
Numerical methods in uncertainty quantification
Research Project | 01.12.2014 - 31.01.2017
|
01.12.2014
- 31.01.2017
Collaborations & Cooperations
2035 - Participation or Organization of Collaborations on an international level
Griebel, Michael, Professor, University of Bonn and Fraunhofer Institute for Algorithms and Scientific Computing, Research cooperation
Publications
Gantner, Robert N. and Peters, Michael D. (2018) ‘Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion’, SIAM/ASA Journal on Uncertainty Quantification, 6(2), pp. 707–736. Available at: https://doi.org/10.1137/16m1096116.
Gantner, Robert N. and Peters, Michael D. (2018) ‘Higher-Order Quasi-Monte Carlo for Bayesian Shape Inversion’, SIAM/ASA Journal on Uncertainty Quantification, 6(2), pp. 707–736. Available at: https://doi.org/10.1137/16m1096116.
Haji-Ali, Abdul-Lateef et al. (2018) ‘Novel results for the anisotropic sparse grid quadrature’, Journal of complexity, 47, pp. 62–85. Available at: https://doi.org/10.1016/j.jco.2018.02.003.
Haji-Ali, Abdul-Lateef et al. (2018) ‘Novel results for the anisotropic sparse grid quadrature’, Journal of complexity, 47, pp. 62–85. Available at: https://doi.org/10.1016/j.jco.2018.02.003.
Harbrecht, Helmut and Peters, Michael D. (2018) ‘The second order perturbation approach for elliptic partial differential equations on random domains’, Applied Numerical Mathematics, 125, pp. 159–171. Available at: https://doi.org/10.1016/j.apnum.2017.11.002.
Harbrecht, Helmut and Peters, Michael D. (2018) ‘The second order perturbation approach for elliptic partial differential equations on random domains’, Applied Numerical Mathematics, 125, pp. 159–171. Available at: https://doi.org/10.1016/j.apnum.2017.11.002.
Ballani, Jonas, Kressner, Daniel and Peters, Michael D. (2017) ‘Multilevel tensor approximation of PDEs with random data’, Stochastics and Partial Differential Equations, 5(3), pp. 400–427. Available at: https://doi.org/10.1007/s40072-017-0092-7.
Ballani, Jonas, Kressner, Daniel and Peters, Michael D. (2017) ‘Multilevel tensor approximation of PDEs with random data’, Stochastics and Partial Differential Equations, 5(3), pp. 400–427. Available at: https://doi.org/10.1007/s40072-017-0092-7.
Dambrine, Marc et al. (2017) ‘On Bernoulli’s free boundary problem with a random boundary’, International Journal for Uncertainty Quantification, 7(4), pp. 335–353. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550.
Dambrine, Marc et al. (2017) ‘On Bernoulli’s free boundary problem with a random boundary’, International Journal for Uncertainty Quantification, 7(4), pp. 335–353. Available at: https://doi.org/10.1615/int.j.uncertaintyquantification.2017019550.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2017) ‘On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion’, Mathematics of Computation, 86, pp. 771–797. Available at: https://doi.org/10.1090/mcom/3107.
Harbrecht, Helmut, Peters, Michael and Siebenmorgen, Markus (2017) ‘On the quasi-Monte Carlo quadrature with Halton points for elliptic PDEs with log-normal diffusion’, Mathematics of Computation, 86, pp. 771–797. Available at: https://doi.org/10.1090/mcom/3107.
Harbrecht, Helmut and Peters, Michael (2017) ‘Solution of free boundary problems in the presence of geometric uncertainties’, in Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.) Topological Optimization and Optimal Transport In the Applied Sciences. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 20–39. Available at: https://doi.org/10.1515/9783110430417-002.
Harbrecht, Helmut and Peters, Michael (2017) ‘Solution of free boundary problems in the presence of geometric uncertainties’, in Bergounioux, Maïtine; Oudet, Édouard; Rumpf, Martin; Carlier, Guillaume; Champion, Thierry; Santambrogio, Filippo (ed.) Topological Optimization and Optimal Transport In the Applied Sciences. Berlin-Bosten: De Gruyter (Radon Series on Computational and Applied Mathematics), pp. 20–39. Available at: https://doi.org/10.1515/9783110430417-002.