Publications
54 found
Show per page
Mehta, Viraj, Vilikkathala Sudhakaran, Sukanya, Nellore, Vijaykumar, Journal of Nanobiotechnology, 22(1). https://doi.org/10.1186/s12951-024-02625-y
, & Rath, Subha Narayan. (2024). 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer [Journal-article].
Mehta, Viraj, Vilikkathala Sudhakaran, Sukanya, Nellore, Vijaykumar, Journal of Nanobiotechnology, 22(1). https://doi.org/10.1186/s12951-024-02625-y
, & Rath, Subha Narayan. (2024). 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer [Journal-article].
Dogny, Clelia, André-Lévigne, Dominik, Kalbermatten, Daniel F., & International Journal of Molecular Sciences, 25(12), 6489. https://doi.org/10.3390/ijms25126489
. (2024). Therapeutic Potential and Challenges of Mesenchymal Stem Cell-Derived Exosomes for Peripheral Nerve Regeneration: A Systematic Review [Journal-article].
Dogny, Clelia, André-Lévigne, Dominik, Kalbermatten, Daniel F., & International Journal of Molecular Sciences, 25(12), 6489. https://doi.org/10.3390/ijms25126489
. (2024). Therapeutic Potential and Challenges of Mesenchymal Stem Cell-Derived Exosomes for Peripheral Nerve Regeneration: A Systematic Review [Journal-article].
Eseme, Ebai A., Remy, Katya, Mené, Blandine L., Walz, Solange N., Journal of Plastic, Reconstructive & Aesthetic Surgery, 92, 216–224. https://doi.org/10.1016/j.bjps.2024.02.071
, Oranges, Carlo M., & Kalbermatten, Daniel F. (2024). Sensory and pain outcomes of neurotized skin-grafted free gracilis muscle flaps for lower extremity reconstruction [Journal-article].
Eseme, Ebai A., Remy, Katya, Mené, Blandine L., Walz, Solange N., Journal of Plastic, Reconstructive & Aesthetic Surgery, 92, 216–224. https://doi.org/10.1016/j.bjps.2024.02.071
, Oranges, Carlo M., & Kalbermatten, Daniel F. (2024). Sensory and pain outcomes of neurotized skin-grafted free gracilis muscle flaps for lower extremity reconstruction [Journal-article].
André-Lévigne, Dominik, Pignel, Rodrigue, Boet, Sylvain, Jaquet, Vincent, Kalbermatten, Daniel F., & International Journal of Molecular Sciences, 25(4), 2030. https://doi.org/10.3390/ijms25042030
. (2024). Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia [Journal-article].
André-Lévigne, Dominik, Pignel, Rodrigue, Boet, Sylvain, Jaquet, Vincent, Kalbermatten, Daniel F., & International Journal of Molecular Sciences, 25(4), 2030. https://doi.org/10.3390/ijms25042030
. (2024). Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia [Journal-article].
WALZ, SOLANGE N., MARTINEAU, JEROME, SCAMPA, MATTEO, Anticancer Research, 44(1), 239–247. https://doi.org/10.21873/anticanres.16807
, KALBERMATTEN, DANIEL F., & ORANGES, CARLO M. (2024). Incidence Trends of Melanoma of the Lower Limbs and Hips in the United States: A Surveillance, Epidemiology, and End Results Analysis 2000-2019 [Journal-article].
WALZ, SOLANGE N., MARTINEAU, JEROME, SCAMPA, MATTEO, Anticancer Research, 44(1), 239–247. https://doi.org/10.21873/anticanres.16807
, KALBERMATTEN, DANIEL F., & ORANGES, CARLO M. (2024). Incidence Trends of Melanoma of the Lower Limbs and Hips in the United States: A Surveillance, Epidemiology, and End Results Analysis 2000-2019 [Journal-article].
Fenelon, Mathilde, Galvez, Paul, Kalbermatten, Daniel, Scolozzi, Paolo, & International Journal of Molecular Sciences, 24(19), 14424. https://doi.org/10.3390/ijms241914424
. (2023). Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications [Journal-article].
Fenelon, Mathilde, Galvez, Paul, Kalbermatten, Daniel, Scolozzi, Paolo, & International Journal of Molecular Sciences, 24(19), 14424. https://doi.org/10.3390/ijms241914424
. (2023). Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications [Journal-article].
Solomevich, Sergey O., Oranges, Carlo M., Kalbermatten, Daniel F., Schwendeman, Anna, & Carbohydrate Polymers, 315, 120934. https://doi.org/10.1016/j.carbpol.2023.120934
. (2023). Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries [Journal-article].
Solomevich, Sergey O., Oranges, Carlo M., Kalbermatten, Daniel F., Schwendeman, Anna, & Carbohydrate Polymers, 315, 120934. https://doi.org/10.1016/j.carbpol.2023.120934
. (2023). Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries [Journal-article].
WALZ, SOLANGE N., MARTINEAU, JÉRÔME, SCAMPA, MATTEO, Anticancer Research, 43(9), 4105–4113. https://doi.org/10.21873/anticanres.16600
, KALBERMATTEN, DANIEL F., & ORANGES, CARLO M. (2023). Melanoma of the Lower Limbs and Hips: A Surveillance, Epidemiology, and End Results Analysis of Epidemiology and Survival 2000-2019 [Journal-article].
WALZ, SOLANGE N., MARTINEAU, JÉRÔME, SCAMPA, MATTEO, Anticancer Research, 43(9), 4105–4113. https://doi.org/10.21873/anticanres.16600
, KALBERMATTEN, DANIEL F., & ORANGES, CARLO M. (2023). Melanoma of the Lower Limbs and Hips: A Surveillance, Epidemiology, and End Results Analysis of Epidemiology and Survival 2000-2019 [Journal-article].
Lischer M, di Summa PG, Petrou IG, Schaefer DJ, Guzman R, Kalbermatten DF, & International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097800
. (2023). Mesenchymal Stem Cells in Nerve Tissue Engineering: Bridging Nerve Gap Injuries in Large Animals.
Lischer M, di Summa PG, Petrou IG, Schaefer DJ, Guzman R, Kalbermatten DF, & International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097800
. (2023). Mesenchymal Stem Cells in Nerve Tissue Engineering: Bridging Nerve Gap Injuries in Large Animals.
Madappura, Alakananda Parassini, & Computational and Structural Biotechnology Journal, 21, 4868–4886. https://doi.org/10.1016/j.csbj.2023.10.012
. (2023). A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine [Journal-article].
Madappura, Alakananda Parassini, & Computational and Structural Biotechnology Journal, 21, 4868–4886. https://doi.org/10.1016/j.csbj.2023.10.012
. (2023). A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine [Journal-article].
Petrou IG, Nikou S, Cells, 11(21). https://doi.org/10.3390/cells11213426
, Nifora M, Bravou V, & Kalbermatten DF. (2022). The Role of Hippo Signaling Pathway and ILK in the Pathophysiology of Human Hypertrophic Scars and Keloids: An Immunohistochemical Investigation.
Petrou IG, Nikou S, Cells, 11(21). https://doi.org/10.3390/cells11213426
, Nifora M, Bravou V, & Kalbermatten DF. (2022). The Role of Hippo Signaling Pathway and ILK in the Pathophysiology of Human Hypertrophic Scars and Keloids: An Immunohistochemical Investigation.
di Summa PG, & Neural Regeneration Research, 17(10), 2200–2202. https://doi.org/10.4103/1673-5374.335797
. (2022). Synergy of human platelet lysate and laminin to enhance the neurotrophic effect of human adipose-derived stem cells.
di Summa PG, & Neural Regeneration Research, 17(10), 2200–2202. https://doi.org/10.4103/1673-5374.335797
. (2022). Synergy of human platelet lysate and laminin to enhance the neurotrophic effect of human adipose-derived stem cells.
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, & Bioengineering (Basel, Switzerland), 9(10). https://doi.org/10.3390/bioengineering9100498
. (2022). Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic-Ischemic Encephalopathy in Neonates.
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, & Bioengineering (Basel, Switzerland), 9(10). https://doi.org/10.3390/bioengineering9100498
. (2022). Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic-Ischemic Encephalopathy in Neonates.
Hopf A, Al-Bayati L, Schaefer DJ, Kalbermatten DF, Guzman R, & Bioengineering (Basel, Switzerland), 9(9). https://doi.org/10.3390/bioengineering9090412
. (2022). Optimized Decellularization Protocol for Large Peripheral Nerve Segments: Towards Personalized Nerve Bioengineering.
Hopf A, Al-Bayati L, Schaefer DJ, Kalbermatten DF, Guzman R, & Bioengineering (Basel, Switzerland), 9(9). https://doi.org/10.3390/bioengineering9090412
. (2022). Optimized Decellularization Protocol for Large Peripheral Nerve Segments: Towards Personalized Nerve Bioengineering.
Migga, Alexandra, Schulz, Georg, Rodgers, Griffin, Osterwalder, Melissa, Tanner, Christine, Blank, Holger, Jerjen, Iwan, Salmon, Phil, Twengström, William, Scheel, Mario, Weitkamp, Timm, Schlepütz, Christian M., Bolten, Jan S., Huwyler, Jörg, Hotz, Gerhard, Journal of Medical Imaging, 9(3), 31507. https://doi.org/10.1117/1.jmi.9.3.031507
, & Müller, Bert. (2022). Comparative hard x-ray tomography for virtual histology of zebrafish larva, human tooth cementum, and porcine nerve.
Migga, Alexandra, Schulz, Georg, Rodgers, Griffin, Osterwalder, Melissa, Tanner, Christine, Blank, Holger, Jerjen, Iwan, Salmon, Phil, Twengström, William, Scheel, Mario, Weitkamp, Timm, Schlepütz, Christian M., Bolten, Jan S., Huwyler, Jörg, Hotz, Gerhard, Journal of Medical Imaging, 9(3), 31507. https://doi.org/10.1117/1.jmi.9.3.031507
, & Müller, Bert. (2022). Comparative hard x-ray tomography for virtual histology of zebrafish larva, human tooth cementum, and porcine nerve.
Salgado A, Navarro X, & Editorial: Emerging Therapeutic Approaches for Repair and Regeneration of Injuries in the Peripheral Nervous System. 10, 891459. https://doi.org/10.3389/fbioe.2022.891459
. (2022).
Salgado A, Navarro X, & Editorial: Emerging Therapeutic Approaches for Repair and Regeneration of Injuries in the Peripheral Nervous System. 10, 891459. https://doi.org/10.3389/fbioe.2022.891459
. (2022).
Degrugillier L, Prautsch KM, Schaefer DJ, Guzman R, Kalbermatten DF, Schären S, & Regenerative Medicine, 16(11), 989–1003. https://doi.org/10.2217/rme-2020-0130
. (2021). Systematic investigation and comparison of US FDA-approved immunosuppressive drugs FK506, cyclosporine and rapamycin for neuromuscular regeneration following chronic nerve compression injury.
Degrugillier L, Prautsch KM, Schaefer DJ, Guzman R, Kalbermatten DF, Schären S, & Regenerative Medicine, 16(11), 989–1003. https://doi.org/10.2217/rme-2020-0130
. (2021). Systematic investigation and comparison of US FDA-approved immunosuppressive drugs FK506, cyclosporine and rapamycin for neuromuscular regeneration following chronic nerve compression injury.
Degrugillier L, Prautsch KM, Schaefer DJ, Guzman R, Schären S, Kalbermatten DF, & Regenerative Medicine, 16(10), 931–947. https://doi.org/10.2217/rme-2020-0129
. (2021). A new model of chronic peripheral nerve compression for basic research and pharmaceutical drug testing.
Degrugillier L, Prautsch KM, Schaefer DJ, Guzman R, Schären S, Kalbermatten DF, & Regenerative Medicine, 16(10), 931–947. https://doi.org/10.2217/rme-2020-0129
. (2021). A new model of chronic peripheral nerve compression for basic research and pharmaceutical drug testing.
Hostettler IC, Jayashankar N, Bikis C, Wanderer S, Nevzati E, Karuppiah R, Waran V, Kalbermatten D, Mariani L, Marbacher S, Guzman R, Clinical Studies and Pre-clinical Animal Models on Facial Nerve Preservation, Reconstruction, and Regeneration Following Cerebellopontine Angle Tumor Surgery–A Systematic Review and Future Perspectives. 9, 659413. https://doi.org/10.3389/fbioe.2021.659413
, & Roethlisberger M. (2021).
Hostettler IC, Jayashankar N, Bikis C, Wanderer S, Nevzati E, Karuppiah R, Waran V, Kalbermatten D, Mariani L, Marbacher S, Guzman R, Clinical Studies and Pre-clinical Animal Models on Facial Nerve Preservation, Reconstruction, and Regeneration Following Cerebellopontine Angle Tumor Surgery–A Systematic Review and Future Perspectives. 9, 659413. https://doi.org/10.3389/fbioe.2021.659413
, & Roethlisberger M. (2021).
Oranges CM, Increasing Fat Graft Retention in Irradiated Tissue after Preconditioning with External Volume Expansion (Patent No. 1). 147(1), Article 1. https://doi.org/10.1097/PRS.0000000000007445
, Kalbermatten DF, & Schaefer DJ. (2021).
Oranges CM, Increasing Fat Graft Retention in Irradiated Tissue after Preconditioning with External Volume Expansion (Patent No. 1). 147(1), Article 1. https://doi.org/10.1097/PRS.0000000000007445
, Kalbermatten DF, & Schaefer DJ. (2021).
Hopf A., Schaefer DJ, Kalbermatten DF, Guzman R., & Cells, 9(9), 1–31. https://doi.org/10.3390/cells9091990
(2020). Schwann cell-like cells: Origin and usability for repair and regeneration of the peripheral and central nervous system.
Hopf A., Schaefer DJ, Kalbermatten DF, Guzman R., & Cells, 9(9), 1–31. https://doi.org/10.3390/cells9091990
(2020). Schwann cell-like cells: Origin and usability for repair and regeneration of the peripheral and central nervous system.
Prautsch KM, Degrugillier L, Dirk J Schaefer, Guzman R., Kalbermatten DF, & Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020042
(2020). Ex-vivo stimulation of adipose stem cells by growth factors and fibrin-hydrogel assisted delivery strategies for treating nerve gap-injuries.
Prautsch KM, Degrugillier L, Dirk J Schaefer, Guzman R., Kalbermatten DF, & Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020042
(2020). Ex-vivo stimulation of adipose stem cells by growth factors and fibrin-hydrogel assisted delivery strategies for treating nerve gap-injuries.
Lischer M., Di Summa P.G., Oranges CM, Schaefer DJ, Kalbermatten DF, Guzman R., & Regenerative Medicine, 15(3), 1399–1408. https://doi.org/10.2217/rme-2020-0031
(2020). Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications.
Lischer M., Di Summa P.G., Oranges CM, Schaefer DJ, Kalbermatten DF, Guzman R., & Regenerative Medicine, 15(3), 1399–1408. https://doi.org/10.2217/rme-2020-0031
(2020). Human platelet lysate stimulated adipose stem cells exhibit strong neurotrophic potency for nerve tissue engineering applications.
Oranges CM, di Summa PG, Fat grafting into younger recipients improves volume retention in an animal model (Patent No. 3). 145(3), Article 3. https://doi.org/10.1097/PRS.0000000000006574
, Haug M, Kalbermatten DF, & Schaefer DJ. (2020).
Oranges CM, di Summa PG, Fat grafting into younger recipients improves volume retention in an animal model (Patent No. 3). 145(3), Article 3. https://doi.org/10.1097/PRS.0000000000006574
, Haug M, Kalbermatten DF, & Schaefer DJ. (2020).
Ghosh N, Kalbermatten D, CNS and Neurological Disorders - Drug Targets, 19(8), 560–571. https://doi.org/10.2174/1871527319666200726222558
, & Guzman R. (2020). Fibrosis and regulation of nerve regeneration in the peripheral and central nervous systems.
Ghosh N, Kalbermatten D, CNS and Neurological Disorders - Drug Targets, 19(8), 560–571. https://doi.org/10.2174/1871527319666200726222558
, & Guzman R. (2020). Fibrosis and regulation of nerve regeneration in the peripheral and central nervous systems.
Prautsch, Katharina M., Schmidt, Alexander, Paradiso, Viola, Schaefer, Dirk J., Guzman, Raphael, Kalbermatten, Daniel F., & Cells, 9(9), 1–21. https://doi.org/10.3390/cells9091939
. (2020). Modulation of Human Adipose Stem Cells’ Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro.
Prautsch, Katharina M., Schmidt, Alexander, Paradiso, Viola, Schaefer, Dirk J., Guzman, Raphael, Kalbermatten, Daniel F., & Cells, 9(9), 1–21. https://doi.org/10.3390/cells9091939
. (2020). Modulation of Human Adipose Stem Cells’ Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro.
Broguiere N, Husch A, Palazzolo G, Bradke F, Biomaterials, 200, 56–65. https://doi.org/10.1016/j.biomaterials.2019.01.047
, & Zenobi-Wong M. (2019). Macroporous hydrogels derived from aqueous dynamic phase separation.
Broguiere N, Husch A, Palazzolo G, Bradke F, Biomaterials, 200, 56–65. https://doi.org/10.1016/j.biomaterials.2019.01.047
, & Zenobi-Wong M. (2019). Macroporous hydrogels derived from aqueous dynamic phase separation.
Eswaramoorthy SD, Dhiman N, Korra G, Oranges CM, Schaefer DJ, Rath SN, & Regenerative Medicine, 14(7), 647–661. https://doi.org/10.2217/rme-2018-0166
. (2019). Isogenic-induced endothelial cells enhance osteogenic differentiation of mesenchymal stem cells on silk fibroin scaffold.
Eswaramoorthy SD, Dhiman N, Korra G, Oranges CM, Schaefer DJ, Rath SN, & Regenerative Medicine, 14(7), 647–661. https://doi.org/10.2217/rme-2018-0166
. (2019). Isogenic-induced endothelial cells enhance osteogenic differentiation of mesenchymal stem cells on silk fibroin scaffold.
Oranges, Carlo M., In Vivo, 33(3), 839–842. https://doi.org/10.21873/invivo.11548
, Brantner, Philipp, Msallem, Bilal, Giordano, Salvatore, Benitez, Benito, Kalbermatten, Daniel F., Schaefer, Dirk J., & Thieringer, Florian M. (2019). Three-dimensional Assessment of the Breast: Validation of a Novel, Simple and Inexpensive Scanning Process.
Oranges, Carlo M., In Vivo, 33(3), 839–842. https://doi.org/10.21873/invivo.11548
, Brantner, Philipp, Msallem, Bilal, Giordano, Salvatore, Benitez, Benito, Kalbermatten, Daniel F., Schaefer, Dirk J., & Thieringer, Florian M. (2019). Three-dimensional Assessment of the Breast: Validation of a Novel, Simple and Inexpensive Scanning Process.
Oranges CM, Striebel J, Tremp M, Plastic and Reconstructive Surgery, 143(4), 1099–1107. https://doi.org/10.1097/prs.0000000000005403
, Kalbermatten DF, Harder Y, & Schaefer DJ. (2019). The preparation of the recipient site in fat grafting: A comprehensive review of the preclinical evidence.
Oranges CM, Striebel J, Tremp M, Plastic and Reconstructive Surgery, 143(4), 1099–1107. https://doi.org/10.1097/prs.0000000000005403
, Kalbermatten DF, Harder Y, & Schaefer DJ. (2019). The preparation of the recipient site in fat grafting: A comprehensive review of the preclinical evidence.
Di Summa PG, Schiraldi L, Cherubino M, Oranges CM, Kalbermatten DF, Raffoul W, & Anatomical record (Hoboken, N.J. : 2007), 301(10), 1714–1721. https://doi.org/10.1002/ar.23841
. (2018). Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats.
Di Summa PG, Schiraldi L, Cherubino M, Oranges CM, Kalbermatten DF, Raffoul W, & Anatomical record (Hoboken, N.J. : 2007), 301(10), 1714–1721. https://doi.org/10.1002/ar.23841
. (2018). Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats.
Tremp M, Sprenger L., Degrugillier L., Schaefer DJ, Muscle and Nerve, 58(4), 566–572. https://doi.org/10.1002/mus.26188
, Schaeren S., & Kalbermatten DF. (2018). Regeneration of nerve crush injury using adipose-derived stem cells: A multimodal comparison.
Tremp M, Sprenger L., Degrugillier L., Schaefer DJ, Muscle and Nerve, 58(4), 566–572. https://doi.org/10.1002/mus.26188
, Schaeren S., & Kalbermatten DF. (2018). Regeneration of nerve crush injury using adipose-derived stem cells: A multimodal comparison.
Wang W, Degrugillier L, Tremp M, Prautsch K, Sottaz L, Schaefer DJ, Anatomical record (Hoboken, N.J. : 2007), 301(10), 1690–1696. https://doi.org/10.1002/ar.23921
, & Kalbermatten D. (2018). Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement.
Wang W, Degrugillier L, Tremp M, Prautsch K, Sottaz L, Schaefer DJ, Anatomical record (Hoboken, N.J. : 2007), 301(10), 1690–1696. https://doi.org/10.1002/ar.23921
, & Kalbermatten D. (2018). Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement.
Kappos EA, Kappos EA, Engels PE, Tremp M, Sieber PK, von Felten S, Journal of Plastic, Reconstructive & Aesthetic Surgery : JPRAS, 71(6), 833–839. https://doi.org/10.1016/j.bjps.2018.03.012
, Meyer Zu Schwabedissen M, Fischmann A, Schaefer DJ, & Kalbermatten DF. (2018). Denervation leads to volume regression in breast cancer.
Kappos EA, Kappos EA, Engels PE, Tremp M, Sieber PK, von Felten S, Journal of Plastic, Reconstructive & Aesthetic Surgery : JPRAS, 71(6), 833–839. https://doi.org/10.1016/j.bjps.2018.03.012
, Meyer Zu Schwabedissen M, Fischmann A, Schaefer DJ, & Kalbermatten DF. (2018). Denervation leads to volume regression in breast cancer.
Oranges CM, Tremp M, Wang W, In Vivo (Athens, Greece), 32(3), 591–595. https://doi.org/10.21873/invivo.11280
, DI Summa PG, Wettstein R, Schaefer DJ, & Kalbermatten DF. (2018). Patient Height, Weight, BMI and Age as Predictors of Gracilis Muscle Free-Flap Mass in Lower Extremity Reconstruction.
Oranges CM, Tremp M, Wang W, In Vivo (Athens, Greece), 32(3), 591–595. https://doi.org/10.21873/invivo.11280
, DI Summa PG, Wettstein R, Schaefer DJ, & Kalbermatten DF. (2018). Patient Height, Weight, BMI and Age as Predictors of Gracilis Muscle Free-Flap Mass in Lower Extremity Reconstruction.
Schiraldi L, Sottaz L, Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 71(4), 557–565. https://doi.org/10.1016/j.bjps.2017.11.007
, Campisi C, Oranges CM, Raffoul W, Kalbermatten DF, & di Summa PG. (2018). Split-sciatic nerve surgery: A new microsurgical model in experimental nerve repair.
Schiraldi L, Sottaz L, Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 71(4), 557–565. https://doi.org/10.1016/j.bjps.2017.11.007
, Campisi C, Oranges CM, Raffoul W, Kalbermatten DF, & di Summa PG. (2018). Split-sciatic nerve surgery: A new microsurgical model in experimental nerve repair.
Oranges CM, Striebel J, Tremp M, Plastic and reconstructive surgery. Global open, 6(2), e1649. https://doi.org/10.1097/gox.0000000000001649
, Kalbermatten DF, & Schaefer DJ. (2018). The Impact of Recipient Site External Expansion in Fat Grafting Surgical Outcomes.
Oranges CM, Striebel J, Tremp M, Plastic and reconstructive surgery. Global open, 6(2), e1649. https://doi.org/10.1097/gox.0000000000001649
, Kalbermatten DF, & Schaefer DJ. (2018). The Impact of Recipient Site External Expansion in Fat Grafting Surgical Outcomes.
Bikis C., Thalmann P., Degrugillier L., Schulz G., Muller B., Kalbermatten D.F., Journal of Neuroscience Methods, 294, 59–66. https://doi.org/10.1016/j.jneumeth.2017.11.005
, & Hieber S.E. (2018). Three-dimensional and non-destructive characterization of nerves inside conduits using laboratory-based micro computed tomography.
Bikis C., Thalmann P., Degrugillier L., Schulz G., Muller B., Kalbermatten D.F., Journal of Neuroscience Methods, 294, 59–66. https://doi.org/10.1016/j.jneumeth.2017.11.005
, & Hieber S.E. (2018). Three-dimensional and non-destructive characterization of nerves inside conduits using laboratory-based micro computed tomography.
Bikis, Christos, Degrugillier, Lucas, Thalmann, Peter, Schulz, Georg, Müller, Bert, Hieber, Simone E., Kalbermatten, Daniel F., & Journal of Neuroscience Methods, 295, 37–44. https://doi.org/10.1016/j.jneumeth.2017.11.015
. (2018). Three-dimensional imaging and analysis of entire peripheral nerves after repair and reconstruction.
Bikis, Christos, Degrugillier, Lucas, Thalmann, Peter, Schulz, Georg, Müller, Bert, Hieber, Simone E., Kalbermatten, Daniel F., & Journal of Neuroscience Methods, 295, 37–44. https://doi.org/10.1016/j.jneumeth.2017.11.015
. (2018). Three-dimensional imaging and analysis of entire peripheral nerves after repair and reconstruction.
Oranges,Carlo, Tremp,Mathias , Plastic and Reconstructive Surgery .
, Schaefer,Dirk Johannes, & Kalbermatten,Daniel. (2018). The Preparation of the Recipient Site in Fat Grafting: A Comprehensive Review of the Pre-Clinical Evidence.
Oranges,Carlo, Tremp,Mathias , Plastic and Reconstructive Surgery .
, Schaefer,Dirk Johannes, & Kalbermatten,Daniel. (2018). The Preparation of the Recipient Site in Fat Grafting: A Comprehensive Review of the Pre-Clinical Evidence.
Horst M, Milleret V, Nötzli S, Journal of biomedical materials research. Part A, 102(7), 2116–2124. https://doi.org/10.1002/jbm.a.34889
, Sulser T, Gobet R, & Eberli D. (2014). Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration.
Horst M, Milleret V, Nötzli S, Journal of biomedical materials research. Part A, 102(7), 2116–2124. https://doi.org/10.1002/jbm.a.34889
, Sulser T, Gobet R, & Eberli D. (2014). Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration.
Catrina S, Gander B, & European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 85(1), 139–142. https://doi.org/10.1016/j.ejpb.2013.03.030
. (2013). Nerve conduit scaffolds for discrete delivery of two neurotrophic factors.
Catrina S, Gander B, & European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 85(1), 139–142. https://doi.org/10.1016/j.ejpb.2013.03.030
. (2013). Nerve conduit scaffolds for discrete delivery of two neurotrophic factors.
Horst M, Journal of tissue engineering and regenerative medicine, 7(7), 515–522. https://doi.org/10.1002/term.547
, Gobet R, Sulser T, Milleret V, Hall H, Atala A, & Eberli D. (2013). Engineering functional bladder tissues.
Horst M, Journal of tissue engineering and regenerative medicine, 7(7), 515–522. https://doi.org/10.1002/term.547
, Gobet R, Sulser T, Milleret V, Hall H, Atala A, & Eberli D. (2013). Engineering functional bladder tissues.
Horst M, Biomaterials, 34(5), 1537–1545. https://doi.org/10.1016/j.biomaterials.2012.10.075
, Milleret V, Sulser T, Gobet R, & Eberli D. (2013). A bilayered hybrid microfibrous PLGA--acellular matrix scaffold for hollow organ tissue engineering.
Horst M, Biomaterials, 34(5), 1537–1545. https://doi.org/10.1016/j.biomaterials.2012.10.075
, Milleret V, Sulser T, Gobet R, & Eberli D. (2013). A bilayered hybrid microfibrous PLGA--acellular matrix scaffold for hollow organ tissue engineering.
Journal of controlled release : official journal of the Controlled Release Society, 161(2), 274–282. https://doi.org/10.1016/j.jconrel.2011.11.036
, & Gander B. (2012). Growth factor delivery systems and repair strategies for damaged peripheral nerves.
Journal of controlled release : official journal of the Controlled Release Society, 161(2), 274–282. https://doi.org/10.1016/j.jconrel.2011.11.036
, & Gander B. (2012). Growth factor delivery systems and repair strategies for damaged peripheral nerves.
Journal of the peripheral nervous system : JPNS, 15(2), 93–103. https://doi.org/10.1111/j.1529-8027.2010.00257.x
, & Gander B. (2010). Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration.
Journal of the peripheral nervous system : JPNS, 15(2), 93–103. https://doi.org/10.1111/j.1529-8027.2010.00257.x
, & Gander B. (2010). Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration.
Journal of controlled release : official journal of the Controlled Release Society, 143(2), 168–174. https://doi.org/10.1016/j.jconrel.2009.12.017
, Feldman K, Tervoort T, Papaloïzos M, & Gander B. (2010). Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF.
Journal of controlled release : official journal of the Controlled Release Society, 143(2), 168–174. https://doi.org/10.1016/j.jconrel.2009.12.017
, Feldman K, Tervoort T, Papaloïzos M, & Gander B. (2010). Collagen nerve conduits releasing the neurotrophic factors GDNF and NGF.
Biomaterials, 31(8), 2323–2334. https://doi.org/10.1016/j.biomaterials.2009.11.073
, Papaloïzos M, & Gander B. (2010). Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration.
Biomaterials, 31(8), 2323–2334. https://doi.org/10.1016/j.biomaterials.2009.11.073
, Papaloïzos M, & Gander B. (2010). Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration.
Horst M., Materials, 3(1), 241–263. https://doi.org/10.3390/ma3010241
, Gobet R., Sulser T., Hall H., & Eberli D. (2010). Scaffold Characteristics for functional hollow organ regeneration.
Horst M., Materials, 3(1), 241–263. https://doi.org/10.3390/ma3010241
, Gobet R., Sulser T., Hall H., & Eberli D. (2010). Scaffold Characteristics for functional hollow organ regeneration.
Biomaterials, 31(32), 8402–8409. https://doi.org/10.1016/j.biomaterials.2010.07.052
, di Summa, Pietro, Papaloïzos, Michaël, Kalbermatten, Daniel, & Gander, Bruno. (2010). Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats.
Biomaterials, 31(32), 8402–8409. https://doi.org/10.1016/j.biomaterials.2010.07.052
, di Summa, Pietro, Papaloïzos, Michaël, Kalbermatten, Daniel, & Gander, Bruno. (2010). Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration in rats.
Neuroscience research, 65(1), 88–97. https://doi.org/10.1016/j.neures.2009.06.003
, Papaloïzos M, & Gander B. (2009). Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro.
Neuroscience research, 65(1), 88–97. https://doi.org/10.1016/j.neures.2009.06.003
, Papaloïzos M, & Gander B. (2009). Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro.
JOURNAL OF BIOSCIENCES, 33, 221–230.
, Rajakumari, Sona, Narayana, Yeddula, Joshi, Beenu, Katoch, V. M., Rajasekharan, Ram, & Balaji, Kithiganahalli N. (2008). Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis.
JOURNAL OF BIOSCIENCES, 33, 221–230.
, Rajakumari, Sona, Narayana, Yeddula, Joshi, Beenu, Katoch, V. M., Rajasekharan, Ram, & Balaji, Kithiganahalli N. (2008). Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis.
Balaji, Kithiganahalli N, Goyal, Girija, Narayana, Yeddula, Microbes and infection, 9(3), 271–281. https://doi.org/10.1016/j.micinf.2006.11.013
, Chaturvedi, Rashmi, & Mohammad, Saleemulla. (2007). Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells.
Balaji, Kithiganahalli N, Goyal, Girija, Narayana, Yeddula, Microbes and infection, 9(3), 271–281. https://doi.org/10.1016/j.micinf.2006.11.013
, Chaturvedi, Rashmi, & Mohammad, Saleemulla. (2007). Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells.
Pushpalatha T, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 18(3), 207–212. https://doi.org/10.1007/s10534-005-0336-2
, & Sreenivasula Reddy P. (2005). Exposure to high fluoride concentration in drinking water will affect spermatogenesis and steroidogenesis in male albino rats.
Pushpalatha T, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 18(3), 207–212. https://doi.org/10.1007/s10534-005-0336-2
, & Sreenivasula Reddy P. (2005). Exposure to high fluoride concentration in drinking water will affect spermatogenesis and steroidogenesis in male albino rats.