Trusting Black-Box Algorithms? Ethical Challenges for Biomedical Machine Learning
Research Project | 01.02.2019 - 01.10.2021
|
01.02.2019
- 01.10.2021
Publications
Starke, Georg et al. (2021) ‘Why educating for clinical machine learning still requires attention to history: a rejoinder to Gauld; et al’, Psychological medicine, 51(14), pp. 2512–2513. Available at: https://doi.org/10.1017/s0033291720004766.
Starke, Georg et al. (2021) ‘Why educating for clinical machine learning still requires attention to history: a rejoinder to Gauld; et al’, Psychological medicine, 51(14), pp. 2512–2513. Available at: https://doi.org/10.1017/s0033291720004766.
Starke, Georg, De Clercq, Eva and Elger, Bernice S. (2021) ‘Towards a pragmatist dealing with algorithmic bias in medical machine learning’, Medicine, Health Care and Philosophy, 24(3), pp. 341–349. Available at: https://doi.org/10.1007/s11019-021-10008-5.
Starke, Georg, De Clercq, Eva and Elger, Bernice S. (2021) ‘Towards a pragmatist dealing with algorithmic bias in medical machine learning’, Medicine, Health Care and Philosophy, 24(3), pp. 341–349. Available at: https://doi.org/10.1007/s11019-021-10008-5.
Starke, Georg et al. (2021) ‘Intentional machines: A defence of trust in medical artificial intelligence’, Bioethics, 36(2), pp. 154–161. Available at: https://doi.org/10.1111/bioe.12891.
Starke, Georg et al. (2021) ‘Intentional machines: A defence of trust in medical artificial intelligence’, Bioethics, 36(2), pp. 154–161. Available at: https://doi.org/10.1111/bioe.12891.