UNIverse - Public Research Portal
Profile Photo
Prof. Dr.
Yang Yao
Department of Chemistry
Profiles & Affiliations
Publications
19 found
Show per page
Zhang, Z., Liu, B., Yang, J., Yao, Y., Liu, J., Gu, Z.-G., & Yan, X. (2023). Mott-Schottky heterojunctions of ultrafine Ni3Fe confined in amorphous molybdenum oxide for efficient and durable overall water electrolysis. Applied Surface Science, 640. https://doi.org/10.1016/j.apsusc.2023.158344
URLs
URLs
Yao, Y., Catalini, S., Foggi, P., & Mezzenga, R. (2023). Water-lipid interface in lipidic mesophases with excess water. Faraday Discussions, 249, 469–484. https://doi.org/10.1039/d3fd00118k
URLs
URLs
Yan, X., Xiang, L., Zhang, W.-D., Xu, H., Yao, Y., Liu, J., & Gu, Z.-G. (2023). Metal organic framework-assisted in-situ synthesis of β-NiMnOOH nanosheets with abundant NiOOH active sites for efficient electro-oxidation of urea. Journal of Colloid and Interface Science, 629, 370–378. https://doi.org/10.1016/j.jcis.2022.08.155
URLs
URLs
Yao, Y., Catalini, S., Kutus, B., Hunger, J., Foggi, P., & Mezzenga, R. (2021). Probing Water State during Lipidic Mesophases Phase Transitions [Journal-article]. Angewandte Chemie, 133(48), 25478–25484. https://doi.org/10.1002/ange.202110975
URLs
URLs
Yao, Y., Zhou, T., Färber, R., Grossner, U., Floudas, G., & Mezzenga, R. (2021). Designing cryo-enzymatic reactions in subzero liquid water by lipidic mesophase nanoconfinement. Nature Nanotechnology, 16(7), 802–810. https://doi.org/10.1038/s41565-021-00893-5
URLs
URLs
Zhou, T., Yao, Y., Zhang, Q., & Mezzenga, R. (2021). Cryogenic activity and stability of benzaldehyde lyase enzyme in lipidic mesophases-nanoconfined water. Chemical Communications, 57(46), 5650–5653. https://doi.org/10.1039/d1cc01315g
URLs
URLs
Yao, Y., Fella, V., Huang, W., Zhang, K. A. I., Landfester, K., Butt, H.-J., Vogel, M., & Floudas, G. (2019). Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water. Langmuir, 35(17), 5890–5901. https://doi.org/10.1021/acs.langmuir.9b00496
URLs
URLs
Yao, Y., Butt, H.-J., Floudas, G., Zhou, J., & Doi, M. (2018). Theory on Capillary Filling of Polymer Melts in Nanopores. Macromolecular Rapid Communications, 39(14). https://doi.org/10.1002/marc.201800087
URLs
URLs
Yao, Y., Butt, H.-J., Zhou, J., Doi, M., & Floudas, G. (2018). Capillary Imbibition of Polymer Mixtures in Nanopores. Macromolecules, 51(8), 3059–3065. https://doi.org/10.1021/acs.macromol.7b02724
URLs
URLs
Yao, Y., Suzuki, Y., Seiwert, J., Steinhart, M., Frey, H., Butt, H.-J., & Floudas, G. (2017). Capillary Imbibition, Crystallization, and Local Dynamics of Hyperbranched Poly(ethylene oxide) Confined to Nanoporous Alumina. Macromolecules, 50(21), 8755–8764. https://doi.org/10.1021/acs.macromol.7b01843
URLs
URLs
Yao, Y., Alexandris, S., Henrich, F., Auernhammer, G., Steinhart, M., Butt, H.-J., & Floudas, G. (2017). Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina. Journal of Chemical Physics, 146(20). https://doi.org/10.1063/1.4978298
URLs
URLs
Ning, N., Li, S., Sun, H., Wang, Y., Liu, S., Yao, Y., Yan, B., Zhang, L., & Tian, M. (2017). Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomers by the synergistic effect of polyethylene glycol and partially reduced graphene oxide. Composites Science and Technology, 142, 311–320. https://doi.org/10.1016/j.compscitech.2017.02.015
URLs
URLs
Yao, Y., Ruckdeschel, P., Graf, R., Butt, H.-J., Retsch, M., & Floudas, G. (2017). Homogeneous nucleation of ice confined in hollow silica spheres. Journal of Physical Chemistry B, 121(1), 306–313. https://doi.org/10.1021/acs.jpcb.6b11053
URLs
URLs
Yao, Y., Sakai, T., Steinhart, M., Butt, H.-J., & Floudas, G. (2016). Effect of Poly(ethylene oxide) Architecture on the Bulk and Confined Crystallization within Nanoporous Alumina. Macromolecules, 49(16), 5945–5954. https://doi.org/10.1021/acs.macromol.6b01406
URLs
URLs
Ning, N., Wang, Z., Yao, Y., Zhang, L., & Tian, M. (2015). Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals. Carbohydrate Polymers, 130, 262–267. https://doi.org/10.1016/j.carbpol.2015.03.083
URLs
URLs
Ning, N., Yan, B., Liu, S., Yao, Y., Zhang, L., Chan, T. W., Nishi, T., & Tian, M. (2015). Improved actuated strain of dielectric elastomer through disruption of hydrogen bonds of thermoplastic polyurethane by adding diaminonaphthalene. Smart Materials and Structures, 24(3). https://doi.org/10.1088/0964-1726/24/3/032002
URLs
URLs
Tian, M., Yao, Y., Liu, S., Yang, D., Zhang, L., Nishi, T., & Ning, N. (2015). Separated-structured all-organic dielectric elastomer with large actuation strain under ultra-low voltage and high mechanical strength. Journal of Materials Chemistry A, 3(4), 1483–1491. https://doi.org/10.1039/c4ta04197f
URLs
URLs
Liu, S., Tian, M., Yan, B., Yao, Y., Zhang, L., Nishi, T., & Ning, N. (2015). High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer, 56, 375–384. https://doi.org/10.1016/j.polymer.2014.11.012
URLs
URLs
Tian, M., Yan, B., Yao, Y., Zhang, L., Nishi, T., & Ning, N. (2014). Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity. Journal of Materials Chemistry C, 2(39), 8388–8397. https://doi.org/10.1039/c4tc01140f
URLs
URLs