Big Data for Computational Chemistry: Unified machine learning and sparse grid combination technique for quantum based molecular design
Research Project | 01.01.2017 - 31.12.2019
|
01.01.2017
- 31.12.2019
Funding
Big Data for Computational Chemistry: Unified machine learning and sparse grid combination technique for quantum based molecular design
SNF Projekt (GrantsTool), 01.2017-12.2019 (36)
PI : Harbrecht, Helmut.CI : von Lilienfeld, Anatole.
Publications
Harbrecht, Helmut, Jakeman, John D. and Zaspel, Peter (2021) ‘Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration’, Communications in Computational Physics, 29(4), pp. 1152–1185. Available at: https://doi.org/10.4208/cicp.oa-2020-0060.
Harbrecht, Helmut, Jakeman, John D. and Zaspel, Peter (2021) ‘Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration’, Communications in Computational Physics, 29(4), pp. 1152–1185. Available at: https://doi.org/10.4208/cicp.oa-2020-0060.
Harbrecht, Helmut and Multerer, Michael D. (2021) ‘A fast direct solver for nonlocal operators in wavelet coordinates’, Journal of computational physics, 428, p. 110056. Available at: https://doi.org/10.1016/j.jcp.2020.110056.
Harbrecht, Helmut and Multerer, Michael D. (2021) ‘A fast direct solver for nonlocal operators in wavelet coordinates’, Journal of computational physics, 428, p. 110056. Available at: https://doi.org/10.1016/j.jcp.2020.110056.
Harbrecht, Helmut and Zaspel, Peter (2019) ‘On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems’, Journal of scientific computing, 78(2), pp. 1272–1290. Available at: https://doi.org/10.1007/s10915-018-0807-6.
Harbrecht, Helmut and Zaspel, Peter (2019) ‘On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems’, Journal of scientific computing, 78(2), pp. 1272–1290. Available at: https://doi.org/10.1007/s10915-018-0807-6.
Zaspel, Peter et al. (2019) ‘Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited’, Journal of Chemical Theory and Computation, 15(3), pp. 1546–1559. Available at: https://doi.org/10.1021/acs.jctc.8b00832.
Zaspel, Peter et al. (2019) ‘Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited’, Journal of Chemical Theory and Computation, 15(3), pp. 1546–1559. Available at: https://doi.org/10.1021/acs.jctc.8b00832.