available at: https://doi.org/10.1016/j.hansur.2020.10.016.
Keller M. et al. (2021) ‘In-hospital professional production of patient-specific 3D-printed devices for hand and wrist rehabilitation’, Hand Surgery and Rehabilitation, 40, pp. 126–133. Available at: https://doi.org/10.1016/j.hansur.2020.10.016.
Roehling Stefan and Gahlert Michael (2021) ‘Keramikimplantate – Materialspezifische und klinische Grundlagen’, ZWR Das deutsche Zahnärzteblatt, (130), pp. 395–403.
Roehling Stefan and Gahlert Michael (2021) ‘Keramikimplantate – Materialspezifische und klinische Grundlagen’, ZWR Das deutsche Zahnärzteblatt, (130), pp. 395–403.
Berli C et al. (2020) ‘Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices’, Journal of Prosthetic Dentistry, 124(6), pp. 780–786. Available at: https://doi.org/10.1016/j.prosdent.2019.10.024.
Berli C et al. (2020) ‘Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices’, Journal of Prosthetic Dentistry, 124(6), pp. 780–786. Available at: https://doi.org/10.1016/j.prosdent.2019.10.024.
Meyer S et al. (2020) ‘Fibula graft cutting devices: Are 3D-printed cutting guides more precise than a universal, reusable osteotomy JIG?’, Journal of Clinical Medicine, 9(12), pp. 1–14. Available at: https://doi.org/10.3390/jcm9124119.
Meyer S et al. (2020) ‘Fibula graft cutting devices: Are 3D-printed cutting guides more precise than a universal, reusable osteotomy JIG?’, Journal of Clinical Medicine, 9(12), pp. 1–14. Available at: https://doi.org/10.3390/jcm9124119.
Seifert LB et al. (2020) ‘3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student’s perceptions’, European Journal of Dental Education, 24(4), pp. 799–806. Available at: https://doi.org/10.1111/eje.12522.
Seifert LB et al. (2020) ‘3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student’s perceptions’, European Journal of Dental Education, 24(4), pp. 799–806. Available at: https://doi.org/10.1111/eje.12522.