Publications
31 found
Show per page
Götz, M., Barth, A., Bohr, S. S.-R., Börner, R., Chen, J., Cordes, T., Erie, D. A., Gebhardt, C., Hadzic, M. C. A. S., Hamilton, G. L., Hatzakis, N. S., Hugel, T., Kisley, L., Lamb, D. C., de Lannoy, C., Mahn, C., Dunukara, D., de Ridder, D., Sanabria, H., et al. (2024). Reply to: On the statistical foundation of a recent single molecule FRET benchmark. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47734-2
Wen, Chenyu, ACS Nano, 18(31), 20449–20458. https://doi.org/10.1021/acsnano.4c04788
, & Dekker, Cees. (2024). Understanding Electrophoresis and Electroosmosis in Nanopore Sensing with the Help of the Nanopore Electro-Osmotic Trap [Journal-article]. Fuentenebro Navas, David, Steens, Jurre A., de Lannoy, Carlos, Noordijk, Ben, Pfeffer, Michael, de Ridder, Dick, H.J. Staals, Raymond, & ACS Nano, 18(26), 16325–17360. https://doi.org/10.1021/acsnano.3c11769
. (2024). Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas [Journal-article]. Ghosh, Srijayee, & QRB Discovery, 5. https://doi.org/10.1017/qrd.2024.11
. (2024). The potential of fluorogenicity for single molecule FRET and DyeCycling. Ha, Taekjip, Fei, Jingyi, Nature Reviews Methods Primers, 4. https://doi.org/10.1038/s43586-024-00298-3
, Lee, Nam Ki, Gonzalez, Ruben L., Paul, Sneha, & Yeou, Sanghun. (2024). Fluorescence resonance energy transfer at the single-molecule level. Vermeer, B., van Ossenbruggen, J., & Schmid, S. (2024). Single-Molecule FRET-Resolved Protein Dynamics – from Plasmid to Data in Six Steps (Vol. 2694, pp. 267–291). Humana Press Inc. https://doi.org/10.1007/978-1-0716-3377-9_13
Schmid, S. (2023). An external speed control for nanopore reads. Nature Nanotechnology, 18(11), 1261–1262. https://doi.org/10.1038/s41565-023-01477-1
Fuentenebro-Navas, D., Steens, J. A., de Lannoy, C., Noordijk, B., de Ridder, D., Staals, R. H. J., & Schmid, S. (2023). Nanopores reveal the stoichiometry of single oligo-adenylates produced by type III CRISPR-Cas [Posted-content]. In Biorxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.18.553839
Wen, C., Bertosin, E., Shi, X., Dekker, C., & Schmid, S. (2023). Orientation-Locked DNA Origami for Stable Trapping of Small Proteins in the Nanopore Electro-Osmotic Trap. Nano Letters, 23(3), 788–794. https://doi.org/10.1021/acs.nanolett.2c03569
Silbermann, Laura-Marie, Vermeer, Benjamin, arxiv. Cornell University. https://doi.org/10.48550/arxiv.2308.16629
, & Tych, Katarzyna. (2023). The known unknowns of the Hsp90 chaperone. In Götz, M., Barth, A., Bohr, S. S.-R., Börner, R., Chen, J., Cordes, T., Erie, D. A., Gebhardt, C., Hadzic, M. C. A. S., Hamilton, G. L., Hatzakis, N. S., Hugel, T., Kisley, L., Lamb, D. C., de Lannoy, C., Mahn, C., Dunukara, D., de Ridder, D., Sanabria, H., et al. (2022). A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33023-3
Wen, C., Bertosin, E., Shi, X., Dekker, C., & Schmid, S. (2022). Orientation-locked DNA origami for stable trapping of small proteins in the NEOtrap [Posted-content]. In Biorxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.09.09.507286
Vermeer, B., & Schmid, S. (2022). Can DyeCycling break the photobleaching limit in single-molecule FRET? [Posted-content]. In Biorxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.02.08.479542
The NanoBioPhysX Club. https://www.nanobiophysx.club/home
. (2022, January 1). Götz, M., Barth, A., Bohr, S. S.-R., Börner, R., Chen, J., Cordes, T., Erie, D. A., Gebhardt, C., Hadzic, M. C. A. S., Hamilton, G. L., Hatzakis, N. S., Hugel, T., Kisley, L., Lamb, D. C., de Lannoy, C., Mahn, C., Dunukara, D., de Ridder, D., Sanabria, H., et al. (2021). Inferring kinetic rate constants from single-molecule FRET trajectories – a blind benchmark of kinetic analysis tools [Posted-content]. In Biorxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.11.23.469671
Schmid, S., Stömmer, P., Dietz, H., & Dekker, C. (2021). Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nature Nanotechnology, 16(11), 1244–1250. https://doi.org/10.1038/s41565-021-00958-5
Schmid, S., & Dekker, C. (2021). The NEOtrap – en route with a new single-molecule technique. iScience, 24(10). https://doi.org/10.1016/j.isci.2021.103007
Alfaro, J. A., Bohländer, P., Dai, M., Filius, M., Howard, C. J., van Kooten, X. F., Ohayon, S., Pomorski, A., Schmid, S., Aksimentiev, A., Anslyn, E. V., Bedran, G., Cao, C., Chinappi, M., Coyaud, E., Dekker, C., Dittmar, G., Drachman, N., Eelkema, R., et al. (2021). The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 18(6), 604–617. https://doi.org/10.1038/s41592-021-01143-1
Schmid, S., & Dekker, C. (2021). Nanopores: A versatile tool to study protein Dynamics. Essays in Biochemistry, 65(1), 93–107. https://doi.org/10.1042/ebc20200020
Schmid, S., & Hugel, T. (2020). Controlling protein function by fine-tuning conformational flexibility. eLife, 9, 1–14. https://doi.org/10.7554/elife.57180
Fragasso, A., Schmid, S., & Dekker, C. (2020). Comparing Current Noise in Biological and Solid-State Nanopores. ACS Nano, 14(2), 1338–1349. https://doi.org/10.1021/acsnano.9b09353
Fragasso, A., Biorxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/866384
, & Dekker, C. (2019). Comparing current noise in biological and solid-state nanopores [Posted-content]. In Schmid, S., & Hugel, T. (2019, November 12). Same Equilibrium. Different Kinetics. Protein Functional Consequences [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/838938
Hellenkamp, B., Schmid, S., Doroshenko, O., Opanasyuk, O., Kühnemuth, R., Adariani, S. R., Ambrose, B., Aznauryan, M., Barth, A., Birkedal, V., Bowen, M. E., Chen, H., Cordes, T., Eilert, T., Fijen, C., Gebhardt, C., Götz, M., Gouridis, G., Gratton, E., et al. (2018). Erratum to: Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study (Nature Methods, (2018), 15, 9, (669-676), 10.1038/s41592-018-0085-0). Nature Methods, 15(11). https://doi.org/10.1038/s41592-018-0193-x
Hellenkamp, B., Schmid, S., Doroshenko, O., Opanasyuk, O., Kühnemuth, R., Rezaei Adariani, S., Ambrose, B., Aznauryan, M., Barth, A., Birkedal, V., Bowen, M. E., Chen, H., Cordes, T., Eilert, T., Fijen, C., Gebhardt, C., Götz, M., Gouridis, G., Gratton, E., et al. (2018). Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nature Methods, 15(9), 669–676. https://doi.org/10.1038/s41592-018-0085-0
Schmid, S., Götz, M., & Hugel, T. (2018). Effects of Inhibitors on Hsp90′s Conformational Dynamics, Cochaperone and Client Interactions. ChemPhysChem, 19(14), 1716–1721. https://doi.org/10.1002/cphc.201800342
Schmid, S., & Hugel, T. (2018). Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. Journal of Chemical Physics, 148(12). https://doi.org/10.1063/1.5006604
Schmid, S., Götz, M., & Hugel, T. (2016). Single-Molecule Analysis beyond Dwell Times: Demonstration and Assessment in and out of Equilibrium. Biophysical Journal, 111(7), 1375–1384. https://doi.org/10.1016/j.bpj.2016.08.023
Schmid, S., Goetz, M., & Hugel, T. (2016). Quantitative Protein Kinetics from sm-FRET Time Traces [Journal-article]. Biophysical Journal, 110(3, Supplement 1), 194a. https://doi.org/10.1016/j.bpj.2015.11.1082
Götz, M., Wortmann, P., A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously (Vol. 581, pp. 487–516). Academic Press Inc.apjcs@harcourt.com. https://doi.org/10.1016/bs.mie.2016.08.024
, & Hugel, T. (2016). Schmid, S., & Hugel, T. (2011). Regulatory Posttranslational Modifications in Hsp90 Can Be Compensated by Cochaperone Aha1. Molecular Cell, 41(6), 619–620. https://doi.org/10.1016/j.molcel.2011.02.028