Publications
247 found
Show per page
Lotter, Dominik, Huber, Annika, Wellauer. Joël, Helvetica Chimica Acta, Online ahead of print. https://doi.org/10.1002/hlca.202400163
, & Sparr, Christof. (2024). Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge. Pfund, B., Gejsnæs-Schaad, D., Lazarevski, B., & Wenger, O. S. (2024). Picosecond reactions of excited radical ion super-reductants. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49006-5
Trippmacher, S., Demeshko, S., Prescimone, A., Meyer, F., Wenger, O. S., & Wang, C. (2024). Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry - A European Journal, 30(31). https://doi.org/10.1002/chem.202400856
Doeven, E. H., Connell, T. U., Sinha, N., Wenger, O. S., & Francis, P. S. (2024). Electrochemiluminescence of a First-Row d6 Transition Metal Complex. Angewandte Chemie - International Edition, 63(21). https://doi.org/10.1002/anie.202319047
Sinha, N., Wellauer, J., Maisuradze, T., Prescimone, A., Kupfer, S., & Wenger, O. S. (2024). Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. Journal of the American Chemical Society, 146(15), 10418–10431. https://doi.org/10.1021/jacs.3c13925
Jin, Tao, Wagner, Dorothee, & Angewandte Chemie, 136(10). https://doi.org/10.1002/ange.202314475
(2024). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article]. Wegeberg, Christina, Häussinger, Daniel, Kupfer, Stephan, & Journal of the American Chemical Society, 146(7), 4605–4619. https://doi.org/10.1021/jacs.3c11580
(2024). Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II) [Journal-article]. Blom, Steven J., Adamson, Natasha S., Kerr, Emily, Doeven, Egan H., Electrochimica Acta, 484. https://doi.org/10.1016/j.electacta.2024.143957
, Schaer, Raoul S., Hayne, David J., Paolucci, Francesco, Sojic, Neso, Valenti, Giovanni, & Francis, Paul S. (2024). Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes [Journal-article]. Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer,Joël, Journal of the American Chemical Society, 146(1), 1208. https://doi.org/10.1021/jacs.3c14220
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2024). Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”. Franz, J., Oelschlegel, M., Zobel, J. P., Hua, S.-A., Borter, J.-H., Schmid, L., Morselli, G., Wenger, O. S., Schwarzer, D., Meyer, F., & González, L. (2024). Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00548
Wang, C., Li, H., Bürgin, T. H., & Wenger, O. S. (2024). Cage escape governs photoredox reaction rates and quantum yields. Nature Chemistry. https://doi.org/10.1038/s41557-024-01482-4
Wellauer, J., Ziereisen, F., Sinha, N., Prescimone, A., Velić, A., Meyer, F., & Wenger, O. S. (2024). Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00605
Ye, Yating, Garrido-Barros, Pablo, Wellauer, Joël, Cruz, Carlos M., Lescouëzec, Rodrigue, Journal of the American Chemical Society, 146(1), 954–960. https://doi.org/10.1021/jacs.3c11517
, Herrera, Juan Manuel, & Jiménez, Juan-Ramón. (2023). Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex [Journal-article]. Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer, Joël, Journal of the American Chemical Society, 145(46), 25195–25202. https://doi.org/10.1021/jacs.3c07799
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2023). Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways [Journal-article]. Jin, Tao, Wagner, Dorothee, & Angewandte Chemie International Edition, 63(10). https://doi.org/10.1002/anie.202314475
(2023). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article]. Yaltseva, Polina, & Science, 382(6667), 153–154. https://doi.org/10.1126/science.adk5923
(2023). Photocatalysis gets energized by abundant metals [Journal-article]. Ogawa, T., & Wenger, O. S. (2023). Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay [Journal-article]. Angewandte Chemie International Edition, 62(46). https://doi.org/10.1002/anie.202312851
Wang, C., Wegeberg, C., & Wenger, O. S. (2023). First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light [Journal-article]. Angewandte Chemie International Edition, 62(43). https://doi.org/10.1002/anie.202311470
Dehnen, Stefanie, Steed, Jonathan W., Lo, Kenneth, Heinze, Katja, Crystal Growth & Design, 23(10), 6993–6997. https://doi.org/10.1021/acs.cgd.3c00987
, Singh, Shalini, Yang, Hai-Bo, & Zang, Shuang-Quan. (2023). We Glow Together: A Dialogue on Luminescent Compounds [Journal-article]. Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A., & Wenger, O. S. (2023). Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes [Journal-article]. Nature Chemistry, 15(12), 1730–1736. https://doi.org/10.1038/s41557-023-01297-9
Bürgin, T. H., Ogawa, T., & Wenger, O. S. (2023). Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage [Journal-article]. Inorganic Chemistry, 62(33), 13597–13607. https://doi.org/10.1021/acs.inorgchem.3c02008
Næsborg, Line, Pieber, Bartholomäus, & ChemCatChem, 15(17). https://doi.org/10.1002/cctc.202300683
(2023). Special Collection: Photocatalytic Synthesis [Journal-article]. Li, H., Wang, C., Glaser, F., Sinha, N., & Wenger, O. S. (2023). Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions [Journal-article]. Journal of the American Chemical Society, 145(20), 11402–11414. https://doi.org/10.1021/jacs.3c02609
Sinha, N., Yaltseva, P., & Wenger, O. S. (2023). The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes [Journal-article]. Angewandte Chemie International Edition, 62(30). https://doi.org/10.1002/anie.202303864
Bens, T., Kübler, J. A., Walter, R. R. M., Beerhues, J., Wenger, O. S., & Sarkar, B. (2023). Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes [Journal-article]. ACS Organic & Inorganic Au, 3(4), 184–198. https://doi.org/10.1021/acsorginorgau.3c00005
Dietzek‐Ivansic, Benjamin, Tschierlei, Stefanie, Schulz, Martin, Karnahl, Michael, Sinha, Narayan, Thomisch, Luise, Nachrichten aus der Chemie, 71(4), 56–63. https://doi.org/10.1002/nadc.20234132821
, & Heinze, Katja. (2023). Trendbericht: Photochemie [Journal-article]. Mrózek, O., Mitra, M., Hupp, B., Belyaev, A., Lüdtke, N., Wagner, D., Wang, C., Wenger, O. S., Marian, C. M., & Steffen, A. (2023). An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis [Journal-article]. Chemistry – A European Journal, 29(23). https://doi.org/10.1002/chem.202203980
Sinha, N., & Wenger, O. S. (2023). Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII [Journal-article]. Journal of the American Chemical Society, 145(9), 4903–4920. https://doi.org/10.1021/jacs.2c13432
Schreier, M. R., Pfund, B., Steffen, D. M., & Wenger, O. S. (2023). Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes [Journal-article]. Inorganic Chemistry, 62(20), 7636–7643. https://doi.org/10.1021/acs.inorgchem.2c03100
Delley, Murielle F., & Chimia, 77(6), 452–453. https://doi.org/10.2533/chimia.2023.452
(2023). A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable. Glaser, Felix, & Chemical Science, 14(1), 149–161. https://doi.org/10.1039/d2sc05229f
(2023). Sensitizer-controlled photochemical reactivity via upconversion of red light. Jökel, J., Boydas, E. B., Wellauer, J., Wenger, O. S., Robert, M., Römelt, M., & Apfel, U.-P. (2023). A CuICoII cryptate for the visible light-driven reduction of CO2 [Journal-article]. Chemical Science, 14(44), 12774–12783. https://doi.org/10.1039/d3sc02679e
Pfund, B., Hutskalova, V., Sparr, C., & Wenger, O. S. (2023). Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chemical Science, 14(40), 11180–11191. https://doi.org/10.1039/d3sc02768f
Bürgin, Tobias H., Glaser, Felix, & Journal of the American Chemical Society, 144(31), 14181–14194. https://doi.org/10.1021/jacs.2c04465
(2022). Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis. Glaser, Felix, & JACS Au, 2(6), 1488–1503. https://doi.org/10.1021/jacsau.2c00265
(2022). Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis. Herr, Patrick, Schwab, Alexander, Kupfer, Stephan, & Chemphotochem, 6(8), e202200052. https://doi.org/10.1002/cptc.202200052
(2022). Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands. Kübler, Jasmin A., Pfund, Björn, & JACS Au, 2(10), 2367–2380. https://doi.org/10.1021/jacsau.2c00442
(2022). Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. Li, Han, & Angewandte Chemie International Edition, 61(5), e202110491. https://doi.org/10.1002/anie.202110491
(2022). Photophysics of perylene diimide dianions and their application in photoredox catalysis. Oelschlegel, Manuel, Hua, Shao-An, Schmid, Lucius, Marquetand, Philipp, Bäck, Anna, Borter, Jan-Hendrik., Lücken, Jana, Dechert, Sebastian, Inorganic Chemistry, 61(35), 13944–13955. https://doi.org/10.1021/acs.inorgchem.2c01930
, Siewert, Inke, Schwarzer, Dirk, González, Leticia, & Meyer, Franc. (2022). Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties. Ogawa, Tomohiro, Sinha, Narayan, Pfund, Björn, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(48), 21948–21960. https://doi.org/10.1021/jacs.2c08838
(2022). Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. Ossinger, Sascha, Prescimone, Alessandro, Häussinger, Daniel, & Inorganic Chemistry, 61(27), 10533–10547. https://doi.org/10.1021/acs.inorgchem.2c01438
(2022). Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Remke, Stephanie C., Bürgin, Tobias H., Ludvíkova, Lucie, Heger, Dominik, Water Research, 213, 118095. https://doi.org/10.1016/j.watres.2022.118095
, von Gunten, Urs, & Canonica, Silvio. (2022). Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution. Schmid, Lucius, Chábera, Pavel, Rüter, Isabelle, Prescimone, Alessandro, Meyer, Franc, Yartsev, Arkady, Persson, Petter, & Inorganic Chemistry, 61(40), 15853–15863. https://doi.org/10.1021/acs.inorgchem.2c01667
(2022). Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics. Schmid, Lucius, Fokin, Igor, Brändlin, Mathis, Wagner, Dorothee, Siewert, Inke, & Chemistry - A European Journal, 28(72), e202202386. https://doi.org/10.1002/chem.202202386
(2022). Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Schmid, Lucius, Glaser, Felix, Schaer, Raoul, & Journal of the American Chemical Society, 144(2), 963–976. https://doi.org/10.1021/jacs.1c11667
(2022). High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, Ward, Thomas R., Kerzig, Christoph, & Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
(2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry. Sinha, Narayan, Pfund, Björn, Wegeberg, Christina, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(22), 9859–9873. https://doi.org/10.1021/jacs.2c02592
(2022). Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. Wegeberg, Christina, & Dalton Transactions, 51(4), 1297–1302. https://doi.org/10.1039/d1dt03763c
(2022). Luminescent chromium(0) and manganese(i) complexes. Zhang, Lei, Pfund, Björn, Angewandte Chemie International Edition, 61(20), e202202649. https://doi.org/10.1002/anie.202202649
, & Hu, Xile. (2022). Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst. Sinha, Narayan, Jiménez, Juan‐Ramón, Pfund, Björn, Prescimone, Alessandro, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23920. https://doi.org/10.1002/anie.202111510
(2021). Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021) [Journal-article]. Bilger, Jakob B., Kerzig, Christoph, Larsen, Christopher B., & Journal of the American Chemical Society, 143(3), 1651–1663. https://doi.org/10.1021/jacs.0c12805
(2021). A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion. Bürgin, Tobias H., & Energy and Fuels, 35(23), 18848–18856. https://doi.org/10.1021/acs.energyfuels.1c02073
(2021). Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. Glaser, Felix, Kerzig, Christoph, & Chemical Science, 12(29), 9922–9933. https://doi.org/10.1039/d1sc02085d
(2021). Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Herr, Patrick, Kerzig, Christoph, Larsen, Christopher B., Häussinger, Daniel, & Nature Chemistry, 13(10), 956–962. https://doi.org/10.1038/s41557-021-00744-9
(2021). Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Neumann, Svenja, Chemistry - A European Journal, 27(12), 4115–4123. https://doi.org/10.1002/chem.202004638
, & Kerzig, Christoph. (2021). Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis. Schmid, Lucius, Kerzig, Christoph, Prescimone, Alessandro, & JACS Au, 1(6), 819–832. https://doi.org/10.1021/jacsau.1c00137
(2021). Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. Sinha, Narayan, Jiménez, Juan-Ramon, Pfund, Björn, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23722–23728. https://doi.org/10.1002/anie.202106398
(2021). A Near-Infrared-II Emissive Chromium(III) Complex. Wegeberg, Christina, Häussinger, Daniel, & Journal of the American Chemical Society, 143(38), 15800–15811. https://doi.org/10.1021/jacs.1c07345
(2021). Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes. Wegeberg, Christina, & JACS Au, 1(11), 1860–1876. https://doi.org/10.1021/jacsau.1c00353
(2021). Luminescent First-Row Transition Metal Complexes. Chemistry - A European Journal, 27(7), 2270–2278. https://doi.org/10.1002/chem.202003974
(2021). Photoactive nickel complexes in cross coupling catalysis. Heinze, K., & Wenger, O. S. (2020). Light-Controlled Reactivity of Metal Complexes. Inorganic Chemistry, 59(20), 14627–14628. https://doi.org/10.1021/acs.inorgchem.0c02791
Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie, 132(26), 10350–10370. https://doi.org/10.1002/ange.201915762
(2020). Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden [Journal-article]. Brandl, Thomas, Kerzig, Christoph, Le Pleux, Loic, Prescimone, Alessandro, Chemistry - A European Journal, 26(14), 3119–3128. https://doi.org/10.1002/chem.201904754
, & Mayor, Marcel. (2020). Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands. Fischer, Christian, Kerzig, Christoph, Zilate, Bouthayna, ACS Catalysis, 10(1), 210–215. https://doi.org/10.1021/acscatal.9b03606
, & Sparr, Christof. (2020). Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. García‐López, Victor, Zalibera, Michal, Trapp, Nils, Kuss‐Petermann, Martin, Chemistry - A European Journal, 26(50), 11451–11461. https://doi.org/10.1002/chem.202001788
, & Diederich, François. (2020). Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers. Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie International Edition, 59(26), 10266–10284. https://doi.org/10.1002/anie.201915762
(2020). Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Glaser, Felix, Larsen, Christopher B., Kerzig, Christoph, & Photochemical and Photobiological Sciences, 19(8), 1035–1041. https://doi.org/10.1039/d0pp00127a
(2020). Aryl dechlorination and defluorination with an organic super-photoreductant. Glaser, Felix, & Coordination Chemistry Reviews, 405, 213129. https://doi.org/10.1016/j.ccr.2019.213129
(2020). Recent progress in the development of transition-metal based photoredox catalysts. Herr, Patrick, & Inorganics, 8(2), 14. https://doi.org/10.3390/inorganics8020014
(2020). Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands. Hörmann, Fabian M., Kerzig, Christoph, Chung, Tim S., Bauer, Andreas, Angewandte Chemie International Edition, 59(24), 9659–9668. https://doi.org/10.1002/anie.202001634
, & Bach, Thorsten. (2020). Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition. Hua, Shao-Ann, Cattaneo, Mauricio, Oelschlegel, Manuel, Heindl, Moritz, Schmid, Lucius, Dechert, Sebastian, Inorganic Chemistry, 59(7), 4972–4984. https://doi.org/10.1021/acs.inorgchem.0c00220
, Siewert, Inke, González, Leticia, & Meyer, Franc. (2020). Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands. Larsen, Christopher B., Farrow, George A., Smith, Lian D., Appleby, Martin, Chekulaev, Dimitri, Weinstein, Julia, & Inorganic Chemistry, 59(15), 10430–10438. https://doi.org/10.1021/acs.inorgchem.0c00679
(2020). Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad. Pfund, Björn, Steffen, Debora M., Schreier, Mirjam R., Bertrams, Maria-Sophie, Ye, Chen, Börjesson, Karl, Journal of the American Chemical Society, 142(23), 10468–10476. https://doi.org/10.1021/jacs.0c02835
, & Kerzig, Christoph. (2020). UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water. Schreier, Mirjam R., Pfund, Björn, Guo, Xingwei, & Chemical Science, 11(32), 8582–8594. https://doi.org/10.1039/d0sc01820a
(2020). Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins. Nature Chemistry, 12(4), 323–324. https://doi.org/10.1038/s41557-020-0448-x
(2020). A bright future for photosensitizers. Castrogiovanni, Alessandro, Herr, Patrick, Larsen, Christopher Bryan, Guo, Xingwei, Sparr, Christof, & Chemistry - A European Journal, 25, 16748–16754. https://doi.org/10.1002/chem.201904771
(2019). Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes. Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & European Journal of Organic Chemistry. https://doi.org/10.1002/ejoc.201900777
(2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis. Herr, Patrick, Glaser, Felix, Büldt, Laura A., Larsen, Christopher B., & Journal of the American Chemical Society, 141(36), 14394–14402. https://doi.org/10.1021/jacs.9b07373
(2019). Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides. Irmler, Peter, Gogesch, Franciska S., Larsen, Christopher B., Dalton Transactions, 48(4), 1171–1174. https://doi.org/10.1039/c8dt04823a
, & Winter, Rainer F. (2019). Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad. Irmler, Peter, Gogesch, Franciska S., Mang, Andé, Bodensteiner, Michael, Larsen, Christopher B., Dalton Transactions, 48(31), 11690–11705. https://doi.org/10.1039/c9dt01737b
, & Winter, Rainer F. (2019). Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads. Kerzig, Christoph, Guo, Xingwei, & Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
(2019). Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis. Kerzig, Christoph, & Chemical Science, 10(48), 11023–11029. https://doi.org/10.1039/c9sc04584h
(2019). Reactivity control of a photocatalytic system by changing the light intensity. Malzkuhn, Sabine, Guo, Xingwei, Häussinger, Daniel, & Journal of Physical Chemistry A, 123(1), 96–102. https://doi.org/10.1021/acs.jpca.8b11236
(2019). Electron Transfer across o-Phenylene Wires. Nemann, Svenja, & Inorganic Chemistry, 58(1), 855–860. https://doi.org/10.1021/acs.inorgchem.8b02973
(2019). Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces. Neumann, Svenja, Kerzig, Christoph, & Chemical Science, 10(21), 5624–5633. https://doi.org/10.1039/c9sc01381d
(2019). Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis. Pannwitz, Andrea, & Chemical Communications, 55(28), 4004–4014. https://doi.org/10.1039/c9cc00821g
(2019). Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Pannwitz, Andrea, & Dalton Transactions, 48(18), 5861–5868. https://doi.org/10.1039/c8dt04373f
(2019). Recent Advances in Bioinspired Proton-Coupled Electron Transfer. Skaisgirski, Michael, Larsen, Christopher B., Kerzig, Christoph, & European Journal of Inorganic Chemistry, 2019(39-40), 4256–4262. https://doi.org/10.1002/ejic.201900453
(2019). Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad. Chemistry - A European Journal, 25(24), 6043–6052. https://doi.org/10.1002/chem.201806148
(2019). Is Iron the New Ruthenium? Suntrup, L., Stein, F., Hermann, G., Kleoff, M., Kuss-Petermann, M., Klein, J., Wenger, O. S., Tremblay, J. C., & Sarkar, B. (2018). Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study. Inorganic Chemistry, 57(21), 13973–13984. https://doi.org/10.1021/acs.inorgchem.8b02551
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie International Edition, 57(22), 6706. https://doi.org/10.1002/anie.201803955
(2018). Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018) [Journal-article]. Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6818. https://doi.org/10.1002/ange.201803955
(2018). Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018) [Journal-article]. Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6806–6810. https://doi.org/10.1002/ange.201800396
(2018). Elektronentransfer um eine molekulare Ecke [Journal-article]. Milić, J., Zalibera, M., Talaat, D., Nomrowski, J., Trapp, N., Ruhlmann, L., Boudon, C., Wenger, O. S., Savitsky, A., Lubitz, W., & Diederich, F. (2018). Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry - A European Journal, 24(6), 1431–1440. https://doi.org/10.1002/chem.201704788
Guo, Xingwei, & Angewandte Chemie, 130(9), 2494–2498. https://doi.org/10.1002/ange.201711467
(2018). Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer [Journal-article]. Brandl, Thomas, Hoffmann, Viktor, Pannwitz, Andrea, Häussinger, Daniel, Neuburger, Markus, Fuhr, Olaf, Bernhard, Stefan, Chemical Science, 9(15), 3837–3843. https://doi.org/10.1039/c7sc05285e
, & Mayor, Marcel. (2018). Chiral macrocyclic terpyridine complexes. Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
(2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network. Guo, Xingwei, & Angewandte Chemie International Edition, 57(9), 2469–2473. https://doi.org/10.1002/anie.201711467
(2018). Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer. Kerzig, Christoph, & Chemical Science, 9(32), 6670–6678. https://doi.org/10.1039/c8sc01829d
(2018). Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations. Larsen, Christopher B., & Chemistry - A European Journal, 24(9), 2039–2058. https://doi.org/10.1002/chem.201703602
(2018). Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.