Publications
19 found
Show per page
Ramin-Wright, Leandra, Kaempfen, Sirée, Delgado-Eckert, Edgar, Sanchez, Carlos, Schulzke, Sven M., & Scientific Reports, 15. https://doi.org/10.1038/s41598-025-89174-y
. (2025). Sample entropy of oxygen saturation in preterm infants.
Ramin-Wright, Leandra, Kaempfen, Sirée, Delgado-Eckert, Edgar, Sanchez, Carlos, Schulzke, Sven M., & Scientific Reports, 15. https://doi.org/10.1038/s41598-025-89174-y
. (2025). Sample entropy of oxygen saturation in preterm infants.
Pediatric Pulmonology, 60(5). https://doi.org/10.1002/ppul.71121
, Al‐Obaidi, Zeena, Svedenkrans, Jenny, Dellacà, Raffaele, & Pillow, J. Jane. (2025). Diaphragm Function in Very Preterm Infants at 36 Weeks’ Postmenstrual Age [Journal-article].
Pediatric Pulmonology, 60(5). https://doi.org/10.1002/ppul.71121
, Al‐Obaidi, Zeena, Svedenkrans, Jenny, Dellacà, Raffaele, & Pillow, J. Jane. (2025). Diaphragm Function in Very Preterm Infants at 36 Weeks’ Postmenstrual Age [Journal-article].
Gorlanova, Olga, Nissen-Kratzert, Annika, Mostacci, Nadja, Rüttimann, Céline, Künstle, Noëmi, Marten, Andrea, Gisler, Amanda, Bacher, Katharina, Decrue, Fabienne, Salem, Yasmin, Usemann, Jakob, Korten, Insa, Yammine, Sophie, Nahum, Uri, Schulzke, Sven, Latzin, Philipp, Röösli, Martin, Fuchs, Oliver, Wyler, Florian, et al. (2024). Comparison of nasal microbiota between preterm and full-term infants in early life. Pediatric Research. https://doi.org/10.1038/s41390-024-03675-6
Gorlanova, Olga, Nissen-Kratzert, Annika, Mostacci, Nadja, Rüttimann, Céline, Künstle, Noëmi, Marten, Andrea, Gisler, Amanda, Bacher, Katharina, Decrue, Fabienne, Salem, Yasmin, Usemann, Jakob, Korten, Insa, Yammine, Sophie, Nahum, Uri, Schulzke, Sven, Latzin, Philipp, Röösli, Martin, Fuchs, Oliver, Wyler, Florian, et al. (2024). Comparison of nasal microbiota between preterm and full-term infants in early life. Pediatric Research. https://doi.org/10.1038/s41390-024-03675-6
Zannin E, Pediatric Pulmonology, 58(5), 1454–1462. https://doi.org/10.1002/ppul.26343
, Choi JY, Simpson SJ, Veneroni C, Dellaca RL, & Pillow JJ. (2023). Ventilatory response and stability of oxygen saturation during a hypoxic challenge in very preterm infants.
Zannin E, Pediatric Pulmonology, 58(5), 1454–1462. https://doi.org/10.1002/ppul.26343
, Choi JY, Simpson SJ, Veneroni C, Dellaca RL, & Pillow JJ. (2023). Ventilatory response and stability of oxygen saturation during a hypoxic challenge in very preterm infants.
Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1112115
, Y. Jane Choi, Theodore Dassios, J. Gareth Jones, & Geoffrey G. Lockwood and J. Jane Pillow. (2023). Unstable SpO2 in preterm infants: The key role of reduced ventilation to perfusion ratio.
Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1112115
, Y. Jane Choi, Theodore Dassios, J. Gareth Jones, & Geoffrey G. Lockwood and J. Jane Pillow. (2023). Unstable SpO2 in preterm infants: The key role of reduced ventilation to perfusion ratio.
Freislich Z, Frontiers in Pediatrics, 10, 974643. https://doi.org/10.3389/fped.2022.974643
, Hemy N, Pillow JJ, Hall GL, Wilson AC, & Simpson SJ. (2022). The ventilatory response to hypoxia is blunted in some preterm infants during the second year of life.
Freislich Z, Frontiers in Pediatrics, 10, 974643. https://doi.org/10.3389/fped.2022.974643
, Hemy N, Pillow JJ, Hall GL, Wilson AC, & Simpson SJ. (2022). The ventilatory response to hypoxia is blunted in some preterm infants during the second year of life.
Urs R, Pediatric Research, 91(4), Article 4. https://doi.org/10.1038/s41390-021-01474-x
, Pillow JJ, Hartmann B, Hall GL, & Simpson SJ. (2022). Collecting exhaled breath condensate from non-ventilated preterm-born infants: a modified method (Patent No. 4).
Urs R, Pediatric Research, 91(4), Article 4. https://doi.org/10.1038/s41390-021-01474-x
, Pillow JJ, Hartmann B, Hall GL, & Simpson SJ. (2022). Collecting exhaled breath condensate from non-ventilated preterm-born infants: a modified method (Patent No. 4).
Schulzke SM, & Paediatric Anaesthesia, 32(2), 363–371. https://doi.org/10.1111/pan.14369
. (2022). Update on ventilatory management of extremely preterm infants—A Neonatal Intensive Care Unit perspective.
Schulzke SM, & Paediatric Anaesthesia, 32(2), 363–371. https://doi.org/10.1111/pan.14369
. (2022). Update on ventilatory management of extremely preterm infants—A Neonatal Intensive Care Unit perspective.
Woods PL, Archives of Disease in Childhood: Fetal and Neonatal Edition, 106(6), F657–F662. https://doi.org/10.1136/archdischild-2020-320830
, Woods A, & Gill AW. (2021). Early lung ultrasound affords little to the prediction of bronchopulmonary dysplasia.
Woods PL, Archives of Disease in Childhood: Fetal and Neonatal Edition, 106(6), F657–F662. https://doi.org/10.1136/archdischild-2020-320830
, Woods A, & Gill AW. (2021). Early lung ultrasound affords little to the prediction of bronchopulmonary dysplasia.
Thorax, 76(7), 689–695. https://doi.org/10.1136/thoraxjnl-2020-214659
, Choi YJ, Rakshasbhuvankar A, Svedenkrans J, Jones G, & Pillow J. (2021). Simplified bedside assessment of pulmonary gas exchange in very preterm infants at 36 weeks’ postmenstrual age.
Thorax, 76(7), 689–695. https://doi.org/10.1136/thoraxjnl-2020-214659
, Choi YJ, Rakshasbhuvankar A, Svedenkrans J, Jones G, & Pillow J. (2021). Simplified bedside assessment of pulmonary gas exchange in very preterm infants at 36 weeks’ postmenstrual age.
Choi YJ, Neonatology, 118(1), 98–105. https://doi.org/10.1159/000513357
, Hemy NR, Hall GL, Doherty DA, Simpson SJ, & Pillow JJ. (2021). Pulmonary Gas Exchange Improves over the First Year in Preterm Infants with and without Bronchopulmonary Dysplasia.
Choi YJ, Neonatology, 118(1), 98–105. https://doi.org/10.1159/000513357
, Hemy NR, Hall GL, Doherty DA, Simpson SJ, & Pillow JJ. (2021). Pulmonary Gas Exchange Improves over the First Year in Preterm Infants with and without Bronchopulmonary Dysplasia.
Rakshasbhuvankar AA, Simmer K, Patole SK, Pediatrics, 147(1). https://doi.org/10.1542/PEDS.2020-009985
, Nathan EA, Clarke MW, & Pillow JJ. (2021). Enteral vitamin A for reducing severity of bronchopulmonary dysplasia: A randomized trial.
Rakshasbhuvankar AA, Simmer K, Patole SK, Pediatrics, 147(1). https://doi.org/10.1542/PEDS.2020-009985
, Nathan EA, Clarke MW, & Pillow JJ. (2021). Enteral vitamin A for reducing severity of bronchopulmonary dysplasia: A randomized trial.
Evers KS, Hügli M, Fouzas S, Kasser S, Pohl C, Frontiers in Neuroscience, 14, 579958. https://doi.org/10.3389/fnins.2020.579958
, Bernasconi L, Kuhle J, & Wellmann S. (2020). Serum Neurofilament Levels in Children With Febrile Seizures and in Controls.
Evers KS, Hügli M, Fouzas S, Kasser S, Pohl C, Frontiers in Neuroscience, 14, 579958. https://doi.org/10.3389/fnins.2020.579958
, Bernasconi L, Kuhle J, & Wellmann S. (2020). Serum Neurofilament Levels in Children With Febrile Seizures and in Controls.
Paediatric Respiratory Reviews, 32, 91–97. https://doi.org/10.1016/j.prrv.2018.12.002
, Simpson SJ, & Pillow JJ. (2019). Bronchopulmonary dysplasia: Rationale for a pathophysiological rather than treatment based approach to diagnosis.
Paediatric Respiratory Reviews, 32, 91–97. https://doi.org/10.1016/j.prrv.2018.12.002
, Simpson SJ, & Pillow JJ. (2019). Bronchopulmonary dysplasia: Rationale for a pathophysiological rather than treatment based approach to diagnosis.
Svedenkrans J, American Journal of Respiratory and Critical Care Medicine, 200(4), 471–480. https://doi.org/10.1164/rccm.201810-2037OC
, Jones JG, Doherty DA, & Pillow JJ. (2019). Physiology and predictors of impaired gas exchange in infants with bronchopulmonary dysplasia.
Svedenkrans J, American Journal of Respiratory and Critical Care Medicine, 200(4), 471–480. https://doi.org/10.1164/rccm.201810-2037OC
, Jones JG, Doherty DA, & Pillow JJ. (2019). Physiology and predictors of impaired gas exchange in infants with bronchopulmonary dysplasia.
Pechmann A, Wellmann S, PLoS ONE, 14(1), e0210004. https://doi.org/10.1371/journal.pone.0210004
, Krüger M, & Zieger B. (2019). Increased von Willebrand factor parameters in children with febrile seizures.
Pechmann A, Wellmann S, PLoS ONE, 14(1), e0210004. https://doi.org/10.1371/journal.pone.0210004
, Krüger M, & Zieger B. (2019). Increased von Willebrand factor parameters in children with febrile seizures.
Foong, R. E., Rosenow, T., Simpson, S. J., Stöklin, B., Gray, D., Pillow, J. J., Hall, G. L., & Ramsey, K. A. (2017). End-inspiratory molar mass step correction for analysis of infant multiple breath washout tests. Pediatric Pulmonology, 52(1), 10–13. https://doi.org/10.1002/ppul.23499
Foong, R. E., Rosenow, T., Simpson, S. J., Stöklin, B., Gray, D., Pillow, J. J., Hall, G. L., & Ramsey, K. A. (2017). End-inspiratory molar mass step correction for analysis of infant multiple breath washout tests. Pediatric Pulmonology, 52(1), 10–13. https://doi.org/10.1002/ppul.23499
PLoS ONE, 10(4), e0124663. https://doi.org/10.1371/journal.pone.0124663
, Fouzas S, Schillinger P, Cayir S, Skendaj R, Ramser M, Weber P, & Wellmann S. (2015). Copeptin as a serum biomarker of febrile seizures.
PLoS ONE, 10(4), e0124663. https://doi.org/10.1371/journal.pone.0124663
, Fouzas S, Schillinger P, Cayir S, Skendaj R, Ramser M, Weber P, & Wellmann S. (2015). Copeptin as a serum biomarker of febrile seizures.
Dressler A, Seizure, 19(7), 404–408. https://doi.org/10.1016/j.seizure.2010.06.006
, Reithofer E, Benninger F, Freilinger M, Hauser E, Reiter-Fink E, Seidl R, Trimmel-Schwahofer P, & Feucht M. (2010). Long-term outcome and tolerability of the ketogenic diet in drug-resistant childhood epilepsy-the austrian experience.
Dressler A, Seizure, 19(7), 404–408. https://doi.org/10.1016/j.seizure.2010.06.006
, Reithofer E, Benninger F, Freilinger M, Hauser E, Reiter-Fink E, Seidl R, Trimmel-Schwahofer P, & Feucht M. (2010). Long-term outcome and tolerability of the ketogenic diet in drug-resistant childhood epilepsy-the austrian experience.