Publications
115 found
Show per page
Zingg, A., Ritschard, R., Thut, H., Hutter, G., & Läubli, H. (2025). In vivo screening of TCR-based chimeric antigen receptors for improved anti-tumor functionality [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.07.23.666356
Zingg, A., Ritschard, R., Thut, H., Hutter, G., & Läubli, H. (2025). In vivo screening of TCR-based chimeric antigen receptors for improved anti-tumor functionality [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.07.23.666356
Melero, Ignacio, de Miguel Luken, Maria, de Velasco, Guillermo, Garralda, Elena, Martín-Liberal, Juan, Joerger, Markus, Alonso, Guzman, Goebeler, Maria-Elisabeth, Schuler, Martin, König, David, Dummer, Reinhard, Reig, Maria, Rodriguez Ruiz, Maria-Esperanza, Calvo, Emiliano, Esteban-Villarrubia, Jorge, Oberoi, Arjun, Sabat, Paula, Soto-Castillo, Juan José, Koster, Kira-Lee, et al. (2025). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature, 637(8048), 1218–1227. https://doi.org/10.1038/s41586-024-08305-z
Melero, Ignacio, de Miguel Luken, Maria, de Velasco, Guillermo, Garralda, Elena, Martín-Liberal, Juan, Joerger, Markus, Alonso, Guzman, Goebeler, Maria-Elisabeth, Schuler, Martin, König, David, Dummer, Reinhard, Reig, Maria, Rodriguez Ruiz, Maria-Esperanza, Calvo, Emiliano, Esteban-Villarrubia, Jorge, Oberoi, Arjun, Sabat, Paula, Soto-Castillo, Juan José, Koster, Kira-Lee, et al. (2025). Neutralizing GDF-15 can overcome anti-PD-1 and anti-PD-L1 resistance in solid tumours. Nature, 637(8048), 1218–1227. https://doi.org/10.1038/s41586-024-08305-z
Stuecheli, S., Schultheiss, C., Schmidt-Barbo, P., Zingg, A., Franz, N., Adamo, S., Fischer, C., Laubli, H., & Binder, M. (2025). CAR T cell engineering impacts antigen-independent activation and co-inhibition [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.20.631849
Stuecheli, S., Schultheiss, C., Schmidt-Barbo, P., Zingg, A., Franz, N., Adamo, S., Fischer, C., Laubli, H., & Binder, M. (2025). CAR T cell engineering impacts antigen-independent activation and co-inhibition [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.20.631849
König, D., Kasenda, B., Sandholzer, M., Chirindel, A., Zingg, A., Ritschard, R., Thut, H., Glatz, K., Kappos, E.A., Schaefer, D., Kettelhack, C., Passweg, J., Baur, K., Holbro, A., Buser, A., Lardinois, D., Jeker, L.T., Khanna, N., Stenner, F., et al. (2024). Adoptive cell therapy with tumor-infiltrating lymphocytes in combination with nivolumab in patients with advanced melanoma. Immuno Oncology and Technology, 24. https://doi.org/10.1016/j.iotech.2024.100728
König, D., Kasenda, B., Sandholzer, M., Chirindel, A., Zingg, A., Ritschard, R., Thut, H., Glatz, K., Kappos, E.A., Schaefer, D., Kettelhack, C., Passweg, J., Baur, K., Holbro, A., Buser, A., Lardinois, D., Jeker, L.T., Khanna, N., Stenner, F., et al. (2024). Adoptive cell therapy with tumor-infiltrating lymphocytes in combination with nivolumab in patients with advanced melanoma. Immuno Oncology and Technology, 24. https://doi.org/10.1016/j.iotech.2024.100728
Mangana, Johanna, Lamos, Cristina, Özdemir, Berna C., , Morgan, Linda, Maul, Lara V., König, David, Dimitriou, Florentia, Kaiser, Sandra, Landolt, Janine, Musiari, Anastasia, Pasche, Nadine, Siegenthaler, Beat, Dummer, Reinhard, & Del Prete, Valerio. (2024). Gender differences in melanoma awareness, diagnosis and treatment: Patient-reported data from a multicentre survey in Switzerland. Skin Health and Disease, 4(6). https://doi.org/10.1002/ski2.442
Mangana, Johanna, Lamos, Cristina, Özdemir, Berna C., , Morgan, Linda, Maul, Lara V., König, David, Dimitriou, Florentia, Kaiser, Sandra, Landolt, Janine, Musiari, Anastasia, Pasche, Nadine, Siegenthaler, Beat, Dummer, Reinhard, & Del Prete, Valerio. (2024). Gender differences in melanoma awareness, diagnosis and treatment: Patient-reported data from a multicentre survey in Switzerland. Skin Health and Disease, 4(6). https://doi.org/10.1002/ski2.442
Märkl, Florian, Schultheiß, Christoph, Ali, Murtaza, Chen, Shih-Shih, Zintchenko, Marina, Egli, Lukas, Mietz, Juliane, Chijioke, Obinna, Paschold, Lisa, Spajic, Sebastijan, Holtermann, Anne, Dörr, Janina, Stock, Sophia, Zingg, Andreas, , Piseddu, Ignazio, Anz, David, Minden, Marcus Dühren-von, Zhang, Tianjiao, et al. (2024). Mutation-specific CAR T cells as precision therapy for IGLV3-21R110 expressing high-risk chronic lymphocytic leukemia. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-45378-w
Märkl, Florian, Schultheiß, Christoph, Ali, Murtaza, Chen, Shih-Shih, Zintchenko, Marina, Egli, Lukas, Mietz, Juliane, Chijioke, Obinna, Paschold, Lisa, Spajic, Sebastijan, Holtermann, Anne, Dörr, Janina, Stock, Sophia, Zingg, Andreas, , Piseddu, Ignazio, Anz, David, Minden, Marcus Dühren-von, Zhang, Tianjiao, et al. (2024). Mutation-specific CAR T cells as precision therapy for IGLV3-21R110 expressing high-risk chronic lymphocytic leukemia. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-45378-w
Martins, Tomás A., Kaymak, Deniz, Tatari, Nazanin, Gerster, Fiona, Hogan, Sabrina, Ritz, Marie-Françoise, Sabatino, Valerio, Wieboldt, Ronja, Bartoszek, Ewelina M., McDaid, Marta, Gerber, Alexandra, Buck, Alicia, Beshirova, Aisha, Heider, Anja, Shekarian, Tala, Mohamed, Hayget, Etter, Manina M., Schmassmann, Philip, Abel, Ines, et al. (2024). Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54129-w
Martins, Tomás A., Kaymak, Deniz, Tatari, Nazanin, Gerster, Fiona, Hogan, Sabrina, Ritz, Marie-Françoise, Sabatino, Valerio, Wieboldt, Ronja, Bartoszek, Ewelina M., McDaid, Marta, Gerber, Alexandra, Buck, Alicia, Beshirova, Aisha, Heider, Anja, Shekarian, Tala, Mohamed, Hayget, Etter, Manina M., Schmassmann, Philip, Abel, Ines, et al. (2024). Enhancing anti-EGFRvIII CAR T cell therapy against glioblastoma with a paracrine SIRPγ-derived CD47 blocker. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-54129-w
Mastall, Maximilian, Roth, Patrick, Bink, Andrea, Fischer Maranta, Angela, , Hottinger, Andreas Felix, Hundsberger, Thomas, Migliorini, Denis, Ochsenbein, Adrian, Seystahl, Katharina, Imbach, Lukas, Hortobagyi, Tibor, Held, Leonhard, Weller, Michael, & Wirsching, Hans-Georg. (2024). A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: the GLUGLIO trial protocol. BMC Cancer, 24(1). https://doi.org/10.1186/s12885-023-11797-z
Mastall, Maximilian, Roth, Patrick, Bink, Andrea, Fischer Maranta, Angela, , Hottinger, Andreas Felix, Hundsberger, Thomas, Migliorini, Denis, Ochsenbein, Adrian, Seystahl, Katharina, Imbach, Lukas, Hortobagyi, Tibor, Held, Leonhard, Weller, Michael, & Wirsching, Hans-Georg. (2024). A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: the GLUGLIO trial protocol. BMC Cancer, 24(1). https://doi.org/10.1186/s12885-023-11797-z
Tundo, Sofia, Trefny, Marcel, Rodić, Andrijana, Grueninger, Olivia, Brodmann, Nicole, Börsch, Anastasiya, Serger, Clara, Fürst, Jonas, Buchi, Melanie, Buczak, Katarzyna, Müller, Alex T., Sach-Peltason, Lisa, Don, Leyla, Herzig, Petra, Lardinois, Didier, Heinzelmann-Schwarz, Viola, Mertz, Kirsten D., Hojski, Aljaz, Schaeuble, Karin, et al. (2024). Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. Journal for ImmunoTherapy of Cancer, 12(11). https://doi.org/10.1136/jitc-2024-009860
Tundo, Sofia, Trefny, Marcel, Rodić, Andrijana, Grueninger, Olivia, Brodmann, Nicole, Börsch, Anastasiya, Serger, Clara, Fürst, Jonas, Buchi, Melanie, Buczak, Katarzyna, Müller, Alex T., Sach-Peltason, Lisa, Don, Leyla, Herzig, Petra, Lardinois, Didier, Heinzelmann-Schwarz, Viola, Mertz, Kirsten D., Hojski, Aljaz, Schaeuble, Karin, et al. (2024). Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. Journal for ImmunoTherapy of Cancer, 12(11). https://doi.org/10.1136/jitc-2024-009860
Wyss, Nina, Berner, Fiamma, Walter, Vincent, Jochum, Ann-Kristin, Purde, Mette T., Abdou, Marie-Therese, Sinnberg, Tobias, Hofmeister, Kathrin, Pop, Oltin T., Ali, Omar Hasan, Bauer, Jens, Cheng, Hung-Wei, Lutge, Mechthild, Klumper, Niklas, Diem, Stefan, Kosaloglu-Yalcin, Zeynep, Zhang, Yizheng, Sellmer, Laura, Macek, Boris, et al. (2024). Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. American Journal of Respiratory and Critical Care Medicine, 210(7), 919–930. https://doi.org/10.1164/rccm.202311-2136oc
Wyss, Nina, Berner, Fiamma, Walter, Vincent, Jochum, Ann-Kristin, Purde, Mette T., Abdou, Marie-Therese, Sinnberg, Tobias, Hofmeister, Kathrin, Pop, Oltin T., Ali, Omar Hasan, Bauer, Jens, Cheng, Hung-Wei, Lutge, Mechthild, Klumper, Niklas, Diem, Stefan, Kosaloglu-Yalcin, Zeynep, Zhang, Yizheng, Sellmer, Laura, Macek, Boris, et al. (2024). Autoimmunity Against Surfactant Protein B Is Associated with Pneumonitis During Checkpoint Blockade. American Journal of Respiratory and Critical Care Medicine, 210(7), 919–930. https://doi.org/10.1164/rccm.202311-2136oc
Freitag, Patrick C., Kolibius, Jonas, Wieboldt, Ronja, Weber, Remi, Hartmann, K. Patricia, van Gogh, Merel, Brücher, Dominik, , & Plückthun, Andreas. (2024). DARPin-fused T cell engager for adenovirus-mediated cancer therapy. Molecular Therapy Oncology, 32(3). https://doi.org/10.1016/j.omton.2024.200821
Freitag, Patrick C., Kolibius, Jonas, Wieboldt, Ronja, Weber, Remi, Hartmann, K. Patricia, van Gogh, Merel, Brücher, Dominik, , & Plückthun, Andreas. (2024). DARPin-fused T cell engager for adenovirus-mediated cancer therapy. Molecular Therapy Oncology, 32(3). https://doi.org/10.1016/j.omton.2024.200821
König, David, Sandholzer, Michael T., Uzun, Sarp, Zingg, Andreas, Ritschard, Reto, Thut, Helen, Glatz, Katharina, Kappos, Elisabeth A., Schaefer, Dirk J., Kettelhack, Christoph, Passweg, Jakob R., Holbro, Andreas, Baur, Katharina, Medinger, Michael, Buser, Andreas, Lardinois, Didier, Jeker, Lukas T., Khanna, Nina, Stenner, Frank, et al. (2024). Melanoma Clonal Heterogeneity Leads to Secondary Resistance after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 12, 814–821. https://doi.org/10.1158/2326-6066.CIR-23-0757
König, David, Sandholzer, Michael T., Uzun, Sarp, Zingg, Andreas, Ritschard, Reto, Thut, Helen, Glatz, Katharina, Kappos, Elisabeth A., Schaefer, Dirk J., Kettelhack, Christoph, Passweg, Jakob R., Holbro, Andreas, Baur, Katharina, Medinger, Michael, Buser, Andreas, Lardinois, Didier, Jeker, Lukas T., Khanna, Nina, Stenner, Frank, et al. (2024). Melanoma Clonal Heterogeneity Leads to Secondary Resistance after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 12, 814–821. https://doi.org/10.1158/2326-6066.CIR-23-0757
Mantuano, Natalia Rodrigues, & . (2024). Sialic acid and Siglec receptors in tumor immunity and immunotherapy. Seminars in Immunology, 74-75. https://doi.org/10.1016/j.smim.2024.101893
Mantuano, Natalia Rodrigues, & . (2024). Sialic acid and Siglec receptors in tumor immunity and immunotherapy. Seminars in Immunology, 74-75. https://doi.org/10.1016/j.smim.2024.101893
De Joode, Karlijn, Mora, Alfonso Rojas, Van Schaik, Ron H.N., Zippelius, Alfred, Van Der Veldt, Astrid, Gerard, Camille Léa, , Michielin, Olivier, Von Moos, Roger, Joerger, Markus, Levesque, Mitchell P., Aeppli, Stefanie, Mangana, Johanna, Mangas, Cristina, Trost, Nadine, Meyer, Stefan, Parvex, Sandra Leoni, Mathijssen, Ron, & Metaxas, Yannis. (2024). Effects of CTLA-4 Single Nucleotide Polymorphisms on Toxicity of Ipilimumab-Containing Regimens in Patients with Advanced Stage Melanoma. Journal of Immunotherapy, 47(5), 190–194. https://doi.org/10.1097/CJI.0000000000000506
De Joode, Karlijn, Mora, Alfonso Rojas, Van Schaik, Ron H.N., Zippelius, Alfred, Van Der Veldt, Astrid, Gerard, Camille Léa, , Michielin, Olivier, Von Moos, Roger, Joerger, Markus, Levesque, Mitchell P., Aeppli, Stefanie, Mangana, Johanna, Mangas, Cristina, Trost, Nadine, Meyer, Stefan, Parvex, Sandra Leoni, Mathijssen, Ron, & Metaxas, Yannis. (2024). Effects of CTLA-4 Single Nucleotide Polymorphisms on Toxicity of Ipilimumab-Containing Regimens in Patients with Advanced Stage Melanoma. Journal of Immunotherapy, 47(5), 190–194. https://doi.org/10.1097/CJI.0000000000000506
Filipsky, F., & Läubli, H. (2024). Regulation of sialic acid metabolism in cancer. Carbohydrate Research, 539. https://doi.org/10.1016/j.carres.2024.109123
Filipsky, F., & Läubli, H. (2024). Regulation of sialic acid metabolism in cancer. Carbohydrate Research, 539. https://doi.org/10.1016/j.carres.2024.109123
Wieboldt, Ronja, Sandholzer, Michael, Carlini, Emanuele, Lin, Chia-Wei, Börsch, Anastasiya, Zingg, Andreas, Lardinois, Didier, Herzig, Petra, Don, Leyla, Zippelius, Alfred, , & Mantuano, Natalia Rodrigues. (2024). Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2. Cellular and Molecular Immunology, 21(5), 495–509. https://doi.org/10.1038/s41423-024-01142-0
Wieboldt, Ronja, Sandholzer, Michael, Carlini, Emanuele, Lin, Chia-Wei, Börsch, Anastasiya, Zingg, Andreas, Lardinois, Didier, Herzig, Petra, Don, Leyla, Zippelius, Alfred, , & Mantuano, Natalia Rodrigues. (2024). Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2. Cellular and Molecular Immunology, 21(5), 495–509. https://doi.org/10.1038/s41423-024-01142-0
Pedram, K., Shon, D. J., Tender, G. S., Mantuano, N. R., Northey, J. J., Metcalf, K. J., Wisnovsky, S. P., Riley, N. M., Forcina, G. C., Malaker, S. A., Kuo, A., George, B. M., Miller, C. L., Casey, K. M., Vilches-Moure, J. G., Ferracane, M. J., Weaver, V. M., Läubli, H., & Bertozzi, C. R. (2024). Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nature Biotechnology, 42(4), 597–607. https://doi.org/10.1038/s41587-023-01840-6
Pedram, K., Shon, D. J., Tender, G. S., Mantuano, N. R., Northey, J. J., Metcalf, K. J., Wisnovsky, S. P., Riley, N. M., Forcina, G. C., Malaker, S. A., Kuo, A., George, B. M., Miller, C. L., Casey, K. M., Vilches-Moure, J. G., Ferracane, M. J., Weaver, V. M., Läubli, H., & Bertozzi, C. R. (2024). Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nature Biotechnology, 42(4), 597–607. https://doi.org/10.1038/s41587-023-01840-6
Stadler, Christina, Gramatzki, Dorothee, Le Rhun, Emilie, Hottinger, Andreas F., Hundsberger, Thomas, Roelcke, Ulrich, , Hofer, Silvia, Seystahl, Katharina, Wirsching, Hans-Georg, Weller, Michael, & Roth, Patrick. (2024). Glioblastoma in the oldest old: Clinical characteristics, therapy, and outcome in patients aged 80 years and older. Neuro-Oncology Practice, 11(2), 132–141. https://doi.org/10.1093/nop/npad070
Stadler, Christina, Gramatzki, Dorothee, Le Rhun, Emilie, Hottinger, Andreas F., Hundsberger, Thomas, Roelcke, Ulrich, , Hofer, Silvia, Seystahl, Katharina, Wirsching, Hans-Georg, Weller, Michael, & Roth, Patrick. (2024). Glioblastoma in the oldest old: Clinical characteristics, therapy, and outcome in patients aged 80 years and older. Neuro-Oncology Practice, 11(2), 132–141. https://doi.org/10.1093/nop/npad070
Chu, Chih-Wei, Čaval, Tomislav, Alisson-Silva, Frederico, Tankasala, Akshaya, Guerrier, Christina, Czerwieniec, Gregg, , & Schwarz, Flavio. (2024). Variable PD-1 glycosylation modulates the activity of immune checkpoint inhibitors. Life Science Alliance, 7(3). https://doi.org/10.26508/lsa.202302368
Chu, Chih-Wei, Čaval, Tomislav, Alisson-Silva, Frederico, Tankasala, Akshaya, Guerrier, Christina, Czerwieniec, Gregg, , & Schwarz, Flavio. (2024). Variable PD-1 glycosylation modulates the activity of immune checkpoint inhibitors. Life Science Alliance, 7(3). https://doi.org/10.26508/lsa.202302368
. (2024). Unraveling the impact of a glyco-immune checkpoint in bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 121(9). https://doi.org/10.1073/pnas.2400499121
. (2024). Unraveling the impact of a glyco-immune checkpoint in bone metastasis. Proceedings of the National Academy of Sciences of the United States of America, 121(9). https://doi.org/10.1073/pnas.2400499121
Daetwyler, Eveline, Wallrabenstein, Till, König, David, Cappelli, Laura C., Naidoo, Jarushka, Zippelius, Alfred, & . (2024). Corticosteroid-resistant immune-related adverse events: A systematic review. Journal for ImmunoTherapy of Cancer, 12(1). https://doi.org/10.1136/jitc-2023-007409
Daetwyler, Eveline, Wallrabenstein, Till, König, David, Cappelli, Laura C., Naidoo, Jarushka, Zippelius, Alfred, & . (2024). Corticosteroid-resistant immune-related adverse events: A systematic review. Journal for ImmunoTherapy of Cancer, 12(1). https://doi.org/10.1136/jitc-2023-007409
Conti, Gabriele, Bärenwaldt, Anne, Rabbani, Said, Mühlethaler, Tobias, Sarcevic, Mirza, Jiang, Xiaohua, Schwardt, Oliver, Ricklin, Daniel, Pieters, Roland J., , & Ernst, Beat. (2023). Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation. Angewandte Chemie - International Edition, 62(52). https://doi.org/10.1002/anie.202314280
Conti, Gabriele, Bärenwaldt, Anne, Rabbani, Said, Mühlethaler, Tobias, Sarcevic, Mirza, Jiang, Xiaohua, Schwardt, Oliver, Ricklin, Daniel, Pieters, Roland J., , & Ernst, Beat. (2023). Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation. Angewandte Chemie - International Edition, 62(52). https://doi.org/10.1002/anie.202314280
Puttock, E.H., Tyler, E.J., Manni, M., Maniati, E., Butterworth, C., Burger Ramos, M., Peerani, E., Hirani, P., Gauthier, V., Liu, Y., Maniscalco, G., Rajeeve, V., Cutillas, P., Trevisan, C., Pozzobon, M., Lockley, M., Rastrick, J., , White, A., & Pearce, O.M.T. (2023). Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38093-5
Puttock, E.H., Tyler, E.J., Manni, M., Maniati, E., Butterworth, C., Burger Ramos, M., Peerani, E., Hirani, P., Gauthier, V., Liu, Y., Maniscalco, G., Rajeeve, V., Cutillas, P., Trevisan, C., Pozzobon, M., Lockley, M., Rastrick, J., , White, A., & Pearce, O.M.T. (2023). Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38093-5
Trefny, Marcel P., Kirchhammer, Nicole, Auf der Maur, Priska, Natoli, Marina, Schmid, Dominic, Germann, Markus, Fernandez Rodriguez, Laura, Herzig, Petra, Lötscher, Jonas, Akrami, Maryam, Stinchcombe, Jane C., Stanczak, Michal A., Zingg, Andreas, Buchi, Melanie, Roux, Julien, Marone, Romina, Don, Leyla, Lardinois, Didier, Wiese, Mark, et al. (2023). Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nature Communications, 14(1). https://doi.org/10.1038/s41467-022-35583-w
Trefny, Marcel P., Kirchhammer, Nicole, Auf der Maur, Priska, Natoli, Marina, Schmid, Dominic, Germann, Markus, Fernandez Rodriguez, Laura, Herzig, Petra, Lötscher, Jonas, Akrami, Maryam, Stinchcombe, Jane C., Stanczak, Michal A., Zingg, Andreas, Buchi, Melanie, Roux, Julien, Marone, Romina, Don, Leyla, Lardinois, Didier, Wiese, Mark, et al. (2023). Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy. Nature Communications, 14(1). https://doi.org/10.1038/s41467-022-35583-w
Joerger, Markus, Calvo, Emiliano, , Lopez, Juanita, Alonso, Guzmán, Corral De La Fuente, Elena, Hess, Dagmar, König, David, Sanchez Perez, Vicky, Bucher, Christoph, Jethwa, Sangeeta, & Garralda, Elena. (2023). Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors. Journal for ImmunoTherapy of Cancer, 11(11). https://doi.org/10.1136/jitc-2023-007784
Joerger, Markus, Calvo, Emiliano, , Lopez, Juanita, Alonso, Guzmán, Corral De La Fuente, Elena, Hess, Dagmar, König, David, Sanchez Perez, Vicky, Bucher, Christoph, Jethwa, Sangeeta, & Garralda, Elena. (2023). Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors. Journal for ImmunoTherapy of Cancer, 11(11). https://doi.org/10.1136/jitc-2023-007784
Bieberich, F., Vazquez-Lombardi, R., Jin, H., Hong, K.-L., Herzig, P., Trefny, M., Trüb, M., Läubli, H., Lardinois, D., Mertz, K., Matter, M. S., Zippelius, A., & Reddy, S. T. (2023, October 6). Multimodal single-cell profiling of T cell specificity and reactivity in lung cancer [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.04.560863
Bieberich, F., Vazquez-Lombardi, R., Jin, H., Hong, K.-L., Herzig, P., Trefny, M., Trüb, M., Läubli, H., Lardinois, D., Mertz, K., Matter, M. S., Zippelius, A., & Reddy, S. T. (2023, October 6). Multimodal single-cell profiling of T cell specificity and reactivity in lung cancer [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.04.560863
Läubli, H. (2023). Cellular immunotherapies for malignancies - How do they work and what are the side effects? Therapeutische Umschau. Revue Therapeutique, 80(8), 348–352.
Läubli, H. (2023). Cellular immunotherapies for malignancies - How do they work and what are the side effects? Therapeutische Umschau. Revue Therapeutique, 80(8), 348–352.
Baur, Katharina, Buser, Andreas, Jeker, Lukas T., Khanna, Nina, , Heim, Dominik, Dirks, Jan C., Widmer, Corinne C., Volken, Thomas, Passweg, Jakob R., & Holbro, Andreas. (2023). CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas. Bone Marrow Transplantation, 58(9), 1048–1050. https://doi.org/10.1038/s41409-023-02016-1
Baur, Katharina, Buser, Andreas, Jeker, Lukas T., Khanna, Nina, , Heim, Dominik, Dirks, Jan C., Widmer, Corinne C., Volken, Thomas, Passweg, Jakob R., & Holbro, Andreas. (2023). CD4+ CAR T-cell expansion is associated with response and therapy related toxicities in patients with B-cell lymphomas. Bone Marrow Transplantation, 58(9), 1048–1050. https://doi.org/10.1038/s41409-023-02016-1
Wieboldt, R., Carlini, E., Lin, C.-w., Börsch, A., Zingg, A., Lardinois, D., Herzig, P., Don, L., Zippelius, A., Läubli, H., & Rodrigues Mantuano, N. (2023, July 1). Engagement of sialylated glycans with Siglec receptors on myeloid suppressor cells inhibit anti-cancer immunity via CCL2 [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.29.547025
Wieboldt, R., Carlini, E., Lin, C.-w., Börsch, A., Zingg, A., Lardinois, D., Herzig, P., Don, L., Zippelius, A., Läubli, H., & Rodrigues Mantuano, N. (2023, July 1). Engagement of sialylated glycans with Siglec receptors on myeloid suppressor cells inhibit anti-cancer immunity via CCL2 [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.29.547025
Schumann K, Mauch C, Klespe KC, Loquai C, Nikfarjam U, Schlaak M, Akçetin L, Kölblinger P, Hoellwerth M, Meissner M, Mengi G, Braun AD, Mengoni M, Dummer R, Mangana J, Sindrilaru MA, Radmann D, Hafner C, Freund J, et al. (2023). Real-world outcomes using PD-1 antibodies and BRAF + MEK inhibitors for adjuvant melanoma treatment from 39 skin cancer centers in Germany, Austria and Switzerland. Journal of the European Academy of Dermatology and Venereology, 37(5), 894–906. https://doi.org/10.1111/jdv.18779
Schumann K, Mauch C, Klespe KC, Loquai C, Nikfarjam U, Schlaak M, Akçetin L, Kölblinger P, Hoellwerth M, Meissner M, Mengi G, Braun AD, Mengoni M, Dummer R, Mangana J, Sindrilaru MA, Radmann D, Hafner C, Freund J, et al. (2023). Real-world outcomes using PD-1 antibodies and BRAF + MEK inhibitors for adjuvant melanoma treatment from 39 skin cancer centers in Germany, Austria and Switzerland. Journal of the European Academy of Dermatology and Venereology, 37(5), 894–906. https://doi.org/10.1111/jdv.18779
Stanczak MA, & . (2023). Siglec receptors as new immune checkpoints in cancer. Molecular Aspects of Medicine, 90, 101112. https://doi.org/10.1016/j.mam.2022.101112
Stanczak MA, & . (2023). Siglec receptors as new immune checkpoints in cancer. Molecular Aspects of Medicine, 90, 101112. https://doi.org/10.1016/j.mam.2022.101112
Daetwyler, Eveline, Zippelius, Alfred, Meyer, Peter, & . (2023). Pembrolizumab-induced optic neuropathy – a case report. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1171981
Daetwyler, Eveline, Zippelius, Alfred, Meyer, Peter, & . (2023). Pembrolizumab-induced optic neuropathy – a case report. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1171981
Manni, Michela, Mantuano, Natalia Rodrigues, Zingg, Andreas, Kappos, Elisabeth A., Behrens, Anna-Janina, Back, Jonathan, Follador, Rainer, Faridmoayer, Amir, & . (2023). Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1291292
Manni, Michela, Mantuano, Natalia Rodrigues, Zingg, Andreas, Kappos, Elisabeth A., Behrens, Anna-Janina, Back, Jonathan, Follador, Rainer, Faridmoayer, Amir, & . (2023). Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1291292
Müller, Benjamin, Bärenwaldt, Anne, Herzig, Petra, Zippelius, Alfred, Maul, Lara Valeska, Hess, Viviane, König, David, & . (2023). Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125111
Müller, Benjamin, Bärenwaldt, Anne, Herzig, Petra, Zippelius, Alfred, Maul, Lara Valeska, Hess, Viviane, König, David, & . (2023). Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1125111
Schmassmann, P., Roux, J., Buck, A., Tatari, N., Hogan, S., Wang, J., Mantuano, N. R., Wieboldt, R., Lee, S., Snijder, B., Kaymak, D., Martins, T. A., Ritz, M.-F., Shekarian, T., McDaid, M., Weller, M., Weiss, T., Läubli, H., & Hutter, G. (2023). Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Science Translational Medicine, 15(705). https://doi.org/10.1126/scitranslmed.adf5302
Schmassmann, P., Roux, J., Buck, A., Tatari, N., Hogan, S., Wang, J., Mantuano, N. R., Wieboldt, R., Lee, S., Snijder, B., Kaymak, D., Martins, T. A., Ritz, M.-F., Shekarian, T., McDaid, M., Weller, M., Weiss, T., Läubli, H., & Hutter, G. (2023). Targeting the Siglec–sialic acid axis promotes antitumor immune responses in preclinical models of glioblastoma. Science Translational Medicine, 15(705). https://doi.org/10.1126/scitranslmed.adf5302
Castellanos-Rueda R, Di Roberto RB, Bieberich F, Schlatter FS, Palianina D, Nguyen OTP, Kapetanovic E, , Hierlemann A, Khanna N, & Reddy ST. (2022). speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nature Communications, 13(1), 6555. https://doi.org/10.1038/s41467-022-34141-8
Castellanos-Rueda R, Di Roberto RB, Bieberich F, Schlatter FS, Palianina D, Nguyen OTP, Kapetanovic E, , Hierlemann A, Khanna N, & Reddy ST. (2022). speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nature Communications, 13(1), 6555. https://doi.org/10.1038/s41467-022-34141-8
, Nalle SC, & Maslyar D. (2022). Targeting the Siglec–Sialic Acid Immune Axis in Cancer: Current and Future Approaches. Cancer Immunology Research, 10(12), 1423–1432. https://doi.org/10.1158/2326-6066.CIR-22-0366
, Nalle SC, & Maslyar D. (2022). Targeting the Siglec–Sialic Acid Immune Axis in Cancer: Current and Future Approaches. Cancer Immunology Research, 10(12), 1423–1432. https://doi.org/10.1158/2326-6066.CIR-22-0366
Kirchhammer N, Trefny MP, Auf der Maur P, , & Zippelius A. (2022). Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment. Science Translational Medicine, 14(670), eabo3605. https://doi.org/10.1126/scitranslmed.abo3605
Kirchhammer N, Trefny MP, Auf der Maur P, , & Zippelius A. (2022). Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment. Science Translational Medicine, 14(670), eabo3605. https://doi.org/10.1126/scitranslmed.abo3605
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, Everest-Dass AV, Wang J, Trefny MP, Monaco G, Bärenwaldt A, Gray MA, Petrone A, Kashyap AS, Glatz K, Kasenda B, Normington K, Broderick J, Peng L, et al. (2022). Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Science Translational Medicine, 14(669), eabj1270. https://doi.org/10.1126/scitranslmed.abj1270
Stanczak MA, Rodrigues Mantuano N, Kirchhammer N, Sanin DE, Jacob F, Coelho R, Everest-Dass AV, Wang J, Trefny MP, Monaco G, Bärenwaldt A, Gray MA, Petrone A, Kashyap AS, Glatz K, Kasenda B, Normington K, Broderick J, Peng L, et al. (2022). Targeting cancer glycosylation repolarizes tumor-associated macrophages allowing effective immune checkpoint blockade. Science Translational Medicine, 14(669), eabj1270. https://doi.org/10.1126/scitranslmed.abj1270
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, , & Reddy ST. (2022). High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity, 55(10), 1953–1966. https://doi.org/10.1016/j.immuni.2022.09.004
Vazquez-Lombardi R, Jung JS, Schlatter FS, Mei A, Mantuano NR, Bieberich F, Hong KL, Kucharczyk J, Kapetanovic E, Aznauryan E, Weber CR, Zippelius A, , & Reddy ST. (2022). High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity. Immunity, 55(10), 1953–1966. https://doi.org/10.1016/j.immuni.2022.09.004
Berner F, Bomze D, Lichtensteiger C, Walter V, Niederer R, Hasan Ali O, Wyss N, Bauer J, Freudenmann LK, Marcu A, Wolfschmitt EM, Haen S, Gross T, Abdou MT, Diem S, Knöpfli S, Sinnberg T, Hofmeister K, Cheng HW, et al. (2022). Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Science Immunology, 7(75), eabn9644. https://doi.org/10.1126/sciimmunol.abn9644
Berner F, Bomze D, Lichtensteiger C, Walter V, Niederer R, Hasan Ali O, Wyss N, Bauer J, Freudenmann LK, Marcu A, Wolfschmitt EM, Haen S, Gross T, Abdou MT, Diem S, Knöpfli S, Sinnberg T, Hofmeister K, Cheng HW, et al. (2022). Autoreactive napsin A-specific T cells are enriched in lung tumors and inflammatory lung lesions during immune checkpoint blockade. Science Immunology, 7(75), eabn9644. https://doi.org/10.1126/sciimmunol.abn9644
Ruperti-Repilado, Francisco Javier, Van Der Stouwe, Jan Gerrit, Haaf, Philip, Mueller, Christian, , Pfister, Otmar, Rothschild, Sacha I, & Kuster, Gabriela M. (2022). Case report of elevation of high-sensitivity cardiac troponin T in the absence of cardiac involvement in immune checkpoint inhibitor-associated myositis. European Heart Journal - Case Reports, 6(9), ytac353. https://doi.org/10.1093/ehjcr/ytac353
Ruperti-Repilado, Francisco Javier, Van Der Stouwe, Jan Gerrit, Haaf, Philip, Mueller, Christian, , Pfister, Otmar, Rothschild, Sacha I, & Kuster, Gabriela M. (2022). Case report of elevation of high-sensitivity cardiac troponin T in the absence of cardiac involvement in immune checkpoint inhibitor-associated myositis. European Heart Journal - Case Reports, 6(9), ytac353. https://doi.org/10.1093/ehjcr/ytac353
Mandruzzato S, & . (2022). Editorial: Novel roles for tumor-associated neutrophils [Frontiers Media S.A.]. Frontiers in Immunology, 13, 1004772. https://doi.org/10.3389/fimmu.2022.1004772
Mandruzzato S, & . (2022). Editorial: Novel roles for tumor-associated neutrophils [Frontiers Media S.A.]. Frontiers in Immunology, 13, 1004772. https://doi.org/10.3389/fimmu.2022.1004772
Beatson R, , Pearce OMT, & Reis CA. (2022). Editorial: Glycans: Masters of immunity, from cancers to inflammatory disease [Frontiers Media S.A.]. Frontiers in Immunology, 13, 1002679. https://doi.org/10.3389/fimmu.2022.1002679
Beatson R, , Pearce OMT, & Reis CA. (2022). Editorial: Glycans: Masters of immunity, from cancers to inflammatory disease [Frontiers Media S.A.]. Frontiers in Immunology, 13, 1002679. https://doi.org/10.3389/fimmu.2022.1002679
Kirchhammer, Nicole, Trefny, Marcel P, Natoli, Marina, Brücher, Dominik, Smith, Sheena N, Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K Patricia, Zaytseva, Polina, Thommen, Daniela S, , Böttcher, Jan P, Stanczak, Michal A, Kashyap, Abhishek S, et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Science Translational Medicine, 14(653), eabm9043. https://doi.org/10.1126/scitranslmed.abm9043
Kirchhammer, Nicole, Trefny, Marcel P, Natoli, Marina, Brücher, Dominik, Smith, Sheena N, Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K Patricia, Zaytseva, Polina, Thommen, Daniela S, , Böttcher, Jan P, Stanczak, Michal A, Kashyap, Abhishek S, et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Science Translational Medicine, 14(653), eabm9043. https://doi.org/10.1126/scitranslmed.abm9043
Kirchhammer, Nicole, Trefny, Marcel P., Natoli, Marina, Brücher, Dominik, Smith, Sheena N., Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K. Patricia, Zaytseva, Polina, Thommen, Daniela S., , Böttcher, Jan P., Stanczak, Michal A., Kashyap, Abhishek S., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Science Translational Medicine, 14(653). https://doi.org/10.1126/scitranslmed.abm9043
Kirchhammer, Nicole, Trefny, Marcel P., Natoli, Marina, Brücher, Dominik, Smith, Sheena N., Werner, Franziska, Koch, Victoria, Schreiner, David, Bartoszek, Ewelina, Buchi, Mélanie, Schmid, Markus, Breu, Daniel, Hartmann, K. Patricia, Zaytseva, Polina, Thommen, Daniela S., , Böttcher, Jan P., Stanczak, Michal A., Kashyap, Abhishek S., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Science Translational Medicine, 14(653). https://doi.org/10.1126/scitranslmed.abm9043
König, David, Hench, Jürgen, Frank, Stephan, Dima, Laura, Bratic Hench, Ivana, & . (2022). Larotrectinib Response in NTRK3 Fusion-Driven Diffuse High-Grade Glioma. Pharmacology, 107(7-8), 433–438. https://doi.org/10.1159/000524399
König, David, Hench, Jürgen, Frank, Stephan, Dima, Laura, Bratic Hench, Ivana, & . (2022). Larotrectinib Response in NTRK3 Fusion-Driven Diffuse High-Grade Glioma. Pharmacology, 107(7-8), 433–438. https://doi.org/10.1159/000524399
Zeitlberger AM, Putora PM, Hofer S, Schucht P, Migliorini D, Hottinger AF, Roelcke U, , Spina P, Bozinov O, Weller M, Neidert MC, & Hundsberger T. (2022). Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis. Journal of Neuro-Oncology, 158(3), 359–367. https://doi.org/10.1007/s11060-022-04022-7
Zeitlberger AM, Putora PM, Hofer S, Schucht P, Migliorini D, Hottinger AF, Roelcke U, , Spina P, Bozinov O, Weller M, Neidert MC, & Hundsberger T. (2022). Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis. Journal of Neuro-Oncology, 158(3), 359–367. https://doi.org/10.1007/s11060-022-04022-7
Wieboldt R, & . (2022). Glycosaminoglycans in cancer therapy. American Journal of Physiology - Cell Physiology, 322(6), C1187–C1200. https://doi.org/10.1152/ajpcell.00063.2022
Wieboldt R, & . (2022). Glycosaminoglycans in cancer therapy. American Journal of Physiology - Cell Physiology, 322(6), C1187–C1200. https://doi.org/10.1152/ajpcell.00063.2022
Kostner L, Cerminara SE, Pamplona GSP, Maul JT, Dummer R, Ramelyte E, Mangana J, Wagner NB, Cozzio A, Kreiter S, Kogler A, Streit M, Wysocki A, Zippelius A, , Navarini AA, & Maul LV. (2022). Effects of COVID-19 Lockdown on Melanoma Diagnosis in Switzerland: Increased Tumor Thickness in Elderly Females and Shift towards Stage IV Melanoma during Lockdown. Cancers, 14(10). https://doi.org/10.3390/cancers14102360
Kostner L, Cerminara SE, Pamplona GSP, Maul JT, Dummer R, Ramelyte E, Mangana J, Wagner NB, Cozzio A, Kreiter S, Kogler A, Streit M, Wysocki A, Zippelius A, , Navarini AA, & Maul LV. (2022). Effects of COVID-19 Lockdown on Melanoma Diagnosis in Switzerland: Increased Tumor Thickness in Elderly Females and Shift towards Stage IV Melanoma during Lockdown. Cancers, 14(10). https://doi.org/10.3390/cancers14102360
Wang, Jinyu, Manni, Michela, Bärenwaldt, Anne, Wieboldt, Ronja, Kirchhammer, Nicole, Ivanek, Robert, Stanczak, Michal, Zippelius, Alfred, König, David, Rodrigues Manutano, Natalia, & . (2022). Siglec Receptors Modulate Dendritic Cell Activation and Antigen Presentation to T Cells in Cancer. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.828916
Wang, Jinyu, Manni, Michela, Bärenwaldt, Anne, Wieboldt, Ronja, Kirchhammer, Nicole, Ivanek, Robert, Stanczak, Michal, Zippelius, Alfred, König, David, Rodrigues Manutano, Natalia, & . (2022). Siglec Receptors Modulate Dendritic Cell Activation and Antigen Presentation to T Cells in Cancer. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.828916
Kasenda, B., König, D., Manni, M., Ritschard, R., Duthaler, U., Bartoszek, E., Bärenwaldt, A., Deuster, S., Hutter, G., Cordier, D., Mariani, L., Hench, J., Frank, S., Krähenbühl, S., Zippelius, A., Rochlitz, C., Mamot, C., Wicki, A., & (2022). Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open, 7(1). https://doi.org/10.1016/j.esmoop.2021.100365
Kasenda, B., König, D., Manni, M., Ritschard, R., Duthaler, U., Bartoszek, E., Bärenwaldt, A., Deuster, S., Hutter, G., Cordier, D., Mariani, L., Hench, J., Frank, S., Krähenbühl, S., Zippelius, A., Rochlitz, C., Mamot, C., Wicki, A., & (2022). Targeting immunoliposomes to EGFR-positive glioblastoma. ESMO Open, 7(1). https://doi.org/10.1016/j.esmoop.2021.100365
, & Zippelius, A. (2022). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Tagliche Praxis, 65, 620–629.
, & Zippelius, A. (2022). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Tagliche Praxis, 65, 620–629.
, Kawanishi K., George Vazhappilly C., Matar R., Merheb M., & Sarwar Siddiqui S. (2021). Tools to study and target the Siglec–sialic acid axis in cancer. FEBS Journal, 288(21), 6206–6225. https://doi.org/10.1111/febs.15647
, Kawanishi K., George Vazhappilly C., Matar R., Merheb M., & Sarwar Siddiqui S. (2021). Tools to study and target the Siglec–sialic acid axis in cancer. FEBS Journal, 288(21), 6206–6225. https://doi.org/10.1111/febs.15647
Werner F., Wagner C., Simon M, Glatz K, Mertz K.D., , Richtig E, Griss J., & Wagner S.N. (2021). Loss of lymphotoxin alpha-expressing memory b cells correlates with metastasis of human primary melanoma. Diagnostics, 11(7). https://doi.org/10.3390/diagnostics11071238
Werner F., Wagner C., Simon M, Glatz K, Mertz K.D., , Richtig E, Griss J., & Wagner S.N. (2021). Loss of lymphotoxin alpha-expressing memory b cells correlates with metastasis of human primary melanoma. Diagnostics, 11(7). https://doi.org/10.3390/diagnostics11071238
Werner F., Wagner C., Simon M., Glatz K, Mertz KD, , Griss J, & Wagner S.N. (2021). A Standardized Analysis of Tertiary Lymphoid Structures in Human Melanoma: Disease Progression- and Tumor Site-Associated Changes With Germinal Center Alteration. Frontiers in Immunology, 12, 675146. https://doi.org/10.3389/fimmu.2021.675146
Werner F., Wagner C., Simon M., Glatz K, Mertz KD, , Griss J, & Wagner S.N. (2021). A Standardized Analysis of Tertiary Lymphoid Structures in Human Melanoma: Disease Progression- and Tumor Site-Associated Changes With Germinal Center Alteration. Frontiers in Immunology, 12, 675146. https://doi.org/10.3389/fimmu.2021.675146
Hofer S, Keller K, Imbach L., Roelcke U, Hutter G., Hundsberger T., Hertler C., Le Rhun E., Vasella F., Cordier D, Neidert M., Hottinger A., Migliorini D., Pflugshaupt T., Eggenberger N., Baumert B., , Gramatzki D., Reinert M, et al. (2021). Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM). Swiss Medical Weekly, 151, w20501. https://doi.org/10.4414/smw.2021.20501
Hofer S, Keller K, Imbach L., Roelcke U, Hutter G., Hundsberger T., Hertler C., Le Rhun E., Vasella F., Cordier D, Neidert M., Hottinger A., Migliorini D., Pflugshaupt T., Eggenberger N., Baumert B., , Gramatzki D., Reinert M, et al. (2021). Fitness-to-drive for glioblastoma patients: Guidance from the Swiss Neuro-Oncology Society (SwissNOS) and the Swiss Society for Legal Medicine (SGRM). Swiss Medical Weekly, 151, w20501. https://doi.org/10.4414/smw.2021.20501
Gross MW, , & Cordier D. (2021). Multidisciplinary tumor boards as videoconferences – a new challenge in the COVID-19 era (Patent No. 4). Annals of Oncology, 32(4), Article 4. https://doi.org/10.1016/j.annonc.2021.01.002
Gross MW, , & Cordier D. (2021). Multidisciplinary tumor boards as videoconferences – a new challenge in the COVID-19 era (Patent No. 4). Annals of Oncology, 32(4), Article 4. https://doi.org/10.1016/j.annonc.2021.01.002
König, David, & . (2021). Mechanisms of Immune-Related Complications in Cancer Patients Treated with Immune Checkpoint Inhibitors. Pharmacology, 106(3-4), 123–136. https://doi.org/10.1159/000509081
König, David, & . (2021). Mechanisms of Immune-Related Complications in Cancer Patients Treated with Immune Checkpoint Inhibitors. Pharmacology, 106(3-4), 123–136. https://doi.org/10.1159/000509081
Pantelyushin S., Ranninger E., Guerrera D., Hutter G., Maake C., Markkanen E., Bettschart-Wolfensberger R., Bley C.R., , & Vom Berg J. (2021). Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers, 13(4), 1–18. https://doi.org/10.3390/cancers13040785
Pantelyushin S., Ranninger E., Guerrera D., Hutter G., Maake C., Markkanen E., Bettschart-Wolfensberger R., Bley C.R., , & Vom Berg J. (2021). Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers, 13(4), 1–18. https://doi.org/10.3390/cancers13040785
Läubli, H., & Zippelius, A. (2021). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Internistische Praxis, 64, 456–464.
Läubli, H., & Zippelius, A. (2021). Tumor-infiltrating lymphocytes (TIL) therapy for malignant melanoma. Internistische Praxis, 64, 456–464.
Manni M., & (2021). Targeting glyco-immune checkpoints for cancer therapy. Expert Opinion on Biological Therapy, 21(8), 1063–1071. https://doi.org/10.1080/14712598.2021.1882989
Manni M., & (2021). Targeting glyco-immune checkpoints for cancer therapy. Expert Opinion on Biological Therapy, 21(8), 1063–1071. https://doi.org/10.1080/14712598.2021.1882989
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, , & Bertozzi CR. (2020). Targeted glycan degradation potentiates the anticancer immune response in vivo. Nature Chemical Biology, 16(12), 1376–1384. https://doi.org/10.1038/s41589-020-0622-x
Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, , & Bertozzi CR. (2020). Targeted glycan degradation potentiates the anticancer immune response in vivo. Nature Chemical Biology, 16(12), 1376–1384. https://doi.org/10.1038/s41589-020-0622-x
Pearce O.M.T., & (2020). A sweet approach to heat up cancer response to immunotherapy. Cancer Discovery, 10(12), 1789–1790. https://doi.org/10.1158/2159-8290.cd-20-1355
Pearce O.M.T., & (2020). A sweet approach to heat up cancer response to immunotherapy. Cancer Discovery, 10(12), 1789–1790. https://doi.org/10.1158/2159-8290.cd-20-1355
Rodrigues Mantuano N, Natoli M, Zippelius A, & . (2020). Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2020-001222
Rodrigues Mantuano N, Natoli M, Zippelius A, & . (2020). Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2020-001222
Rodrigues Mantuano N, Stanczak MA, Oliveira IA, Kirchhammer N, Filardy AA, Monaco G, Santos RC, Fonseca AC, Fontes M, Bastos CS Jr, Dias WB, Zippelius A, Todeschini AR, & . (2020). Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation. Cancer Immunology Research, 8(10), 1262–1272. https://doi.org/10.1158/2326-6066.CIR-19-0904
Rodrigues Mantuano N, Stanczak MA, Oliveira IA, Kirchhammer N, Filardy AA, Monaco G, Santos RC, Fonseca AC, Fontes M, Bastos CS Jr, Dias WB, Zippelius A, Todeschini AR, & . (2020). Hyperglycemia enhances cancer immune evasion by inducing alternative macrophage polarization through increased O-GlcNAcylation. Cancer Immunology Research, 8(10), 1262–1272. https://doi.org/10.1158/2326-6066.CIR-19-0904
Trefny MP, Kaiser M, Stanczak MA, Herzig P, Savic S, Wiese M, Lardinois D, , Uhlenbrock F, & Zippelius A. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunology, Immunotherapy, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
Trefny MP, Kaiser M, Stanczak MA, Herzig P, Savic S, Wiese M, Lardinois D, , Uhlenbrock F, & Zippelius A. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunology, Immunotherapy, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, et al. (2020). Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2019-000238
Trüb M, Uhlenbrock F, Claus C, Herzig P, Thelen M, Karanikas V, Bacac M, Amann M, Albrecht R, Ferrara-Koller C, Thommen D, Rothschield S, Savic Prince S, Mertz KD, Cathomas G, Rosenberg R, Heinzelmann-Schwarz V, Wiese M, Lardinois D, et al. (2020). Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. Journal for ImmunoTherapy of Cancer, 8(2). https://doi.org/10.1136/jitc-2019-000238
Roth P, Hottinger A.F., Hundsberger T, , Schucht P, Reinert M, Mamot C, Roelcke U, Pesce G., Hofer S, & Weller M. (2020). A contemporary perspective on the diagnosis and treatment of diffuse gliomas in adults. Swiss Medical Weekly, 150(23-24). https://doi.org/10.4414/smw.2020.20256
Roth P, Hottinger A.F., Hundsberger T, , Schucht P, Reinert M, Mamot C, Roelcke U, Pesce G., Hofer S, & Weller M. (2020). A contemporary perspective on the diagnosis and treatment of diffuse gliomas in adults. Swiss Medical Weekly, 150(23-24). https://doi.org/10.4414/smw.2020.20256
, & Varki A. (2020). Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cellular and Molecular Life Sciences, 77(4), 593–605. https://doi.org/10.1007/s00018-019-03288-x
, & Varki A. (2020). Sialic acid–binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cellular and Molecular Life Sciences, 77(4), 593–605. https://doi.org/10.1007/s00018-019-03288-x
Alborelli I, Leonards K, Rothschild SI, Leuenberger LP, Savic Prince S, Mertz KD, Poechtrager S, Buess M, Zippelius A, , Haegele J, Tolnay M, Bubendorf L, Quagliata L, & Jermann P. (2020). Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer. Journal of Pathology, 250(1), 19–29. https://doi.org/10.1002/path.5344
Alborelli I, Leonards K, Rothschild SI, Leuenberger LP, Savic Prince S, Mertz KD, Poechtrager S, Buess M, Zippelius A, , Haegele J, Tolnay M, Bubendorf L, Quagliata L, & Jermann P. (2020). Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer. Journal of Pathology, 250(1), 19–29. https://doi.org/10.1002/path.5344
Trefny, Marcel P., Kaiser, Monika, Stanczak, Michal A., Herzig, Petra, Savic, Spasenija, Wiese, Mark, Lardinois, Didier, , Uhlenbrock, Franziska, & Zippelius, Alfred. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer immunology, immunotherapy : CII, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
Trefny, Marcel P., Kaiser, Monika, Stanczak, Michal A., Herzig, Petra, Savic, Spasenija, Wiese, Mark, Lardinois, Didier, , Uhlenbrock, Franziska, & Zippelius, Alfred. (2020). PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer immunology, immunotherapy : CII, 69(8), 1505–1517. https://doi.org/10.1007/s00262-020-02558-z
Trinh B, Donath MY, & . (2020). Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab. Diabetes Care 2019;42:e153-e154 (Patent No. 1). Diabetes Care, 43(1), Article 1. https://doi.org/10.2337/dci19-0058
Trinh B, Donath MY, & . (2020). Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab. Diabetes Care 2019;42:e153-e154 (Patent No. 1). Diabetes Care, 43(1), Article 1. https://doi.org/10.2337/dci19-0058
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, , Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, et al. (2019). B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nature Communications, 10(1), 4186. https://doi.org/10.1038/s41467-019-12160-2
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, , Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, et al. (2019). B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nature Communications, 10(1), 4186. https://doi.org/10.1038/s41467-019-12160-2
Bärenwaldt A, & . (2019). The sialoglycan-Siglec glyco-immune checkpoint–a target for improving innate and adaptive anti-cancer immunity. Expert Opinion on Therapeutic Targets, 23(10), 839–853. https://doi.org/10.1080/14728222.2019.1667977
Bärenwaldt A, & . (2019). The sialoglycan-Siglec glyco-immune checkpoint–a target for improving innate and adaptive anti-cancer immunity. Expert Opinion on Therapeutic Targets, 23(10), 839–853. https://doi.org/10.1080/14728222.2019.1667977
Liewen, Heike, Markuly, Norbert, , Liu, Yang, Matter, Matthias S., Liewen, Nora, Renner, Christoph, Zippelius, Alfred, & Stenner, Frank. (2019). Therapeutic Targeting of Golgi Phosphoprotein 2 (GOLPH2) with Armed Antibodies: A Preclinical Study of Anti-GOLPH2 Antibody Drug Conjugates in Lung and Colorectal Cancer Models of Patient Derived Xenografts (PDX). Targeted Oncology, 14(5), 577–590. https://doi.org/10.1007/s11523-019-00667-z
Liewen, Heike, Markuly, Norbert, , Liu, Yang, Matter, Matthias S., Liewen, Nora, Renner, Christoph, Zippelius, Alfred, & Stenner, Frank. (2019). Therapeutic Targeting of Golgi Phosphoprotein 2 (GOLPH2) with Armed Antibodies: A Preclinical Study of Anti-GOLPH2 Antibody Drug Conjugates in Lung and Colorectal Cancer Models of Patient Derived Xenografts (PDX). Targeted Oncology, 14(5), 577–590. https://doi.org/10.1007/s11523-019-00667-z
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, , Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, & Zippelius A. (2019). GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Reports, 28(13), 3367–3380. https://doi.org/10.1016/j.celrep.2019.08.057
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, , Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, & Zippelius A. (2019). GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Reports, 28(13), 3367–3380. https://doi.org/10.1016/j.celrep.2019.08.057
, & Borsig L. (2019). Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Frontiers in Immunology, 10, 2120. https://doi.org/10.3389/fimmu.2019.02120
, & Borsig L. (2019). Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Frontiers in Immunology, 10, 2120. https://doi.org/10.3389/fimmu.2019.02120
Trinh B, Donath MY, & . (2019). Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab (Patent No. 9). Diabetes Care, 42(9), Article 9. https://doi.org/10.2337/dc19-0908
Trinh B, Donath MY, & . (2019). Successful treatment of immune checkpoint inhibitor-induced diabetes with infliximab (Patent No. 9). Diabetes Care, 42(9), Article 9. https://doi.org/10.2337/dc19-0908
Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, , Zippelius A, Hartmann F, Cheng HW, Hönger G, et al. (2019). Association of Checkpoint Inhibitor-Induced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer. JAMA Oncology, 5(7), 1043–1047. https://doi.org/10.1001/jamaoncol.2019.0402
Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, , Zippelius A, Hartmann F, Cheng HW, Hönger G, et al. (2019). Association of Checkpoint Inhibitor-Induced Toxic Effects with Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer. JAMA Oncology, 5(7), 1043–1047. https://doi.org/10.1001/jamaoncol.2019.0402
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, Haubitz M, Seyed Jafari SM, Zippelius A, Baerlocher GM, , Hunger RE, Romero P, Simon HU, & von Gunten S. (2019). Siglec-9 Regulates an Effector Memory CD8þ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment. Cancer Immunology Research, 7(5), 707–718. https://doi.org/10.1158/2326-6066.CIR-18-0505
Haas Q, Boligan KF, Jandus C, Schneider C, Simillion C, Stanczak MA, Haubitz M, Seyed Jafari SM, Zippelius A, Baerlocher GM, , Hunger RE, Romero P, Simon HU, & von Gunten S. (2019). Siglec-9 Regulates an Effector Memory CD8þ T-cell Subset That Congregates in the Melanoma Tumor Microenvironment. Cancer Immunology Research, 7(5), 707–718. https://doi.org/10.1158/2326-6066.CIR-18-0505
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, , Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Publisher Correction: Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. (Patent No. 4). 20(4), Article 4. https://doi.org/10.1038/s41590-019-0359-4
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, , Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Publisher Correction: Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. (Patent No. 4). 20(4), Article 4. https://doi.org/10.1038/s41590-019-0359-4
, Dirnhofer S, & Zippelius A. (2019). Immune tumor board: integral part in the multidisciplinary management of cancer patients treated with cancer immunotherapy. Virchows Archiv, 474(4), 485–495. https://doi.org/10.1007/s00428-018-2435-9
, Dirnhofer S, & Zippelius A. (2019). Immune tumor board: integral part in the multidisciplinary management of cancer patients treated with cancer immunotherapy. Virchows Archiv, 474(4), 485–495. https://doi.org/10.1007/s00428-018-2435-9
Trinh B, Sanchez GO, Herzig P, & . (2019). Inflammation-induced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma. Journal for ImmunoTherapy of Cancer, 7(1), 52. https://doi.org/10.1186/s40425-019-0528-x
Trinh B, Sanchez GO, Herzig P, & . (2019). Inflammation-induced hypoparathyroidism triggered by combination immune checkpoint blockade for melanoma. Journal for ImmunoTherapy of Cancer, 7(1), 52. https://doi.org/10.1186/s40425-019-0528-x
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, , Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nature Immunology, 20(2), 206–217. https://doi.org/10.1038/s41590-018-0290-0
Cheng WC, Tsui YC, Ragusa S, Koelzer VH, Mina M, Franco F, , Tschumi B, Speiser D, Romero P, Zippelius A, Petrova TV, Mertz K, Ciriello G, & Ho PC. (2019). Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nature Immunology, 20(2), 206–217. https://doi.org/10.1038/s41590-018-0290-0
Ortega Sanchez G, Stenner F, Dirnhofer S, Passweg J, Gerull S, Gerull S, Halter JP, Zippelius A, & . (2019). Toxicity associated with PD-1 blockade after allogeneic haematopoietic cell transplantation. Swiss Medical Weekly, 149(45-46), w20150. https://doi.org/10.4414/smw.2019.20150
Ortega Sanchez G, Stenner F, Dirnhofer S, Passweg J, Gerull S, Gerull S, Halter JP, Zippelius A, & . (2019). Toxicity associated with PD-1 blockade after allogeneic haematopoietic cell transplantation. Swiss Medical Weekly, 149(45-46), w20150. https://doi.org/10.4414/smw.2019.20150
Trefny, Marcel P., Rothschild, Sacha I., Uhlenbrock, Franziska, Rieder, Dietmar, Kasenda, Benjamin, Stanczak, Michal A., Berner, Fiamma, Kashyap, Abhishek S., Kaiser, Monika, Herzig, Petra, Poechtrager, Severin, Thommen, Daniela S., Geier, Florian, Savic, Spasenija, Jermann, Philip, Alborelli, Ilaria, Schaub, Stefan, Stenner, Frank, Fruh, Martin, et al. (2019). A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. Clinical Cancer Research, 25(10), 3026–3034. https://doi.org/10.1158/1078-0432.CCR-18-3041
Trefny, Marcel P., Rothschild, Sacha I., Uhlenbrock, Franziska, Rieder, Dietmar, Kasenda, Benjamin, Stanczak, Michal A., Berner, Fiamma, Kashyap, Abhishek S., Kaiser, Monika, Herzig, Petra, Poechtrager, Severin, Thommen, Daniela S., Geier, Florian, Savic, Spasenija, Jermann, Philip, Alborelli, Ilaria, Schaub, Stefan, Stenner, Frank, Fruh, Martin, et al. (2019). A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. Clinical Cancer Research, 25(10), 3026–3034. https://doi.org/10.1158/1078-0432.CCR-18-3041
Stanczak, Michal A, Siddiqui, Shoib S, Trefny, Marcel P, Thommen, Daniela S, Boligan, Kayluz Frias, von Gunten, Stephan, Tzankov, Alexandar, Tietze, Lothar, Lardinois, Didier, Heinzelmann-Schwarz, Viola, von Bergwelt-Baildon, Michael, Zhang, Wu, Lenz, Heinz-Josef, Han, Younghun, Amos, Christopher I, Syedbasha, Mohammedyaseen, Egli, Adrian, Stenner, Frank, Speiser, Daniel E, et al. (2018). Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. Journal of Clinical Investigation, 128(11), 4912–4923. https://doi.org/10.1172/JCI120612
Stanczak, Michal A, Siddiqui, Shoib S, Trefny, Marcel P, Thommen, Daniela S, Boligan, Kayluz Frias, von Gunten, Stephan, Tzankov, Alexandar, Tietze, Lothar, Lardinois, Didier, Heinzelmann-Schwarz, Viola, von Bergwelt-Baildon, Michael, Zhang, Wu, Lenz, Heinz-Josef, Han, Younghun, Amos, Christopher I, Syedbasha, Mohammedyaseen, Egli, Adrian, Stenner, Frank, Speiser, Daniel E, et al. (2018). Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. Journal of Clinical Investigation, 128(11), 4912–4923. https://doi.org/10.1172/JCI120612
Ortega Sanchez G, Jahn K, Savic S, Zippelius A, & . (2018). Treatment of mycophenolate-resistant immune-related organizing pneumonia with infliximab. Journal for ImmunoTherapy of Cancer, 6(1), 85. https://doi.org/10.1186/s40425-018-0400-4
Ortega Sanchez G, Jahn K, Savic S, Zippelius A, & . (2018). Treatment of mycophenolate-resistant immune-related organizing pneumonia with infliximab. Journal for ImmunoTherapy of Cancer, 6(1), 85. https://doi.org/10.1186/s40425-018-0400-4
Adams OJ, Stanczak MA, von Gunten S, & . (2018). Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology, 28(9), 640–647. https://doi.org/10.1093/glycob/cwx108
Adams OJ, Stanczak MA, von Gunten S, & . (2018). Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology, 28(9), 640–647. https://doi.org/10.1093/glycob/cwx108
Pearce OMT, & . (2018). Cancer Immunotherapy. Glycobiology, 28(9), 638–639. https://doi.org/10.1093/glycob/cwy069
Pearce OMT, & . (2018). Cancer Immunotherapy. Glycobiology, 28(9), 638–639. https://doi.org/10.1093/glycob/cwy069
, Balmelli C, Kaufmann L, Stanczak M, Syedbasha, Mohammedyaseen, Vogt D, Hertig A, Müller B, Gautschi O, Stenner, Frank, Zippelius, Alfred, Egli, Adrian, & Rothschild SI. (2018). Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. Journal for ImmunoTherapy of Cancer, 6(1), 40. https://doi.org/10.1186/s40425-018-0353-7
, Balmelli C, Kaufmann L, Stanczak M, Syedbasha, Mohammedyaseen, Vogt D, Hertig A, Müller B, Gautschi O, Stenner, Frank, Zippelius, Alfred, Egli, Adrian, & Rothschild SI. (2018). Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events. Journal for ImmunoTherapy of Cancer, 6(1), 40. https://doi.org/10.1186/s40425-018-0353-7
Rothschild U, Muller L, Lechner A, Schlösser HA, Beutner D, , Zippelius A, & Rothschild SI. (2018). Immunotherapy in head and neck cancer – Scientific rationale, current treatment options and future directions. Swiss Medical Weekly, 148(19-20), w14625. https://doi.org/10.4414/smw.2018.14625
Rothschild U, Muller L, Lechner A, Schlösser HA, Beutner D, , Zippelius A, & Rothschild SI. (2018). Immunotherapy in head and neck cancer – Scientific rationale, current treatment options and future directions. Swiss Medical Weekly, 148(19-20), w14625. https://doi.org/10.4414/smw.2018.14625
, Müller, Philipp, D’Amico, Lucia, Buchi, Mélanie, Kashyap, Abhishek S., & Zippelius, Alfred. (2018). The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models. Cancer Immunology, Immunotherapy, 67(5), 815–824. https://doi.org/10.1007/s00262-018-2136-x
, Müller, Philipp, D’Amico, Lucia, Buchi, Mélanie, Kashyap, Abhishek S., & Zippelius, Alfred. (2018). The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models. Cancer Immunology, Immunotherapy, 67(5), 815–824. https://doi.org/10.1007/s00262-018-2136-x
, Koelzer VH, Matter MS, Herzig P, Dolder Schlienger B, Wiese MN, Lardinois D, Mertz KD, & Zippelius A. (2018). The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. OncoImmunology, 7(2), e1386362. https://doi.org/10.1080/2162402X.2017.1386362
, Koelzer VH, Matter MS, Herzig P, Dolder Schlienger B, Wiese MN, Lardinois D, Mertz KD, & Zippelius A. (2018). The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. OncoImmunology, 7(2), e1386362. https://doi.org/10.1080/2162402X.2017.1386362
Borsig L., & (2018). Cell adhesion during tumorigenesis and metastasis. In Encyclopedia of Cancer (pp. 307–314). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.64991-7
Borsig L., & (2018). Cell adhesion during tumorigenesis and metastasis. In Encyclopedia of Cancer (pp. 307–314). Elsevier. https://doi.org/10.1016/b978-0-12-801238-3.64991-7
, Hench J, Stanczak M, Heijnen I, Papachristofilou A, Frank S, Zippelius A, & Stenner-Liewen F. (2017). Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade. Journal for ImmunoTherapy of Cancer, 5(1), 46. https://doi.org/10.1186/s40425-017-0249-y
, Hench J, Stanczak M, Heijnen I, Papachristofilou A, Frank S, Zippelius A, & Stenner-Liewen F. (2017). Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade. Journal for ImmunoTherapy of Cancer, 5(1), 46. https://doi.org/10.1186/s40425-017-0249-y
, Varki A, & Borsig L. (2016). Antimetastatic properties of low molecular weight heparin (Patent No. 21). Journal of Clinical Oncology, 34(21), Article 21. https://doi.org/10.1200/JCO.2016.66.4607
, Varki A, & Borsig L. (2016). Antimetastatic properties of low molecular weight heparin (Patent No. 21). Journal of Clinical Oncology, 34(21), Article 21. https://doi.org/10.1200/JCO.2016.66.4607
Muenst S, , Soysal SD, Zippelius A., Tzankov A, & Hoeller S. (2016). The immune system and cancer evasion strategies: Therapeutic concepts. Journal of Internal Medicine, 279(6), 541–562. https://doi.org/10.1111/joim.12470
Muenst S, , Soysal SD, Zippelius A., Tzankov A, & Hoeller S. (2016). The immune system and cancer evasion strategies: Therapeutic concepts. Journal of Internal Medicine, 279(6), 541–562. https://doi.org/10.1111/joim.12470
, Tzankov, A., Juskevicius, D., Degen, L., Rochlitz, C., & Stenner-Liewen, F. (2016). Lenalidomide monotherapy leads to a complete remission in refractory B-cell post-transplant lymphoproliferative disorder. Leukemia & Lymphoma, 57(4), 8–945. https://doi.org/10.3109/10428194.2015.1083563
, Tzankov, A., Juskevicius, D., Degen, L., Rochlitz, C., & Stenner-Liewen, F. (2016). Lenalidomide monotherapy leads to a complete remission in refractory B-cell post-transplant lymphoproliferative disorder. Leukemia & Lymphoma, 57(4), 8–945. https://doi.org/10.3109/10428194.2015.1083563