Quantum coherence, quantum statistics, and superconductivity in mesoscopic systems
Research Project
|
01.10.2017
- 30.09.2020
A. Quantum coherence and statistics of mesoscopic system We will explore novel nano- and optomechanical setups and their applications (phononic structures, combined photonic and phononic crystals, quantum dots embedded in nanowires, and trapped ions). We will propose and analyze new transport experiments with ultracold atoms, e.g. addressing the question of the phase dependence of heat transport. We will analyze models that illustrate how system-mediated detector-detector interactions will determine the measured operator order in a quantum correlation measurement. B. Mesoscopic superconductivity We will investigate a quantum realization of the Kuramoto model in a one-dimensional Josephson array. Using a tight-binding approach we will explore the influence of magnetic disorder on the disorder-induced 2D topological insulator state, the so-called topological Anderson insulator. Lastly, we will investigate the possibility to use superconducting transmon qubits as an implementation of driven anharmonic self-oscillators. This would lead to applications in the study of dissipative quantum phase transitions.
Funding
Quantum coherence, quantum statistics, and superconductivity in mesoscopic systems