Research Perspectives and Topics
Key Research Perspectives include
i) new digital technologies, machine/deep learning, artificial intelligence, and clinical decision support tools,
ii) psychotherapy and other interventions,
iii) bodily processes, and
iv) consultation-liaison and health services.
Key Research Topics include
i) functional symptoms/syndromes and pain,
ii) mental-somatic multimorbidities, and
iii) psychooncology.
Selected Publications
Hefti, René, Guemghar, Souad, Battegay, Edouard, Mueller, Christian, Koenig, Harold G, Schaefert, Rainer, & European Journal of Preventive Cardiology. https://doi.org/10.1093/eurjpc/zwae237
. (2024). Do positive psychosocial factors contribute to the prediction of coronary artery disease? A UK Biobank–based machine learning approach [Journal-article].
Hefti, René, Guemghar, Souad, Battegay, Edouard, Mueller, Christian, Koenig, Harold G, Schaefert, Rainer, & European Journal of Preventive Cardiology. https://doi.org/10.1093/eurjpc/zwae237
. (2024). Do positive psychosocial factors contribute to the prediction of coronary artery disease? A UK Biobank–based machine learning approach [Journal-article].
Imperiale, Marina N., Lieb, Roselind, & Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42186-y
. (2023). Treatment-associated network dynamics in patients with globus sensations: a proof-of-concept study [Journal-article].
Imperiale, Marina N., Lieb, Roselind, & Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42186-y
. (2023). Treatment-associated network dynamics in patients with globus sensations: a proof-of-concept study [Journal-article].
BMJ Open, 13(11). https://doi.org/10.1136/bmjopen-2023-076814
, Frick, Alexander, Baenteli, Iris, Karpf, Christina, Studer, Anja, Bachmann, Marco, Dörner, Andreas, Tschudin, Sibil, Trost, Sarah, Wyss, Kaspar, Fink, Günther, Schwenkglenks, Matthias, Caviezel, Seraina, Rocco, Tabea, & Schaefert, Rainer. (2023). Prevention of psychosocial distress consequences in somatic hospital inpatients via a stepped and collaborative care model: protocol of SomPsyNet, a stepped wedge cluster randomised trial.
BMJ Open, 13(11). https://doi.org/10.1136/bmjopen-2023-076814
, Frick, Alexander, Baenteli, Iris, Karpf, Christina, Studer, Anja, Bachmann, Marco, Dörner, Andreas, Tschudin, Sibil, Trost, Sarah, Wyss, Kaspar, Fink, Günther, Schwenkglenks, Matthias, Caviezel, Seraina, Rocco, Tabea, & Schaefert, Rainer. (2023). Prevention of psychosocial distress consequences in somatic hospital inpatients via a stepped and collaborative care model: protocol of SomPsyNet, a stepped wedge cluster randomised trial.
International Journal of Clinical and Health Psychology, 23(3). https://doi.org/10.1016/j.ijchp.2023.100371
, Stalujanis, Esther, Grisar, Laura, Borrmann, Moritz, & Tegethoff, Marion. (2023). Anticipated fear and anxiety of Automated Driving Systems: Estimating the prevalence in a national representative survey.
International Journal of Clinical and Health Psychology, 23(3). https://doi.org/10.1016/j.ijchp.2023.100371
, Stalujanis, Esther, Grisar, Laura, Borrmann, Moritz, & Tegethoff, Marion. (2023). Anticipated fear and anxiety of Automated Driving Systems: Estimating the prevalence in a national representative survey.
Mental Health and the Metaverse: Ample Opportunities or Alarming Threats for Mental Health in Immersive Worlds? null. https://doi.org/10.1145/3544549.3583750
, Herta, Stefanie, Germann, Stefan, Chee Pui Khei, Cliona, Klöss, Sebastian, & Borrmann, Moritz. (2023).
Mental Health and the Metaverse: Ample Opportunities or Alarming Threats for Mental Health in Immersive Worlds? null. https://doi.org/10.1145/3544549.3583750
, Herta, Stefanie, Germann, Stefan, Chee Pui Khei, Cliona, Klöss, Sebastian, & Borrmann, Moritz. (2023).
Journal of Affective Disorders, 264, 430–437. https://doi.org/10.1016/j.jad.2019.11.071
, Tegethoff, Marion, Belardi, Angelo, Stalujanis, Esther, Oh, Minkyung, Jung, Eun Kyung, Kim, Hyun-Chul, Yoo, Seung-Schik, & Lee, Jong-Hwan. (2019). Personalized prediction of smartphone-based psychotherapeutic micro-intervention success using machine learning.
Journal of Affective Disorders, 264, 430–437. https://doi.org/10.1016/j.jad.2019.11.071
, Tegethoff, Marion, Belardi, Angelo, Stalujanis, Esther, Oh, Minkyung, Jung, Eun Kyung, Kim, Hyun-Chul, Yoo, Seung-Schik, & Lee, Jong-Hwan. (2019). Personalized prediction of smartphone-based psychotherapeutic micro-intervention success using machine learning.