Publications
114 found
Show per page
Stuecheli, S., Schultheiss, C., Schmidt-Barbo, P., Zingg, A., Franz, N., Adamo, S., Fischer, C., Laubli, H., & Binder, M. (2025). CAR T cell engineering impacts antigen-independent activation and co-inhibition [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.20.631849
Stuecheli, S., Schultheiss, C., Schmidt-Barbo, P., Zingg, A., Franz, N., Adamo, S., Fischer, C., Laubli, H., & Binder, M. (2025). CAR T cell engineering impacts antigen-independent activation and co-inhibition [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.20.631849
Filipsky, F., & Läubli, H. (2024). Regulation of sialic acid metabolism in cancer. Carbohydrate Research, 539. https://doi.org/10.1016/j.carres.2024.109123
Filipsky, F., & Läubli, H. (2024). Regulation of sialic acid metabolism in cancer. Carbohydrate Research, 539. https://doi.org/10.1016/j.carres.2024.109123
Chu, Chih-Wei, Čaval, Tomislav, Alisson-Silva, Frederico, Tankasala, Akshaya, Guerrier, Christina, Czerwieniec, Gregg, Life Science Alliance, 7. https://doi.org/10.26508/lsa.202302368
, & Schwarz, Flavio. (2024). Variable PD-1 glycosylation modulates the activity of immune checkpoint inhibitors.
Chu, Chih-Wei, Čaval, Tomislav, Alisson-Silva, Frederico, Tankasala, Akshaya, Guerrier, Christina, Czerwieniec, Gregg, Life Science Alliance, 7. https://doi.org/10.26508/lsa.202302368
, & Schwarz, Flavio. (2024). Variable PD-1 glycosylation modulates the activity of immune checkpoint inhibitors.
Daetwyler, Eveline, Wallrabenstein, Till, König, David, Cappelli, Laura C., Naidoo, Jarushka, Zippelius, Alfred, & Journal for ImmunoTherapy of Cancer, 12. https://doi.org/10.1136/jitc-2023-007409
. (2024). Corticosteroid-resistant immune-related adverse events: A systematic review.
Daetwyler, Eveline, Wallrabenstein, Till, König, David, Cappelli, Laura C., Naidoo, Jarushka, Zippelius, Alfred, & Journal for ImmunoTherapy of Cancer, 12. https://doi.org/10.1136/jitc-2023-007409
. (2024). Corticosteroid-resistant immune-related adverse events: A systematic review.
De Joode, Karlijn, Mora, Alfonso Rojas, Van Schaik, Ron H.N., Zippelius, Alfred, Van Der Veldt, Astrid, Gerard, Camille Léa, Journal of Immunotherapy, 47, 190–194. https://doi.org/10.1097/CJI.0000000000000506
, Michielin, Olivier, Von Moos, Roger, Joerger, Markus, Levesque, Mitchell P., Aeppli, Stefanie, Mangana, Johanna, Mangas, Cristina, Trost, Nadine, Meyer, Stefan, Parvex, Sandra Leoni, Mathijssen, Ron, & Metaxas, Yannis. (2024). Effects of CTLA-4 Single Nucleotide Polymorphisms on Toxicity of Ipilimumab-Containing Regimens in Patients with Advanced Stage Melanoma.
De Joode, Karlijn, Mora, Alfonso Rojas, Van Schaik, Ron H.N., Zippelius, Alfred, Van Der Veldt, Astrid, Gerard, Camille Léa, Journal of Immunotherapy, 47, 190–194. https://doi.org/10.1097/CJI.0000000000000506
, Michielin, Olivier, Von Moos, Roger, Joerger, Markus, Levesque, Mitchell P., Aeppli, Stefanie, Mangana, Johanna, Mangas, Cristina, Trost, Nadine, Meyer, Stefan, Parvex, Sandra Leoni, Mathijssen, Ron, & Metaxas, Yannis. (2024). Effects of CTLA-4 Single Nucleotide Polymorphisms on Toxicity of Ipilimumab-Containing Regimens in Patients with Advanced Stage Melanoma.
Freitag, Patrick C., Kolibius, Jonas, Wieboldt, Ronja, Weber, Remi, Hartmann, K. Patricia, van Gogh, Merel, Brücher, Dominik, Molecular Therapy Oncology, 32. https://doi.org/10.1016/j.omton.2024.200821
, & Plückthun, Andreas. (2024). DARPin-fused T cell engager for adenovirus-mediated cancer therapy.
Freitag, Patrick C., Kolibius, Jonas, Wieboldt, Ronja, Weber, Remi, Hartmann, K. Patricia, van Gogh, Merel, Brücher, Dominik, Molecular Therapy Oncology, 32. https://doi.org/10.1016/j.omton.2024.200821
, & Plückthun, Andreas. (2024). DARPin-fused T cell engager for adenovirus-mediated cancer therapy.
König, David, Sandholzer, Michael T., Uzun, Sarp, Zingg, Andreas, Ritschard, Reto, Thut, Helen, Glatz, Katharina, Kappos, Elisabeth A., Schaefer, Dirk J., Kettelhack, Christoph, Passweg, Jakob R., Holbro, Andreas, Baur, Katharina, Medinger, Michael, Buser, Andreas, Lardinois, Didier, Jeker, Lukas T., Khanna, Nina, Stenner, Frank, et al. (2024). Melanoma Clonal Heterogeneity Leads to Secondary Resistance after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 12, 814–821. https://doi.org/10.1158/2326-6066.CIR-23-0757
König, David, Sandholzer, Michael T., Uzun, Sarp, Zingg, Andreas, Ritschard, Reto, Thut, Helen, Glatz, Katharina, Kappos, Elisabeth A., Schaefer, Dirk J., Kettelhack, Christoph, Passweg, Jakob R., Holbro, Andreas, Baur, Katharina, Medinger, Michael, Buser, Andreas, Lardinois, Didier, Jeker, Lukas T., Khanna, Nina, Stenner, Frank, et al. (2024). Melanoma Clonal Heterogeneity Leads to Secondary Resistance after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 12, 814–821. https://doi.org/10.1158/2326-6066.CIR-23-0757
König, D., Kasenda, B., Sandholzer, M., Chirindel, A., Zingg, A., Ritschard, R., Thut, H., Glatz, K., Kappos, E.A., Schaefer, D., Kettelhack, C., Passweg, J., Baur, K., Holbro, A., Buser, A., Lardinois, D., Jeker, L.T., Khanna, N., Stenner, F., et al. (2024). Adoptive cell therapy with tumor-infiltrating lymphocytes in combination with nivolumab in patients with advanced melanoma. Immuno-Oncology and Technology. https://doi.org/10.1016/j.iotech.2024.100728
König, D., Kasenda, B., Sandholzer, M., Chirindel, A., Zingg, A., Ritschard, R., Thut, H., Glatz, K., Kappos, E.A., Schaefer, D., Kettelhack, C., Passweg, J., Baur, K., Holbro, A., Buser, A., Lardinois, D., Jeker, L.T., Khanna, N., Stenner, F., et al. (2024). Adoptive cell therapy with tumor-infiltrating lymphocytes in combination with nivolumab in patients with advanced melanoma. Immuno-Oncology and Technology. https://doi.org/10.1016/j.iotech.2024.100728
Proceedings of the National Academy of Sciences of the United States of America, 121. https://doi.org/10.1073/pnas.2400499121
. (2024). Unraveling the impact of a glyco-immune checkpoint in bone metastasis.
Proceedings of the National Academy of Sciences of the United States of America, 121. https://doi.org/10.1073/pnas.2400499121
. (2024). Unraveling the impact of a glyco-immune checkpoint in bone metastasis.
Mangana, Johanna, Lamos, Cristina, Özdemir, Berna C., Skin Health and Disease, 4. https://doi.org/10.1002/ski2.442
, Morgan, Linda, Maul, Lara V., König, David, Dimitriou, Florentia, Kaiser, Sandra, Landolt, Janine, Musiari, Anastasia, Pasche, Nadine, Siegenthaler, Beat, Dummer, Reinhard, & Del Prete, Valerio. (2024). Gender differences in melanoma awareness, diagnosis and treatment: Patient-reported data from a multicentre survey in Switzerland.
Mangana, Johanna, Lamos, Cristina, Özdemir, Berna C., Skin Health and Disease, 4. https://doi.org/10.1002/ski2.442
, Morgan, Linda, Maul, Lara V., König, David, Dimitriou, Florentia, Kaiser, Sandra, Landolt, Janine, Musiari, Anastasia, Pasche, Nadine, Siegenthaler, Beat, Dummer, Reinhard, & Del Prete, Valerio. (2024). Gender differences in melanoma awareness, diagnosis and treatment: Patient-reported data from a multicentre survey in Switzerland.
Mantuano, Natalia Rodrigues, & Seminars in Immunology, 74-75. https://doi.org/10.1016/j.smim.2024.101893
. (2024). Sialic acid and Siglec receptors in tumor immunity and immunotherapy.
Mantuano, Natalia Rodrigues, & Seminars in Immunology, 74-75. https://doi.org/10.1016/j.smim.2024.101893
. (2024). Sialic acid and Siglec receptors in tumor immunity and immunotherapy.
Märkl, Florian, Schultheiß, Christoph, Ali, Murtaza, Chen, Shih-Shih, Zintchenko, Marina, Egli, Lukas, Mietz, Juliane, Chijioke, Obinna, Paschold, Lisa, Spajic, Sebastijan, Holtermann, Anne, Dörr, Janina, Stock, Sophia, Zingg, Andreas, Nature Communications, 15. https://doi.org/10.1038/s41467-024-45378-w
, Piseddu, Ignazio, Anz, David, Minden, Marcus Dühren-von, Zhang, Tianjiao, et al. (2024). Mutation-specific CAR T cells as precision therapy for IGLV3-21 R110 expressing high-risk chronic lymphocytic leukemia.
Märkl, Florian, Schultheiß, Christoph, Ali, Murtaza, Chen, Shih-Shih, Zintchenko, Marina, Egli, Lukas, Mietz, Juliane, Chijioke, Obinna, Paschold, Lisa, Spajic, Sebastijan, Holtermann, Anne, Dörr, Janina, Stock, Sophia, Zingg, Andreas, Nature Communications, 15. https://doi.org/10.1038/s41467-024-45378-w
, Piseddu, Ignazio, Anz, David, Minden, Marcus Dühren-von, Zhang, Tianjiao, et al. (2024). Mutation-specific CAR T cells as precision therapy for IGLV3-21 R110 expressing high-risk chronic lymphocytic leukemia.
Martins, Tomás A., Kaymak, Deniz, Tatari, Nazanin, Gerster, Fiona, Hogan, Sabrina, Ritz, Marie-Françoise, Sabatino, Valerio, Wieboldt, Ronja, Bartoszek, Ewelina M., McDaid, Marta, Gerber, Alexandra, Buck, Alicia, Beshirova, Aisha, Heider, Anja, Shekarian, Tala, Mohamed, Hayget, Etter, Manina M., Schmassmann, Philip, Abel, Ines, et al. (2024). Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54129-w
Martins, Tomás A., Kaymak, Deniz, Tatari, Nazanin, Gerster, Fiona, Hogan, Sabrina, Ritz, Marie-Françoise, Sabatino, Valerio, Wieboldt, Ronja, Bartoszek, Ewelina M., McDaid, Marta, Gerber, Alexandra, Buck, Alicia, Beshirova, Aisha, Heider, Anja, Shekarian, Tala, Mohamed, Hayget, Etter, Manina M., Schmassmann, Philip, Abel, Ines, et al. (2024). Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54129-w
Mastall, Maximilian, Roth, Patrick, Bink, Andrea, Fischer Maranta, Angela, BMC Cancer, 24. https://doi.org/10.1186/s12885-023-11797-z
, Hottinger, Andreas Felix, Hundsberger, Thomas, Migliorini, Denis, Ochsenbein, Adrian, Seystahl, Katharina, Imbach, Lukas, Hortobagyi, Tibor, Held, Leonhard, Weller, Michael, & Wirsching, Hans-Georg. (2024). A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: the GLUGLIO trial protocol.
Mastall, Maximilian, Roth, Patrick, Bink, Andrea, Fischer Maranta, Angela, BMC Cancer, 24. https://doi.org/10.1186/s12885-023-11797-z
, Hottinger, Andreas Felix, Hundsberger, Thomas, Migliorini, Denis, Ochsenbein, Adrian, Seystahl, Katharina, Imbach, Lukas, Hortobagyi, Tibor, Held, Leonhard, Weller, Michael, & Wirsching, Hans-Georg. (2024). A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: the GLUGLIO trial protocol.
Melero, Ignacio, de Miguel Luken, Maria, de Velasco, Guillermo, Garralda, Elena, Martín-Liberal, Juan, Joerger, Markus, Alonso, Guzman, Goebeler, Maria-Elisabeth, Schuler, Martin, König, David, Dummer, Reinhard, Reig, Maria, Rodriguez Ruiz, Maria-Esperanza, Calvo, Emiliano, Esteban-Villarrubia, Jorge, Oberoi, Arjun, Sabat, Paula, Soto-Castillo, Juan José, Koster, Kira-Lee, et al. (2024). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature. https://doi.org/10.1038/s41586-024-08305-z
Melero, Ignacio, de Miguel Luken, Maria, de Velasco, Guillermo, Garralda, Elena, Martín-Liberal, Juan, Joerger, Markus, Alonso, Guzman, Goebeler, Maria-Elisabeth, Schuler, Martin, König, David, Dummer, Reinhard, Reig, Maria, Rodriguez Ruiz, Maria-Esperanza, Calvo, Emiliano, Esteban-Villarrubia, Jorge, Oberoi, Arjun, Sabat, Paula, Soto-Castillo, Juan José, Koster, Kira-Lee, et al. (2024). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature. https://doi.org/10.1038/s41586-024-08305-z
Stadler, Christina, Gramatzki, Dorothee, Le Rhun, Emilie, Hottinger, Andreas F., Hundsberger, Thomas, Roelcke, Ulrich, Neuro-Oncology Practice, 11, 132–141. https://doi.org/10.1093/nop/npad070
, Hofer, Silvia, Seystahl, Katharina, Wirsching, Hans-Georg, Weller, Michael, & Roth, Patrick. (2024). Glioblastoma in the oldest old: Clinical characteristics, therapy, and outcome in patients aged 80 years and older.
Stadler, Christina, Gramatzki, Dorothee, Le Rhun, Emilie, Hottinger, Andreas F., Hundsberger, Thomas, Roelcke, Ulrich, Neuro-Oncology Practice, 11, 132–141. https://doi.org/10.1093/nop/npad070
, Hofer, Silvia, Seystahl, Katharina, Wirsching, Hans-Georg, Weller, Michael, & Roth, Patrick. (2024). Glioblastoma in the oldest old: Clinical characteristics, therapy, and outcome in patients aged 80 years and older.
Tundo, Sofia, Trefny, Marcel, Rodić, Andrijana, Grueninger, Olivia, Brodmann, Nicole, Börsch, Anastasiya, Serger, Clara, Fürst, Jonas, Buchi, Melanie, Buczak, Katarzyna, Müller, Alex T., Sach-Peltason, Lisa, Don, Leyla, Herzig, Petra, Lardinois, Didier, Heinzelmann-Schwarz, Viola, Mertz, Kirsten D., Hojski, Aljaž, Schaeuble, Karin, et al. (2024). Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. Journal for Immunotherapy of Cancer, 12. https://doi.org/10.1136/jitc-2024-009860
Tundo, Sofia, Trefny, Marcel, Rodić, Andrijana, Grueninger, Olivia, Brodmann, Nicole, Börsch, Anastasiya, Serger, Clara, Fürst, Jonas, Buchi, Melanie, Buczak, Katarzyna, Müller, Alex T., Sach-Peltason, Lisa, Don, Leyla, Herzig, Petra, Lardinois, Didier, Heinzelmann-Schwarz, Viola, Mertz, Kirsten D., Hojski, Aljaž, Schaeuble, Karin, et al. (2024). Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. Journal for Immunotherapy of Cancer, 12. https://doi.org/10.1136/jitc-2024-009860
Wieboldt, Ronja, Sandholzer, Michael, Carlini, Emanuele, Lin, Chia-Wei, Börsch, Anastasiya, Zingg, Andreas, Lardinois, Didier, Herzig, Petra, Don, Leyla, Zippelius, Alfred, Cellular and Molecular Immunology, null. https://doi.org/10.1038/s41423-024-01142-0
, & Mantuano, Natalia Rodrigues. (2024). Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2.
Wieboldt, Ronja, Sandholzer, Michael, Carlini, Emanuele, Lin, Chia-Wei, Börsch, Anastasiya, Zingg, Andreas, Lardinois, Didier, Herzig, Petra, Don, Leyla, Zippelius, Alfred, Cellular and Molecular Immunology, null. https://doi.org/10.1038/s41423-024-01142-0
, & Mantuano, Natalia Rodrigues. (2024). Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2.
Wyss, Nina, Berner, Fiamma, Walter, Vincent, Jochum, Ann-Kristin, Purde, Mette T., Abdou, Marie-Therese, Sinnberg, Tobias, Hofmeister, Kathrin, Pop, Oltin T., Ali, Omar Hasan, Bauer, Jens, Cheng, Hung-Wei, Lutge, Mechthild, Klumper, Niklas, Diem, Stefan, Kosaloglu-Yalcin, Zeynep, Zhang, Yizheng, Sellmer, Laura, Macek, Boris, et al. (2024). Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. American Journal of Respiratory and Critical Care Medicine, 210, 919–930. https://doi.org/10.1164/rccm.202311-2136OC
Wyss, Nina, Berner, Fiamma, Walter, Vincent, Jochum, Ann-Kristin, Purde, Mette T., Abdou, Marie-Therese, Sinnberg, Tobias, Hofmeister, Kathrin, Pop, Oltin T., Ali, Omar Hasan, Bauer, Jens, Cheng, Hung-Wei, Lutge, Mechthild, Klumper, Niklas, Diem, Stefan, Kosaloglu-Yalcin, Zeynep, Zhang, Yizheng, Sellmer, Laura, Macek, Boris, et al. (2024). Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. American Journal of Respiratory and Critical Care Medicine, 210, 919–930. https://doi.org/10.1164/rccm.202311-2136OC
Bieberich, F., Vazquez-Lombardi, R., Jin, H., Hong, K.-L., Herzig, P., Trefny, M., Trüb, M., Läubli, H., Lardinois, D., Mertz, K., Matter, M. S., Zippelius, A., & Reddy, S. T. (2023, October 6). Multimodal single-cell profiling of T cell specificity and reactivity in lung cancer [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.04.560863
Bieberich, F., Vazquez-Lombardi, R., Jin, H., Hong, K.-L., Herzig, P., Trefny, M., Trüb, M., Läubli, H., Lardinois, D., Mertz, K., Matter, M. S., Zippelius, A., & Reddy, S. T. (2023, October 6). Multimodal single-cell profiling of T cell specificity and reactivity in lung cancer [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.04.560863
Wieboldt, R., Carlini, E., Lin, C.-w., Börsch, A., Zingg, A., Lardinois, D., Herzig, P., Don, L., Zippelius, A., Läubli, H., & Rodrigues Mantuano, N. (2023, July 1). Engagement of sialylated glycans with Siglec receptors on myeloid suppressor cells inhibit anti-cancer immunity via CCL2 [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.29.547025
Wieboldt, R., Carlini, E., Lin, C.-w., Börsch, A., Zingg, A., Lardinois, D., Herzig, P., Don, L., Zippelius, A., Läubli, H., & Rodrigues Mantuano, N. (2023, July 1). Engagement of sialylated glycans with Siglec receptors on myeloid suppressor cells inhibit anti-cancer immunity via CCL2 [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.29.547025
Schumann K, Mauch C, Klespe KC, Loquai C, Nikfarjam U, Schlaak M, Akçetin L, Kölblinger P, Hoellwerth M, Meissner M, Mengi G, Braun AD, Mengoni M, Dummer R, Mangana J, Sindrilaru MA, Radmann D, Hafner C, Freund J, et al. (2023). Real-world outcomes using PD-1 antibodies and BRAF + MEK inhibitors for adjuvant melanoma treatment from 39 skin cancer centers in Germany, Austria and Switzerland. Journal of the European Academy of Dermatology and Venereology, 37(5), 894–906. https://doi.org/10.1111/jdv.18779
Schumann K, Mauch C, Klespe KC, Loquai C, Nikfarjam U, Schlaak M, Akçetin L, Kölblinger P, Hoellwerth M, Meissner M, Mengi G, Braun AD, Mengoni M, Dummer R, Mangana J, Sindrilaru MA, Radmann D, Hafner C, Freund J, et al. (2023). Real-world outcomes using PD-1 antibodies and BRAF + MEK inhibitors for adjuvant melanoma treatment from 39 skin cancer centers in Germany, Austria and Switzerland. Journal of the European Academy of Dermatology and Venereology, 37(5), 894–906. https://doi.org/10.1111/jdv.18779
Stanczak MA, & Molecular Aspects of Medicine, 90, 101112. https://doi.org/10.1016/j.mam.2022.101112
. (2023). Siglec receptors as new immune checkpoints in cancer.
Stanczak MA, & Molecular Aspects of Medicine, 90, 101112. https://doi.org/10.1016/j.mam.2022.101112
. (2023). Siglec receptors as new immune checkpoints in cancer.
Baur, Katharina, Buser, Andreas, Jeker, Lukas T., Khanna, Nina, Bone Marrow Transplantation, 58, 1048–1050. https://doi.org/10.1038/s41409-023-02016-1
, Heim, Dominik, Dirks, Jan C., Widmer, Corinne C., Volken, Thomas, Passweg, Jakob R., & Holbro, Andreas. (2023). CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas.
Baur, Katharina, Buser, Andreas, Jeker, Lukas T., Khanna, Nina, Bone Marrow Transplantation, 58, 1048–1050. https://doi.org/10.1038/s41409-023-02016-1
, Heim, Dominik, Dirks, Jan C., Widmer, Corinne C., Volken, Thomas, Passweg, Jakob R., & Holbro, Andreas. (2023). CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas.
Conti, Gabriele, Bärenwaldt, Anne, Rabbani, Said, Mühlethaler, Tobias, Sarcevic, Mirza, Jiang, Xiaohua, Schwardt, Oliver, Ricklin, Daniel, Pieters, Roland J., Angewandte Chemie - International Edition, 62(52). https://doi.org/10.1002/anie.202314280
, & Ernst, Beat. (2023). Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation.
Conti, Gabriele, Bärenwaldt, Anne, Rabbani, Said, Mühlethaler, Tobias, Sarcevic, Mirza, Jiang, Xiaohua, Schwardt, Oliver, Ricklin, Daniel, Pieters, Roland J., Angewandte Chemie - International Edition, 62(52). https://doi.org/10.1002/anie.202314280
, & Ernst, Beat. (2023). Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation.
Daetwyler, Eveline, Zippelius, Alfred, Meyer, Peter, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1171981
. (2023). Pembrolizumab-induced optic neuropathy – a case report.
Daetwyler, Eveline, Zippelius, Alfred, Meyer, Peter, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1171981
. (2023). Pembrolizumab-induced optic neuropathy – a case report.
Joerger, Markus, Calvo, Emiliano, Journal for ImmunoTherapy of Cancer, 11. https://doi.org/10.1136/jitc-2023-007784
, Lopez, Juanita, Alonso, Guzmán, Corral De La Fuente, Elena, Hess, Dagmar, König, David, Sanchez Perez, Vicky, Bucher, Christoph, Jethwa, Sangeeta, & Garralda, Elena. (2023). Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors.
Joerger, Markus, Calvo, Emiliano, Journal for ImmunoTherapy of Cancer, 11. https://doi.org/10.1136/jitc-2023-007784
, Lopez, Juanita, Alonso, Guzmán, Corral De La Fuente, Elena, Hess, Dagmar, König, David, Sanchez Perez, Vicky, Bucher, Christoph, Jethwa, Sangeeta, & Garralda, Elena. (2023). Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors.
Läubli, H. (2023). Cellular immunotherapies for malignancies - How do they work and what are the side effects? Therapeutische Umschau. Revue Therapeutique, 80, 348–352.
Läubli, H. (2023). Cellular immunotherapies for malignancies - How do they work and what are the side effects? Therapeutische Umschau. Revue Therapeutique, 80, 348–352.
Manni, Michela, Mantuano, Natalia Rodrigues, Zingg, Andreas, Kappos, Elisabeth A., Behrens, Anna-Janina, Back, Jonathan, Follador, Rainer, Faridmoayer, Amir, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1291292
. (2023). Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin.
Manni, Michela, Mantuano, Natalia Rodrigues, Zingg, Andreas, Kappos, Elisabeth A., Behrens, Anna-Janina, Back, Jonathan, Follador, Rainer, Faridmoayer, Amir, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1291292
. (2023). Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin.
Müller, Benjamin, Bärenwaldt, Anne, Herzig, Petra, Zippelius, Alfred, Maul, Lara Valeska, Hess, Viviane, König, David, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125111
. (2023). Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events.
Müller, Benjamin, Bärenwaldt, Anne, Herzig, Petra, Zippelius, Alfred, Maul, Lara Valeska, Hess, Viviane, König, David, & Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125111
. (2023). Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events.
Pedram, K., Shon, D. J., Tender, G. S., Mantuano, N. R., Northey, J. J., Metcalf, K. J., Wisnovsky, S. P., Riley, N. M., Forcina, G. C., Malaker, S. A., Kuo, A., George, B. M., Miller, C. L., Casey, K. M., Vilches-Moure, J. G., Ferracane, M. J., Weaver, V. M., Läubli, H., & Bertozzi, C. R. (2023). Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nature Biotechnology, null. https://doi.org/10.1038/s41587-023-01840-6
Pedram, K., Shon, D. J., Tender, G. S., Mantuano, N. R., Northey, J. J., Metcalf, K. J., Wisnovsky, S. P., Riley, N. M., Forcina, G. C., Malaker, S. A., Kuo, A., George, B. M., Miller, C. L., Casey, K. M., Vilches-Moure, J. G., Ferracane, M. J., Weaver, V. M., Läubli, H., & Bertozzi, C. R. (2023). Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nature Biotechnology, null. https://doi.org/10.1038/s41587-023-01840-6
Puttock, E.H., Tyler, E.J., Manni, M., Maniati, E., Butterworth, C., Burger Ramos, M., Peerani, E., Hirani, P., Gauthier, V., Liu, Y., Maniscalco, G., Rajeeve, V., Cutillas, P., Trevisan, C., Pozzobon, M., Lockley, M., Rastrick, J., Nature Communications, 14. https://doi.org/10.1038/s41467-023-38093-5
, White, A., & Pearce, O.M.T. (2023). Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis.
Puttock, E.H., Tyler, E.J., Manni, M., Maniati, E., Butterworth, C., Burger Ramos, M., Peerani, E., Hirani, P., Gauthier, V., Liu, Y., Maniscalco, G., Rajeeve, V., Cutillas, P., Trevisan, C., Pozzobon, M., Lockley, M., Rastrick, J., Nature Communications, 14. https://doi.org/10.1038/s41467-023-38093-5
, White, A., & Pearce, O.M.T. (2023). Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis.
Schmassmann, P., Roux, J., Buck, A., Tatari, N., Hogan, S., Wang, J., Mantuano, N. R., Wieboldt, R., Lee, S., Snijder, B., Kaymak, D., Martins, T. A., Ritz, M.-F., Shekarian, T., McDaid, M., Weller, M., Weiss, T., Läubli, H., & Hutter, G. (2023). Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Science Translational Medicine, 15. https://doi.org/10.1126/scitranslmed.adf5302
Schmassmann, P., Roux, J., Buck, A., Tatari, N., Hogan, S., Wang, J., Mantuano, N. R., Wieboldt, R., Lee, S., Snijder, B., Kaymak, D., Martins, T. A., Ritz, M.-F., Shekarian, T., McDaid, M., Weller, M., Weiss, T., Läubli, H., & Hutter, G. (2023). Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Science Translational Medicine, 15. https://doi.org/10.1126/scitranslmed.adf5302
Trefny, Marcel P., Kirchhammer, Nicole, Auf der Maur, Priska, Natoli, Marina, Schmid, Dominic, Germann, Markus, Fernandez Rodriguez, Laura, Herzig, Petra, Lötscher, Jonas, Akrami, Maryam, Stinchcombe, Jane C., Stanczak, Michal A., Zingg, Andreas, Buchi, Melanie, Roux, Julien, Marone, Romina, Don, Leyla, Lardinois, Didier, Wiese, Mark, et al. (2023). Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nature Communications, 14. https://doi.org/10.1038/s41467-022-35583-w
Trefny, Marcel P., Kirchhammer, Nicole, Auf der Maur, Priska, Natoli, Marina, Schmid, Dominic, Germann, Markus, Fernandez Rodriguez, Laura, Herzig, Petra, Lötscher, Jonas, Akrami, Maryam, Stinchcombe, Jane C., Stanczak, Michal A., Zingg, Andreas, Buchi, Melanie, Roux, Julien, Marone, Romina, Don, Leyla, Lardinois, Didier, Wiese, Mark, et al. (2023). Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nature Communications, 14. https://doi.org/10.1038/s41467-022-35583-w
Castellanos-Rueda R, Di Roberto RB, Bieberich F, Schlatter FS, Palianina D, Nguyen OTP, Kapetanovic E, Nature Communications, 13(1), 6555. https://doi.org/10.1038/s41467-022-34141-8
, Hierlemann A, Khanna N, & Reddy ST. (2022). speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing.
Castellanos-Rueda R, Di Roberto RB, Bieberich F, Schlatter FS, Palianina D, Nguyen OTP, Kapetanovic E, Nature Communications, 13(1), 6555. https://doi.org/10.1038/s41467-022-34141-8
, Hierlemann A, Khanna N, & Reddy ST. (2022). speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing.
Cancer Immunology Research, 10(12), 1423–1432. https://doi.org/10.1158/2326-6066.CIR-22-0366
, Nalle SC, & Maslyar D. (2022). Targeting the Siglec–Sialic Acid Immune Axis in Cancer: Current and Future Approaches.
Cancer Immunology Research, 10(12), 1423–1432. https://doi.org/10.1158/2326-6066.CIR-22-0366
, Nalle SC, & Maslyar D. (2022). Targeting the Siglec–Sialic Acid Immune Axis in Cancer: Current and Future Approaches.
Kirchhammer N, Trefny MP, Auf der Maur P, Science Translational Medicine, 14(670), eabo3605. https://doi.org/10.1126/scitranslmed.abo3605
, & Zippelius A. (2022). Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment.
Kirchhammer N, Trefny MP, Auf der Maur P, Science Translational Medicine, 14(670), eabo3605. https://doi.org/10.1126/scitranslmed.abo3605
, & Zippelius A. (2022). Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment.
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, Everest-Dass AV, Wang J, Trefny MP, Monaco G, Bärenwaldt A, Gray MA, Petrone A, Kashyap AS, Glatz K, Kasenda B, Normington K, Broderick J, Peng L, et al. (2022). Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Science Translational Medicine, 14(669), eabj1270. https://doi.org/10.1126/scitranslmed.abj1270
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, Everest-Dass AV, Wang J, Trefny MP, Monaco G, Bärenwaldt A, Gray MA, Petrone A, Kashyap AS, Glatz K, Kasenda B, Normington K, Broderick J, Peng L, et al. (2022). Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Science Translational Medicine, 14(669), eabj1270. https://doi.org/10.1126/scitranslmed.abj1270
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Immunity, 55(10), 1953–1966. https://doi.org/10.1016/j.immuni.2022.09.004
, & Reddy ST. (2022). High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity.
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, Immunity, 55(10), 1953–1966. https://doi.org/10.1016/j.immuni.2022.09.004
, & Reddy ST. (2022). High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity.
Berner F, Bomze D, Lichtensteiger C, Walter V, Niederer R, Hasan Ali O, Wyss N, Bauer J, Freudenmann LK, Marcu A, Wolfschmitt EM, Haen S, Gross T, Abdou MT, Diem S, Knöpfli S, Sinnberg T, Hofmeister K, Cheng HW, et al. (2022). Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Science Immunology, 7(75), eabn9644. https://doi.org/10.1126/sciimmunol.abn9644
Berner F, Bomze D, Lichtensteiger C, Walter V, Niederer R, Hasan Ali O, Wyss N, Bauer J, Freudenmann LK, Marcu A, Wolfschmitt EM, Haen S, Gross T, Abdou MT, Diem S, Knöpfli S, Sinnberg T, Hofmeister K, Cheng HW, et al. (2022). Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Science Immunology, 7(75), eabn9644. https://doi.org/10.1126/sciimmunol.abn9644
Ruperti-Repilado, Francisco Javier, Van Der Stouwe, Jan Gerrit, Haaf, Philip, Mueller, Christian, European Heart Journal - Case Reports, 6(9), ytac353. https://doi.org/10.1093/ehjcr/ytac353
, Pfister, Otmar, Rothschild, Sacha I, & Kuster, Gabriela M. (2022). Case report of elevation of high-sensitivity cardiac troponin T in the absence of cardiac involvement in immune checkpoint inhibitor-associated myositis.
Ruperti-Repilado, Francisco Javier, Van Der Stouwe, Jan Gerrit, Haaf, Philip, Mueller, Christian, European Heart Journal - Case Reports, 6(9), ytac353. https://doi.org/10.1093/ehjcr/ytac353
, Pfister, Otmar, Rothschild, Sacha I, & Kuster, Gabriela M. (2022). Case report of elevation of high-sensitivity cardiac troponin T in the absence of cardiac involvement in immune checkpoint inhibitor-associated myositis.
Mandruzzato S, & Editorial: Novel roles for tumor-associated neutrophils. 13, 1004772. https://doi.org/10.3389/fimmu.2022.1004772
. (2022).
Mandruzzato S, & Editorial: Novel roles for tumor-associated neutrophils. 13, 1004772. https://doi.org/10.3389/fimmu.2022.1004772
. (2022).
Beatson R, Editorial: Glycans: Masters of immunity, from cancers to inflammatory disease. 13, 1002679. https://doi.org/10.3389/fimmu.2022.1002679
, Pearce OMT, & Reis CA. (2022).
Beatson R, Editorial: Glycans: Masters of immunity, from cancers to inflammatory disease. 13, 1002679. https://doi.org/10.3389/fimmu.2022.1002679
, Pearce OMT, & Reis CA. (2022).
Zeitlberger AM, Putora PM, Hofer S, Schucht P, Migliorini D, Hottinger AF, Roelcke U, Journal of Neuro-Oncology, 158(3), 359–367. https://doi.org/10.1007/s11060-022-04022-7
, Spina P, Bozinov O, Weller M, Neidert MC, & Hundsberger T. (2022). Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis.
Zeitlberger AM, Putora PM, Hofer S, Schucht P, Migliorini D, Hottinger AF, Roelcke U, Journal of Neuro-Oncology, 158(3), 359–367. https://doi.org/10.1007/s11060-022-04022-7
, Spina P, Bozinov O, Weller M, Neidert MC, & Hundsberger T. (2022). Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis.
Wieboldt R, & American Journal of Physiology - Cell Physiology, 322(6), C1187–C1200. https://doi.org/10.1152/ajpcell.00063.2022
. (2022). Glycosaminoglycans in cancer therapy.
Wieboldt R, & American Journal of Physiology - Cell Physiology, 322(6), C1187–C1200. https://doi.org/10.1152/ajpcell.00063.2022
. (2022). Glycosaminoglycans in cancer therapy.
Kostner L, Cerminara SE, Pamplona GSP, Maul JT, Dummer R, Ramelyte E, Mangana J, Wagner NB, Cozzio A, Kreiter S, Kogler A, Streit M, Wysocki A, Zippelius A, Cancers, 14(10). https://doi.org/10.3390/cancers14102360
, Navarini AA, & Maul LV. (2022). Effects of COVID-19 Lockdown on Melanoma Diagnosis in Switzerland: Increased Tumor Thickness in Elderly Females and Shift towards Stage IV Melanoma during Lockdown.
Kostner L, Cerminara SE, Pamplona GSP, Maul JT, Dummer R, Ramelyte E, Mangana J, Wagner NB, Cozzio A, Kreiter S, Kogler A, Streit M, Wysocki A, Zippelius A, Cancers, 14(10). https://doi.org/10.3390/cancers14102360
, Navarini AA, & Maul LV. (2022). Effects of COVID-19 Lockdown on Melanoma Diagnosis in Switzerland: Increased Tumor Thickness in Elderly Females and Shift towards Stage IV Melanoma during Lockdown.
Kasenda, B., König, D., Manni, M., Ritschard, R., Duthaler, U., Bartoszek, E., Bärenwaldt, A., Deuster, S., Hutter, G., Cordier, D., Mariani, L., Hench, J., Frank, S., Krähenbühl, S., Zippelius, A., Rochlitz, C., Mamot, C., Wicki, A., & ESMO Open, 7. https://doi.org/10.1016/j.esmoop.2021.100365
(2022). Targeting immunoliposomes to EGFR-positive glioblastoma.
Kasenda, B., König, D., Manni, M., Ritschard, R., Duthaler, U., Bartoszek, E., Bärenwaldt, A., Deuster, S., Hutter, G., Cordier, D., Mariani, L., Hench, J., Frank, S., Krähenbühl, S., Zippelius, A., Rochlitz, C., Mamot, C., Wicki, A., & ESMO Open, 7. https://doi.org/10.1016/j.esmoop.2021.100365
(2022). Targeting immunoliposomes to EGFR-positive glioblastoma.
Kirchhammer, Nicole, Trefny, Marcel P, Natoli, Marina, Brücher, Dominik, Smith, Sheena N, Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K Patricia, Zaytseva, Polina, Thommen, Daniela S, Science translational medicine, 14(653), eabm9043. https://doi.org/10.1126/scitranslmed.abm9043
, Böttcher, Jan P, Stanczak, Michal A, Kashyap, Abhishek S, et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity.
Kirchhammer, Nicole, Trefny, Marcel P, Natoli, Marina, Brücher, Dominik, Smith, Sheena N, Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K Patricia, Zaytseva, Polina, Thommen, Daniela S, Science translational medicine, 14(653), eabm9043. https://doi.org/10.1126/scitranslmed.abm9043
, Böttcher, Jan P, Stanczak, Michal A, Kashyap, Abhishek S, et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity.
Kirchhammer, Nicole, Trefny, Marcel P., Natoli, Marina, Brücher, Dominik, Smith, Sheena N., Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K. Patricia, Zaytseva, Polina, Thommen, Daniela S., Science Translational Medicine, 14. https://doi.org/10.1126/scitranslmed.abm9043
, Böttcher, Jan P., Stanczak, Michal A., Kashyap, Abhishek S., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity.
Kirchhammer, Nicole, Trefny, Marcel P., Natoli, Marina, Brücher, Dominik, Smith, Sheena N., Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K. Patricia, Zaytseva, Polina, Thommen, Daniela S., Science Translational Medicine, 14. https://doi.org/10.1126/scitranslmed.abm9043
, Böttcher, Jan P., Stanczak, Michal A., Kashyap, Abhishek S., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity.
König, David, Hench, Jürgen, Frank, Stephan, Dima, Laura, Bratic Hench, Ivana, & Pharmacology, 107, 433–438. https://doi.org/10.1159/000524399
. (2022). Larotrectinib Response in NTRK3 Fusion-Driven Diffuse High-Grade Glioma.
König, David, Hench, Jürgen, Frank, Stephan, Dima, Laura, Bratic Hench, Ivana, & Pharmacology, 107, 433–438. https://doi.org/10.1159/000524399
. (2022). Larotrectinib Response in NTRK3 Fusion-Driven Diffuse High-Grade Glioma.
Tagliche Praxis, 65, 620–629.
, & Zippelius, A. (2022). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma.
Tagliche Praxis, 65, 620–629.
, & Zippelius, A. (2022). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma.
Wang, Jinyu, Manni, Michela, Bärenwaldt, Anne, Wieboldt, Ronja, Kirchhammer, Nicole, Ivanek, Robert, Stanczak, Michal, Zippelius, Alfred, König, David, Rodrigues Manutano, Natalia, & Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.828916
. (2022). Siglec Receptors Modulate Dendritic Cell Activation and Antigen Presentation to T Cells in Cancer.
Wang, Jinyu, Manni, Michela, Bärenwaldt, Anne, Wieboldt, Ronja, Kirchhammer, Nicole, Ivanek, Robert, Stanczak, Michal, Zippelius, Alfred, König, David, Rodrigues Manutano, Natalia, & Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.828916
. (2022). Siglec Receptors Modulate Dendritic Cell Activation and Antigen Presentation to T Cells in Cancer.
FEBS Journal, 288(21), 6206–6225. https://doi.org/10.1111/febs.15647
, Kawanishi K., George Vazhappilly C., Matar R., Merheb M., & Sarwar Siddiqui S. (2021). Tools to study and target the Siglec–sialic acid axis in cancer.
FEBS Journal, 288(21), 6206–6225. https://doi.org/10.1111/febs.15647
, Kawanishi K., George Vazhappilly C., Matar R., Merheb M., & Sarwar Siddiqui S. (2021). Tools to study and target the Siglec–sialic acid axis in cancer.
Werner F., Wagner C., Simon M, Glatz K, Mertz K.D., Diagnostics, 11(7). https://doi.org/10.3390/diagnostics11071238
, Richtig E, Griss J., & Wagner S.N. (2021). Loss of lymphotoxin alpha-expressing memory b cells correlates with metastasis of human primary melanoma.
Werner F., Wagner C., Simon M, Glatz K, Mertz K.D., Diagnostics, 11(7). https://doi.org/10.3390/diagnostics11071238
, Richtig E, Griss J., & Wagner S.N. (2021). Loss of lymphotoxin alpha-expressing memory b cells correlates with metastasis of human primary melanoma.
Werner F., Wagner C., Simon M., Glatz K, Mertz KD, Frontiers in Immunology, 12, 675146. https://doi.org/10.3389/fimmu.2021.675146
, Griss J, & Wagner S.N. (2021). A Standardized Analysis of Tertiary Lymphoid Structures in Human Melanoma: Disease Progression- and Tumor Site-Associated Changes With Germinal Center Alteration.
Werner F., Wagner C., Simon M., Glatz K, Mertz KD, Frontiers in Immunology, 12, 675146. https://doi.org/10.3389/fimmu.2021.675146
, Griss J, & Wagner S.N. (2021). A Standardized Analysis of Tertiary Lymphoid Structures in Human Melanoma: Disease Progression- and Tumor Site-Associated Changes With Germinal Center Alteration.
Hofer S, Keller K, Imbach L., Roelcke U, Hutter G., Hundsberger T., Hertler C., Le Rhun E., Vasella F., Cordier D, Neidert M., Hottinger A., Migliorini D., Pflugshaupt T., Eggenberger N., Baumert B., Swiss Medical Weekly, 151, w20501. https://doi.org/10.4414/smw.2021.20501
, Gramatzki D., Reinert M, et al. (2021). Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM).
Hofer S, Keller K, Imbach L., Roelcke U, Hutter G., Hundsberger T., Hertler C., Le Rhun E., Vasella F., Cordier D, Neidert M., Hottinger A., Migliorini D., Pflugshaupt T., Eggenberger N., Baumert B., Swiss Medical Weekly, 151, w20501. https://doi.org/10.4414/smw.2021.20501
, Gramatzki D., Reinert M, et al. (2021). Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM).
Gross MW, Multidisciplinary tumor boards as videoconferences – a new challenge in the COVID-19 era (Patent No. 4). 32(4), Article 4. https://doi.org/10.1016/j.annonc.2021.01.002
, & Cordier D. (2021).
Gross MW, Multidisciplinary tumor boards as videoconferences – a new challenge in the COVID-19 era (Patent No. 4). 32(4), Article 4. https://doi.org/10.1016/j.annonc.2021.01.002
, & Cordier D. (2021).
Pantelyushin S., Ranninger E., Guerrera D., Hutter G., Maake C., Markkanen E., Bettschart-Wolfensberger R., Bley C.R., Cancers, 13(4), 1–18. https://doi.org/10.3390/cancers13040785
, & Vom Berg J. (2021). Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs.
Pantelyushin S., Ranninger E., Guerrera D., Hutter G., Maake C., Markkanen E., Bettschart-Wolfensberger R., Bley C.R., Cancers, 13(4), 1–18. https://doi.org/10.3390/cancers13040785
, & Vom Berg J. (2021). Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs.
König, David, & Pharmacology, 106, 123–136. https://doi.org/10.1159/000509081
. (2021). Mechanisms of Immune-Related Complications in Cancer Patients Treated with Immune Checkpoint Inhibitors.
König, David, & Pharmacology, 106, 123–136. https://doi.org/10.1159/000509081
. (2021). Mechanisms of Immune-Related Complications in Cancer Patients Treated with Immune Checkpoint Inhibitors.
Läubli, H., & Zippelius, A. (2021). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Internistische Praxis, 64, 456–464.
Läubli, H., & Zippelius, A. (2021). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Internistische Praxis, 64, 456–464.
Manni M., & Expert Opinion on Biological Therapy, 21(8), 1063–1071. https://doi.org/10.1080/14712598.2021.1882989
(2021). Targeting glyco-immune checkpoints for cancer therapy.
Manni M., & Expert Opinion on Biological Therapy, 21(8), 1063–1071. https://doi.org/10.1080/14712598.2021.1882989
(2021). Targeting glyco-immune checkpoints for cancer therapy.
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, Nature Chemical Biology, 16(12), 1376–1384. https://doi.org/10.1038/s41589-020-0622-x
, & Bertozzi CR. (2020). Targeted glycan degradation potentiates the anticancer immune response in vivo.
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, Nature Chemical Biology, 16(12), 1376–1384. https://doi.org/10.1038/s41589-020-0622-x
, & Bertozzi CR. (2020). Targeted glycan degradation potentiates the anticancer immune response in vivo.
Pearce O.M.T., & Cancer Discovery, 10(12), 1789–1790. https://doi.org/10.1158/2159-8290.cd-20-1355
(2020). A sweet approach to heat up cancer response to immunotherapy.
Pearce O.M.T., & Cancer Discovery, 10(12), 1789–1790. https://doi.org/10.1158/2159-8290.cd-20-1355
(2020). A sweet approach to heat up cancer response to immunotherapy.
Rodrigues Mantuano N, Natoli M, Zippelius A, & Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2020-001222
. (2020). Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy.
Rodrigues Mantuano N, Natoli M, Zippelius A, & Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2020-001222
. (2020). Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy.
Rodrigues Mantuano N, Stanczak MA, Oliveira IA, Kirchhammer N, Filardy AA, Monaco G, Santos RC, Fonseca AC, Fontes M, Bastos CS Jr, Dias WB, Zippelius A, Todeschini AR, & Cancer Immunology Research, 8(10), 1262–1272. https://doi.org/10.1158/2326-6066.CIR-19-0904
. (2020). Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation.
Rodrigues Mantuano N, Stanczak MA, Oliveira IA, Kirchhammer N, Filardy AA, Monaco G, Santos RC, Fonseca AC, Fontes M, Bastos CS Jr, Dias WB, Zippelius A, Todeschini AR, & Cancer Immunology Research, 8(10), 1262–1272. https://doi.org/10.1158/2326-6066.CIR-19-0904
. (2020). Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation.
Trefny MP, Kaiser M, Stanczak MA, Herzig P, Savic S, Wiese M, Lardinois D, Cancer Immunology, Immunotherapy, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
, Uhlenbrock F, & Zippelius A. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade.
Trefny MP, Kaiser M, Stanczak MA, Herzig P, Savic S, Wiese M, Lardinois D, Cancer Immunology, Immunotherapy, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
, Uhlenbrock F, & Zippelius A. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade.
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, et al. (2020). Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2019-000238
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, et al. (2020). Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2019-000238
Roth P, Hottinger A.F., Hundsberger T, Swiss Medical Weekly, 150(23-24). https://doi.org/10.4414/smw.2020.20256
, Schucht P, Reinert M, Mamot C, Roelcke U, Pesce G., Hofer S, & Weller M. (2020). A contemporary perspective on the diagnosis and treatment of diffuse gliomas in adults.
Roth P, Hottinger A.F., Hundsberger T, Swiss Medical Weekly, 150(23-24). https://doi.org/10.4414/smw.2020.20256
, Schucht P, Reinert M, Mamot C, Roelcke U, Pesce G., Hofer S, & Weller M. (2020). A contemporary perspective on the diagnosis and treatment of diffuse gliomas in adults.
Cellular and Molecular Life Sciences, 77(4), 593–605. https://doi.org/10.1007/s00018-019-03288-x
, & Varki A. (2020). Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses.
Cellular and Molecular Life Sciences, 77(4), 593–605. https://doi.org/10.1007/s00018-019-03288-x
, & Varki A. (2020). Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses.
Alborelli I, Leonards K, Rothschild SI, Leuenberger LP, Savic Prince S, Mertz KD, Poechtrager S, Buess M, Zippelius A, Journal of Pathology, 250(1), 19–29. https://doi.org/10.1002/path.5344
, Haegele J, Tolnay M, Bubendorf L, Quagliata L, & Jermann P. (2020). Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer.
Alborelli I, Leonards K, Rothschild SI, Leuenberger LP, Savic Prince S, Mertz KD, Poechtrager S, Buess M, Zippelius A, Journal of Pathology, 250(1), 19–29. https://doi.org/10.1002/path.5344
, Haegele J, Tolnay M, Bubendorf L, Quagliata L, & Jermann P. (2020). Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer.
Trefny, Marcel P., Kaiser, Monika, Stanczak, Michal A., Herzig, Petra, Savic, Spasenija, Wiese, Mark, Lardinois, Didier, Cancer immunology, immunotherapy : CII, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
, Uhlenbrock, Franziska, & Zippelius, Alfred. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade.
Trefny, Marcel P., Kaiser, Monika, Stanczak, Michal A., Herzig, Petra, Savic, Spasenija, Wiese, Mark, Lardinois, Didier, Cancer immunology, immunotherapy : CII, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
, Uhlenbrock, Franziska, & Zippelius, Alfred. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade.
Trinh B, Donath MY, & Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab. Diabetes Care 2019;42:e153-e154 (Patent No. 1). 43(1), Article 1. https://doi.org/10.2337/dci19-0058
. (2020).
Trinh B, Donath MY, & Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab. Diabetes Care 2019;42:e153-e154 (Patent No. 1). 43(1), Article 1. https://doi.org/10.2337/dci19-0058
. (2020).
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, Nature Communications, 10(1), 4186. https://doi.org/10.1038/s41467-019-12160-2
, Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, et al. (2019). B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma.
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, Nature Communications, 10(1), 4186. https://doi.org/10.1038/s41467-019-12160-2
, Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, et al. (2019). B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma.
Bärenwaldt A, & Expert Opinion on Therapeutic Targets, 23(10), 839–853. https://doi.org/10.1080/14728222.2019.1667977
. (2019). The sialoglycan-Siglec glyco-immune checkpoint–a target for improving innate and adaptive anti-cancer immunity.
Bärenwaldt A, & Expert Opinion on Therapeutic Targets, 23(10), 839–853. https://doi.org/10.1080/14728222.2019.1667977
. (2019). The sialoglycan-Siglec glyco-immune checkpoint–a target for improving innate and adaptive anti-cancer immunity.
Liewen H, Markuly N, Targeted Oncology, 14(5), 577–590. https://doi.org/10.1007/s11523-019-00667-z
, Liu Y, Matter MS, Liewen N, Renner C, Zippelius A, & Stenner F. (2019). Therapeutic Targeting of Golgi Phosphoprotein 2 (GOLPH2) with Armed Antibodies: A Preclinical Study of Anti-GOLPH2 Antibody Drug Conjugates in Lung and Colorectal Cancer Models of Patient Derived Xenografts (PDX).
Liewen H, Markuly N, Targeted Oncology, 14(5), 577–590. https://doi.org/10.1007/s11523-019-00667-z
, Liu Y, Matter MS, Liewen N, Renner C, Zippelius A, & Stenner F. (2019). Therapeutic Targeting of Golgi Phosphoprotein 2 (GOLPH2) with Armed Antibodies: A Preclinical Study of Anti-GOLPH2 Antibody Drug Conjugates in Lung and Colorectal Cancer Models of Patient Derived Xenografts (PDX).
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, Cell Reports, 28(13), 3367–3380. https://doi.org/10.1016/j.celrep.2019.08.057
, Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, & Zippelius A. (2019). GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses.
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, Cell Reports, 28(13), 3367–3380. https://doi.org/10.1016/j.celrep.2019.08.057
, Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, & Zippelius A. (2019). GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses.
Frontiers in Immunology, 10, 2120. https://doi.org/10.3389/fimmu.2019.02120
, & Borsig L. (2019). Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis.
Frontiers in Immunology, 10, 2120. https://doi.org/10.3389/fimmu.2019.02120
, & Borsig L. (2019). Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis.
Trinh B, Donath MY, & Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab (Patent No. 9). 42(9), Article 9. https://doi.org/10.2337/dc19-0908
. (2019).
Trinh B, Donath MY, & Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab (Patent No. 9). 42(9), Article 9. https://doi.org/10.2337/dc19-0908
. (2019).
Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, JAMA Oncology, 5(7), 1043–1047. https://doi.org/10.1001/jamaoncol.2019.0402
, Zippelius A, Hartmann F, Cheng HW, Hönger G, et al. (2019). Association of Checkpoint Inhibitor-Induced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer.
Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, JAMA Oncology, 5(7), 1043–1047. https://doi.org/10.1001/jamaoncol.2019.0402
, Zippelius A, Hartmann F, Cheng HW, Hönger G, et al. (2019). Association of Checkpoint Inhibitor-Induced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer.
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, Haubitz M, Seyed Jafari SM, Zippelius A, Baerlocher GM, Cancer Immunology Research, 7(5), 707–718. https://doi.org/10.1158/2326-6066.cir-18-0505
, Hunger RE, Romero P, Simon HU, & von Gunten S. (2019). Siglec-9 Regulates an Effector Memory CD8þ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment.
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, Haubitz M, Seyed Jafari SM, Zippelius A, Baerlocher GM, Cancer Immunology Research, 7(5), 707–718. https://doi.org/10.1158/2326-6066.cir-18-0505
, Hunger RE, Romero P, Simon HU, & von Gunten S. (2019). Siglec-9 Regulates an Effector Memory CD8þ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment.
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, Publisher Correction: Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. (Patent No. 4). 20(4), Article 4. https://doi.org/10.1038/s41590-019-0359-4
, Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019).
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, Publisher Correction: Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. (Patent No. 4). 20(4), Article 4. https://doi.org/10.1038/s41590-019-0359-4
, Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019).
Virchows Archiv, 474(4), 485–495. https://doi.org/10.1007/s00428-018-2435-9
, Dirnhofer S, & Zippelius A. (2019). Immune tumor board: integral part in the multidisciplinary management of cancer patients treated with cancer immunotherapy.
Virchows Archiv, 474(4), 485–495. https://doi.org/10.1007/s00428-018-2435-9
, Dirnhofer S, & Zippelius A. (2019). Immune tumor board: integral part in the multidisciplinary management of cancer patients treated with cancer immunotherapy.
Trinh B, Sanchez GO, Herzig P, & Journal for ImmunoTherapy of Cancer, 7(1), 52. https://doi.org/10.1186/s40425-019-0528-x
. (2019). Inflammation-induced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma.
Trinh B, Sanchez GO, Herzig P, & Journal for ImmunoTherapy of Cancer, 7(1), 52. https://doi.org/10.1186/s40425-019-0528-x
. (2019). Inflammation-induced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma.
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, Nature Immunology, 20(2), 206–217. https://doi.org/10.1038/s41590-018-0290-0
, Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle.
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, Nature Immunology, 20(2), 206–217. https://doi.org/10.1038/s41590-018-0290-0
, Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle.
Ortega Sanchez G, Stenner F, Dirnhofer S, Passweg J, Gerull S, Gerull S, Halter JP, Zippelius A, & Swiss Medical Weekly, 149(45-46), w20150. https://doi.org/10.4414/smw.2019.20150
. (2019). Toxicity associated with PD-1 blockade after allogeneic haematopoietic cell transplantation.
Ortega Sanchez G, Stenner F, Dirnhofer S, Passweg J, Gerull S, Gerull S, Halter JP, Zippelius A, & Swiss Medical Weekly, 149(45-46), w20150. https://doi.org/10.4414/smw.2019.20150
. (2019). Toxicity associated with PD-1 blockade after allogeneic haematopoietic cell transplantation.
Trefny MP, Rothschild SI, Uhlenbrock F., Rieder, Dietmar, Kasenda, Benjamin, Stanczak, Michal A, Berner F, Kashyap AS, Kaiser M, Herzig, Petra, Poechtrager S, Thommen, Daniela S, Geier F., Savic S, Jermann P, Alborelli I., Schaub S., Stenner, Frank, Früh M, et al. (2019). A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. Clinical Cancer Research, 25(10), 3026–3034. https://doi.org/10.1158/1078-0432.ccr-18-3041
Trefny MP, Rothschild SI, Uhlenbrock F., Rieder, Dietmar, Kasenda, Benjamin, Stanczak, Michal A, Berner F, Kashyap AS, Kaiser M, Herzig, Petra, Poechtrager S, Thommen, Daniela S, Geier F., Savic S, Jermann P, Alborelli I., Schaub S., Stenner, Frank, Früh M, et al. (2019). A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. Clinical Cancer Research, 25(10), 3026–3034. https://doi.org/10.1158/1078-0432.ccr-18-3041
Stanczak, Michal A, Siddiqui, Shoib S, Trefny, Marcel P, Thommen, Daniela S, Boligan, Kayluz Frias, von Gunten, Stephan, Tzankov, Alexandar, Tietze, Lothar, Lardinois, Didier, Heinzelmann-Schwarz, Viola, von Bergwelt-Baildon, Michael, Zhang, Wu, Lenz, Heinz-Josef, Han, Younghun, Amos, Christopher I, Syedbasha, Mohammedyaseen, Egli, Adrian, Stenner, Frank, Speiser, Daniel E, et al. (2018). Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. The Journal of clinical investigation, 128(11), 4912–4923. https://doi.org/10.1172/jci120612
Stanczak, Michal A, Siddiqui, Shoib S, Trefny, Marcel P, Thommen, Daniela S, Boligan, Kayluz Frias, von Gunten, Stephan, Tzankov, Alexandar, Tietze, Lothar, Lardinois, Didier, Heinzelmann-Schwarz, Viola, von Bergwelt-Baildon, Michael, Zhang, Wu, Lenz, Heinz-Josef, Han, Younghun, Amos, Christopher I, Syedbasha, Mohammedyaseen, Egli, Adrian, Stenner, Frank, Speiser, Daniel E, et al. (2018). Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. The Journal of clinical investigation, 128(11), 4912–4923. https://doi.org/10.1172/jci120612
Ortega Sanchez G, Jahn K, Savic S, Zippelius A, & Journal for Immunotherapy of Cancer, 6(1), 85. https://doi.org/10.1186/s40425-018-0400-4
. (2018). Treatment of mycophenolate-resistant immune-related organizing pneumonia with infliximab.
Ortega Sanchez G, Jahn K, Savic S, Zippelius A, & Journal for Immunotherapy of Cancer, 6(1), 85. https://doi.org/10.1186/s40425-018-0400-4
. (2018). Treatment of mycophenolate-resistant immune-related organizing pneumonia with infliximab.
Adams OJ, Stanczak MA, von Gunten S, & Glycobiology, 28(9), 640–647. https://doi.org/10.1093/glycob/cwx108
. (2018). Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer.
Adams OJ, Stanczak MA, von Gunten S, & Glycobiology, 28(9), 640–647. https://doi.org/10.1093/glycob/cwx108
. (2018). Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer.
Pearce OMT, & Glycobiology, 28(9), 638–639. https://doi.org/10.1093/glycob/cwy069
. (2018). Cancer Immunotherapy.
Pearce OMT, & Glycobiology, 28(9), 638–639. https://doi.org/10.1093/glycob/cwy069
. (2018). Cancer Immunotherapy.
Journal for Immunotherapy of Cancer, 6(1), 40. https://doi.org/10.1186/s40425-018-0353-7
, Balmelli C, Kaufmann L, Stanczak M, Syedbasha, Mohammedyaseen, Vogt D, Hertig A, Müller B, Gautschi O, Stenner, Frank, Zippelius, Alfred, Egli, Adrian, & Rothschild SI. (2018). Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.
Journal for Immunotherapy of Cancer, 6(1), 40. https://doi.org/10.1186/s40425-018-0353-7
, Balmelli C, Kaufmann L, Stanczak M, Syedbasha, Mohammedyaseen, Vogt D, Hertig A, Müller B, Gautschi O, Stenner, Frank, Zippelius, Alfred, Egli, Adrian, & Rothschild SI. (2018). Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.
Borsig L., & Cell adhesion during tumorigenesis and metastasis (pp. 307–314). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.64991-7
(2018).
Borsig L., & Cell adhesion during tumorigenesis and metastasis (pp. 307–314). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.64991-7
(2018).
Cancer Immunology, Immunotherapy, 67, 815–824. https://doi.org/10.1007/s00262-018-2136-x
, Müller, Philipp, D’Amico, Lucia, Buchi, Mélanie, Kashyap, Abhishek S., & Zippelius, Alfred. (2018). The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models.
Cancer Immunology, Immunotherapy, 67, 815–824. https://doi.org/10.1007/s00262-018-2136-x
, Müller, Philipp, D’Amico, Lucia, Buchi, Mélanie, Kashyap, Abhishek S., & Zippelius, Alfred. (2018). The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models.
Oncoimmunology, 7(2), e1386362. https://doi.org/10.1080/2162402x.2017.1386362
, Koelzer VH, Matter MS, Herzig P, Dolder Schlienger B, Wiese MN, Lardinois D, Mertz KD, & Zippelius A. (2018). The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors.
Oncoimmunology, 7(2), e1386362. https://doi.org/10.1080/2162402x.2017.1386362
, Koelzer VH, Matter MS, Herzig P, Dolder Schlienger B, Wiese MN, Lardinois D, Mertz KD, & Zippelius A. (2018). The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors.
Rothschild U, Muller L, Lechner A, Schlösser HA, Beutner D, Swiss Medical Weekly, 148, w14625. https://doi.org/10.4414/smw.2018.14625
, Zippelius A, & Rothschild SI. (2018). Immunotherapy in head and neck cancer - scientific rationale, current treatment options and future directions.
Rothschild U, Muller L, Lechner A, Schlösser HA, Beutner D, Swiss Medical Weekly, 148, w14625. https://doi.org/10.4414/smw.2018.14625
, Zippelius A, & Rothschild SI. (2018). Immunotherapy in head and neck cancer - scientific rationale, current treatment options and future directions.
Journal for immunotherapy of cancer, 5, 46. https://doi.org/10.1186/s40425-017-0249-y
, Hench J, Stanczak M, Heijnen I, Papachristofilou A, Frank S, Zippelius A, & Stenner-Liewen F. (2017). Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade.
Journal for immunotherapy of cancer, 5, 46. https://doi.org/10.1186/s40425-017-0249-y
, Hench J, Stanczak M, Heijnen I, Papachristofilou A, Frank S, Zippelius A, & Stenner-Liewen F. (2017). Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade.
Antimetastatic Properties of Low Molecular Weight Heparin. (Patent No. 21). 34(21), Article 21. https://doi.org/10.1200/jco.2016.66.4607
, Varki A, & Borsig L. (2016).
Antimetastatic Properties of Low Molecular Weight Heparin. (Patent No. 21). 34(21), Article 21. https://doi.org/10.1200/jco.2016.66.4607
, Varki A, & Borsig L. (2016).
Muenst S, Journal of Internal Medicine, 279(6), 541–562. https://doi.org/10.1111/joim.12470
, Soysal SD, Zippelius A., Tzankov A, & Hoeller S. (2016). The immune system and cancer evasion strategies: Therapeutic concepts.
Muenst S, Journal of Internal Medicine, 279(6), 541–562. https://doi.org/10.1111/joim.12470
, Soysal SD, Zippelius A., Tzankov A, & Hoeller S. (2016). The immune system and cancer evasion strategies: Therapeutic concepts.
Pearce OM, & Glycobiology, 26(2), 111–128. https://doi.org/10.1093/glycob/cwv097
. (2016). Sialic acids in cancer biology and immunity.
Pearce OM, & Glycobiology, 26(2), 111–128. https://doi.org/10.1093/glycob/cwv097
. (2016). Sialic acids in cancer biology and immunity.
Leukemia & Lymphoma, 57(4), 945–948. https://doi.org/10.3109/10428194.2015.1083563
, Tzankov, A., Juskevicius, D., Degen, L., Rochlitz, C., & Stenner-Liewen, F. (2016). Lenalidomide monotherapy leads to a complete remission in refractory B-cell post-transplant lymphoproliferative disorder.
Leukemia & Lymphoma, 57(4), 945–948. https://doi.org/10.3109/10428194.2015.1083563
, Tzankov, A., Juskevicius, D., Degen, L., Rochlitz, C., & Stenner-Liewen, F. (2016). Lenalidomide monotherapy leads to a complete remission in refractory B-cell post-transplant lymphoproliferative disorder.