Publications
247 found
Show per page
Lotter, Dominik, Huber, Annika, Wellauer. Joël, Helvetica Chimica Acta, Online ahead of print. https://doi.org/10.1002/hlca.202400163
, & Sparr, Christof. (2024). Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge.
Lotter, Dominik, Huber, Annika, Wellauer. Joël, Helvetica Chimica Acta, Online ahead of print. https://doi.org/10.1002/hlca.202400163
, & Sparr, Christof. (2024). Photoinduced Energy Transfer via an Atropisomeric Molecular Bridge.
Pfund, B., Gejsnæs-Schaad, D., Lazarevski, B., & Wenger, O. S. (2024). Picosecond reactions of excited radical ion super-reductants. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49006-5
Pfund, B., Gejsnæs-Schaad, D., Lazarevski, B., & Wenger, O. S. (2024). Picosecond reactions of excited radical ion super-reductants. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49006-5
Trippmacher, S., Demeshko, S., Prescimone, A., Meyer, F., Wenger, O. S., & Wang, C. (2024). Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry - A European Journal, 30(31). https://doi.org/10.1002/chem.202400856
Trippmacher, S., Demeshko, S., Prescimone, A., Meyer, F., Wenger, O. S., & Wang, C. (2024). Ferromagnetically Coupled Chromium(III) Dimer Shows Luminescence and Sensitizes Photon Upconversion. Chemistry - A European Journal, 30(31). https://doi.org/10.1002/chem.202400856
Doeven, E. H., Connell, T. U., Sinha, N., Wenger, O. S., & Francis, P. S. (2024). Electrochemiluminescence of a First-Row d6 Transition Metal Complex. Angewandte Chemie - International Edition, 63(21). https://doi.org/10.1002/anie.202319047
Doeven, E. H., Connell, T. U., Sinha, N., Wenger, O. S., & Francis, P. S. (2024). Electrochemiluminescence of a First-Row d6 Transition Metal Complex. Angewandte Chemie - International Edition, 63(21). https://doi.org/10.1002/anie.202319047
Sinha, N., Wellauer, J., Maisuradze, T., Prescimone, A., Kupfer, S., & Wenger, O. S. (2024). Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. Journal of the American Chemical Society, 146(15), 10418–10431. https://doi.org/10.1021/jacs.3c13925
Sinha, N., Wellauer, J., Maisuradze, T., Prescimone, A., Kupfer, S., & Wenger, O. S. (2024). Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. Journal of the American Chemical Society, 146(15), 10418–10431. https://doi.org/10.1021/jacs.3c13925
Jin, Tao, Wagner, Dorothee, & Angewandte Chemie, 136(10). https://doi.org/10.1002/ange.202314475
(2024). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article].
Jin, Tao, Wagner, Dorothee, & Angewandte Chemie, 136(10). https://doi.org/10.1002/ange.202314475
(2024). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article].
Wegeberg, Christina, Häussinger, Daniel, Kupfer, Stephan, & Journal of the American Chemical Society, 146(7), 4605–4619. https://doi.org/10.1021/jacs.3c11580
(2024). Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II) [Journal-article].
Wegeberg, Christina, Häussinger, Daniel, Kupfer, Stephan, & Journal of the American Chemical Society, 146(7), 4605–4619. https://doi.org/10.1021/jacs.3c11580
(2024). Controlling the Photophysical Properties of a Series of Isostructural d6Complexes Based on Cr(0), Mn(I), and Fe(II) [Journal-article].
Blom, Steven J., Adamson, Natasha S., Kerr, Emily, Doeven, Egan H., Electrochimica Acta, 484. https://doi.org/10.1016/j.electacta.2024.143957
, Schaer, Raoul S., Hayne, David J., Paolucci, Francesco, Sojic, Neso, Valenti, Giovanni, & Francis, Paul S. (2024). Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes [Journal-article].
Blom, Steven J., Adamson, Natasha S., Kerr, Emily, Doeven, Egan H., Electrochimica Acta, 484. https://doi.org/10.1016/j.electacta.2024.143957
, Schaer, Raoul S., Hayne, David J., Paolucci, Francesco, Sojic, Neso, Valenti, Giovanni, & Francis, Paul S. (2024). Redox mediated enhancement and quenching of co-reactant electrochemiluminescence by iridium(III) complexes [Journal-article].
Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer,Joël, Journal of the American Chemical Society, 146(1), 1208. https://doi.org/10.1021/jacs.3c14220
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2024). Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”.
Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer,Joël, Journal of the American Chemical Society, 146(1), 1208. https://doi.org/10.1021/jacs.3c14220
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2024). Correction to “Visible-Light-Driven CO2 Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways”.
Franz, J., Oelschlegel, M., Zobel, J. P., Hua, S.-A., Borter, J.-H., Schmid, L., Morselli, G., Wenger, O. S., Schwarzer, D., Meyer, F., & González, L. (2024). Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00548
Franz, J., Oelschlegel, M., Zobel, J. P., Hua, S.-A., Borter, J.-H., Schmid, L., Morselli, G., Wenger, O. S., Schwarzer, D., Meyer, F., & González, L. (2024). Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00548
Wang, C., Li, H., Bürgin, T. H., & Wenger, O. S. (2024). Cage escape governs photoredox reaction rates and quantum yields. Nature Chemistry. https://doi.org/10.1038/s41557-024-01482-4
Wang, C., Li, H., Bürgin, T. H., & Wenger, O. S. (2024). Cage escape governs photoredox reaction rates and quantum yields. Nature Chemistry. https://doi.org/10.1038/s41557-024-01482-4
Wellauer, J., Ziereisen, F., Sinha, N., Prescimone, A., Velić, A., Meyer, F., & Wenger, O. S. (2024). Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00605
Wellauer, J., Ziereisen, F., Sinha, N., Prescimone, A., Velić, A., Meyer, F., & Wenger, O. S. (2024). Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c00605
Ye, Yating, Garrido-Barros, Pablo, Wellauer, Joël, Cruz, Carlos M., Lescouëzec, Rodrigue, Journal of the American Chemical Society, 146(1), 954–960. https://doi.org/10.1021/jacs.3c11517
, Herrera, Juan Manuel, & Jiménez, Juan-Ramón. (2023). Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex [Journal-article].
Ye, Yating, Garrido-Barros, Pablo, Wellauer, Joël, Cruz, Carlos M., Lescouëzec, Rodrigue, Journal of the American Chemical Society, 146(1), 954–960. https://doi.org/10.1021/jacs.3c11517
, Herrera, Juan Manuel, & Jiménez, Juan-Ramón. (2023). Luminescence and Excited-State Reactivity in a Heteroleptic Tricyanido Fe(III) Complex [Journal-article].
Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer, Joël, Journal of the American Chemical Society, 145(46), 25195–25202. https://doi.org/10.1021/jacs.3c07799
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2023). Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways [Journal-article].
Bharti, Jaya, Chen, Lingjing, Guo, Zhenguo, Cheng, Lin, Wellauer, Joël, Journal of the American Chemical Society, 145(46), 25195–25202. https://doi.org/10.1021/jacs.3c07799
, von Wolff, Niklas, Lau, Kai-Chung, Lau, Tai-Chu, Chen, Gui, & Robert, Marc. (2023). Visible-Light-Driven CO² Reduction with Homobimetallic Complexes. Cooperativity between Metals and Activation of Different Pathways [Journal-article].
Jin, Tao, Wagner, Dorothee, & Angewandte Chemie International Edition, 63(10). https://doi.org/10.1002/anie.202314475
(2023). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article].
Jin, Tao, Wagner, Dorothee, & Angewandte Chemie International Edition, 63(10). https://doi.org/10.1002/anie.202314475
(2023). Luminescent and Photoredox‐Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines [Journal-article].
Yaltseva, Polina, & Science, 382(6667), 153–154. https://doi.org/10.1126/science.adk5923
(2023). Photocatalysis gets energized by abundant metals [Journal-article].
Yaltseva, Polina, & Science, 382(6667), 153–154. https://doi.org/10.1126/science.adk5923
(2023). Photocatalysis gets energized by abundant metals [Journal-article].
Ogawa, T., & Wenger, O. S. (2023). Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay [Journal-article]. Angewandte Chemie International Edition, 62(46). https://doi.org/10.1002/anie.202312851
Ogawa, T., & Wenger, O. S. (2023). Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited‐State Decay [Journal-article]. Angewandte Chemie International Edition, 62(46). https://doi.org/10.1002/anie.202312851
Wang, C., Wegeberg, C., & Wenger, O. S. (2023). First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light [Journal-article]. Angewandte Chemie International Edition, 62(43). https://doi.org/10.1002/anie.202311470
Wang, C., Wegeberg, C., & Wenger, O. S. (2023). First-Row d⁶ Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light [Journal-article]. Angewandte Chemie International Edition, 62(43). https://doi.org/10.1002/anie.202311470
Dehnen, Stefanie, Steed, Jonathan W., Lo, Kenneth, Heinze, Katja, Crystal Growth & Design, 23(10), 6993–6997. https://doi.org/10.1021/acs.cgd.3c00987
, Singh, Shalini, Yang, Hai-Bo, & Zang, Shuang-Quan. (2023). We Glow Together: A Dialogue on Luminescent Compounds [Journal-article].
Dehnen, Stefanie, Steed, Jonathan W., Lo, Kenneth, Heinze, Katja, Crystal Growth & Design, 23(10), 6993–6997. https://doi.org/10.1021/acs.cgd.3c00987
, Singh, Shalini, Yang, Hai-Bo, & Zang, Shuang-Quan. (2023). We Glow Together: A Dialogue on Luminescent Compounds [Journal-article].
Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A., & Wenger, O. S. (2023). Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes [Journal-article]. Nature Chemistry, 15(12), 1730–1736. https://doi.org/10.1038/s41557-023-01297-9
Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A., & Wenger, O. S. (2023). Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes [Journal-article]. Nature Chemistry, 15(12), 1730–1736. https://doi.org/10.1038/s41557-023-01297-9
Bürgin, T. H., Ogawa, T., & Wenger, O. S. (2023). Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage [Journal-article]. Inorganic Chemistry, 62(33), 13597–13607. https://doi.org/10.1021/acs.inorgchem.3c02008
Bürgin, T. H., Ogawa, T., & Wenger, O. S. (2023). Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage [Journal-article]. Inorganic Chemistry, 62(33), 13597–13607. https://doi.org/10.1021/acs.inorgchem.3c02008
Næsborg, Line, Pieber, Bartholomäus, & ChemCatChem, 15(17). https://doi.org/10.1002/cctc.202300683
(2023). Special Collection: Photocatalytic Synthesis [Journal-article].
Næsborg, Line, Pieber, Bartholomäus, & ChemCatChem, 15(17). https://doi.org/10.1002/cctc.202300683
(2023). Special Collection: Photocatalytic Synthesis [Journal-article].
Li, H., Wang, C., Glaser, F., Sinha, N., & Wenger, O. S. (2023). Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions [Journal-article]. Journal of the American Chemical Society, 145(20), 11402–11414. https://doi.org/10.1021/jacs.3c02609
Li, H., Wang, C., Glaser, F., Sinha, N., & Wenger, O. S. (2023). Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions [Journal-article]. Journal of the American Chemical Society, 145(20), 11402–11414. https://doi.org/10.1021/jacs.3c02609
Sinha, N., Yaltseva, P., & Wenger, O. S. (2023). The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes [Journal-article]. Angewandte Chemie International Edition, 62(30). https://doi.org/10.1002/anie.202303864
Sinha, N., Yaltseva, P., & Wenger, O. S. (2023). The Nephelauxetic Effect Becomes an Important Design Factor for Photoactive First‐Row Transition Metal Complexes [Journal-article]. Angewandte Chemie International Edition, 62(30). https://doi.org/10.1002/anie.202303864
Bens, T., Kübler, J. A., Walter, R. R. M., Beerhues, J., Wenger, O. S., & Sarkar, B. (2023). Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes [Journal-article]. ACS Organic & Inorganic Au, 3(4), 184–198. https://doi.org/10.1021/acsorginorgau.3c00005
Bens, T., Kübler, J. A., Walter, R. R. M., Beerhues, J., Wenger, O. S., & Sarkar, B. (2023). Impact of Bidentate Pyridyl-Mesoionic Carbene Ligands: Structural, (Spectro)Electrochemical, Photophysical, and Theoretical Investigations on Ruthenium(II) Complexes [Journal-article]. ACS Organic & Inorganic Au, 3(4), 184–198. https://doi.org/10.1021/acsorginorgau.3c00005
Dietzek‐Ivansic, Benjamin, Tschierlei, Stefanie, Schulz, Martin, Karnahl, Michael, Sinha, Narayan, Thomisch, Luise, Nachrichten aus der Chemie, 71(4), 56–63. https://doi.org/10.1002/nadc.20234132821
, & Heinze, Katja. (2023). Trendbericht: Photochemie [Journal-article].
Dietzek‐Ivansic, Benjamin, Tschierlei, Stefanie, Schulz, Martin, Karnahl, Michael, Sinha, Narayan, Thomisch, Luise, Nachrichten aus der Chemie, 71(4), 56–63. https://doi.org/10.1002/nadc.20234132821
, & Heinze, Katja. (2023). Trendbericht: Photochemie [Journal-article].
Mrózek, O., Mitra, M., Hupp, B., Belyaev, A., Lüdtke, N., Wagner, D., Wang, C., Wenger, O. S., Marian, C. M., & Steffen, A. (2023). An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis [Journal-article]. Chemistry – A European Journal, 29(23). https://doi.org/10.1002/chem.202203980
Mrózek, O., Mitra, M., Hupp, B., Belyaev, A., Lüdtke, N., Wagner, D., Wang, C., Wenger, O. S., Marian, C. M., & Steffen, A. (2023). An Air‐ and Moisture‐stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis [Journal-article]. Chemistry – A European Journal, 29(23). https://doi.org/10.1002/chem.202203980
Sinha, N., & Wenger, O. S. (2023). Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII [Journal-article]. Journal of the American Chemical Society, 145(9), 4903–4920. https://doi.org/10.1021/jacs.2c13432
Sinha, N., & Wenger, O. S. (2023). Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, MnI, FeII, and CoIII [Journal-article]. Journal of the American Chemical Society, 145(9), 4903–4920. https://doi.org/10.1021/jacs.2c13432
Schreier, M. R., Pfund, B., Steffen, D. M., & Wenger, O. S. (2023). Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes [Journal-article]. Inorganic Chemistry, 62(20), 7636–7643. https://doi.org/10.1021/acs.inorgchem.2c03100
Schreier, M. R., Pfund, B., Steffen, D. M., & Wenger, O. S. (2023). Photocatalytic Regeneration of a Nicotinamide Adenine Nucleotide Mimic with Water-Soluble Iridium(III) Complexes [Journal-article]. Inorganic Chemistry, 62(20), 7636–7643. https://doi.org/10.1021/acs.inorgchem.2c03100
Delley, Murielle F., & Chimia, 77(6), 452–453. https://doi.org/10.2533/chimia.2023.452
(2023). A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable.
Delley, Murielle F., & Chimia, 77(6), 452–453. https://doi.org/10.2533/chimia.2023.452
(2023). A Farewell Symposium to the Retiring Professors Catherine E. Housecroft and Edwin C. Constable.
Glaser, Felix, & Chemical Science, 14(1), 149–161. https://doi.org/10.1039/d2sc05229f
(2023). Sensitizer-controlled photochemical reactivity via upconversion of red light.
Glaser, Felix, & Chemical Science, 14(1), 149–161. https://doi.org/10.1039/d2sc05229f
(2023). Sensitizer-controlled photochemical reactivity via upconversion of red light.
Jökel, J., Boydas, E. B., Wellauer, J., Wenger, O. S., Robert, M., Römelt, M., & Apfel, U.-P. (2023). A CuICoII cryptate for the visible light-driven reduction of CO2 [Journal-article]. Chemical Science, 14(44), 12774–12783. https://doi.org/10.1039/d3sc02679e
Jökel, J., Boydas, E. B., Wellauer, J., Wenger, O. S., Robert, M., Römelt, M., & Apfel, U.-P. (2023). A CuICoII cryptate for the visible light-driven reduction of CO2 [Journal-article]. Chemical Science, 14(44), 12774–12783. https://doi.org/10.1039/d3sc02679e
Pfund, B., Hutskalova, V., Sparr, C., & Wenger, O. S. (2023). Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chemical Science, 14(40), 11180–11191. https://doi.org/10.1039/d3sc02768f
Pfund, B., Hutskalova, V., Sparr, C., & Wenger, O. S. (2023). Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chemical Science, 14(40), 11180–11191. https://doi.org/10.1039/d3sc02768f
Bürgin, Tobias H., Glaser, Felix, & Journal of the American Chemical Society, 144(31), 14181–14194. https://doi.org/10.1021/jacs.2c04465
(2022). Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis.
Bürgin, Tobias H., Glaser, Felix, & Journal of the American Chemical Society, 144(31), 14181–14194. https://doi.org/10.1021/jacs.2c04465
(2022). Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis.
Glaser, Felix, & JACS Au, 2(6), 1488–1503. https://doi.org/10.1021/jacsau.2c00265
(2022). Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis.
Glaser, Felix, & JACS Au, 2(6), 1488–1503. https://doi.org/10.1021/jacsau.2c00265
(2022). Red Light-Based Dual Photoredox Strategy Resembling the Z‑Scheme of Natural Photosynthesis.
Herr, Patrick, Schwab, Alexander, Kupfer, Stephan, & Chemphotochem, 6(8), e202200052. https://doi.org/10.1002/cptc.202200052
(2022). Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands.
Herr, Patrick, Schwab, Alexander, Kupfer, Stephan, & Chemphotochem, 6(8), e202200052. https://doi.org/10.1002/cptc.202200052
(2022). Deep-Red Luminescent Molybdenum(0) Complexes with Bi- and Tridentate Isocyanide Chelate Ligands.
Kübler, Jasmin A., Pfund, Björn, & JACS Au, 2(10), 2367–2380. https://doi.org/10.1021/jacsau.2c00442
(2022). Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion.
Kübler, Jasmin A., Pfund, Björn, & JACS Au, 2(10), 2367–2380. https://doi.org/10.1021/jacsau.2c00442
(2022). Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion.
Li, Han, & Angewandte Chemie International Edition, 61(5), e202110491. https://doi.org/10.1002/anie.202110491
(2022). Photophysics of perylene diimide dianions and their application in photoredox catalysis.
Li, Han, & Angewandte Chemie International Edition, 61(5), e202110491. https://doi.org/10.1002/anie.202110491
(2022). Photophysics of perylene diimide dianions and their application in photoredox catalysis.
Oelschlegel, Manuel, Hua, Shao-An, Schmid, Lucius, Marquetand, Philipp, Bäck, Anna, Borter, Jan-Hendrik., Lücken, Jana, Dechert, Sebastian, Inorganic Chemistry, 61(35), 13944–13955. https://doi.org/10.1021/acs.inorgchem.2c01930
, Siewert, Inke, Schwarzer, Dirk, González, Leticia, & Meyer, Franc. (2022). Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties.
Oelschlegel, Manuel, Hua, Shao-An, Schmid, Lucius, Marquetand, Philipp, Bäck, Anna, Borter, Jan-Hendrik., Lücken, Jana, Dechert, Sebastian, Inorganic Chemistry, 61(35), 13944–13955. https://doi.org/10.1021/acs.inorgchem.2c01930
, Siewert, Inke, Schwarzer, Dirk, González, Leticia, & Meyer, Franc. (2022). Luminescent Iridium Complexes with a Sulfurated Bipyridine Ligand: PCET Thermochemistry of the Disulfide Unit and Photophysical Properties.
Ogawa, Tomohiro, Sinha, Narayan, Pfund, Björn, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(48), 21948–21960. https://doi.org/10.1021/jacs.2c08838
(2022). Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes.
Ogawa, Tomohiro, Sinha, Narayan, Pfund, Björn, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(48), 21948–21960. https://doi.org/10.1021/jacs.2c08838
(2022). Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes.
Ossinger, Sascha, Prescimone, Alessandro, Häussinger, Daniel, & Inorganic Chemistry, 61(27), 10533–10547. https://doi.org/10.1021/acs.inorgchem.2c01438
(2022). Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence.
Ossinger, Sascha, Prescimone, Alessandro, Häussinger, Daniel, & Inorganic Chemistry, 61(27), 10533–10547. https://doi.org/10.1021/acs.inorgchem.2c01438
(2022). Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence.
Remke, Stephanie C., Bürgin, Tobias H., Ludvíkova, Lucie, Heger, Dominik, Water Research, 213, 118095. https://doi.org/10.1016/j.watres.2022.118095
, von Gunten, Urs, & Canonica, Silvio. (2022). Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution.
Remke, Stephanie C., Bürgin, Tobias H., Ludvíkova, Lucie, Heger, Dominik, Water Research, 213, 118095. https://doi.org/10.1016/j.watres.2022.118095
, von Gunten, Urs, & Canonica, Silvio. (2022). Photochemical oxidation of phenols and anilines mediated by phenoxyl radicals in aqueous solution.
Schmid, Lucius, Chábera, Pavel, Rüter, Isabelle, Prescimone, Alessandro, Meyer, Franc, Yartsev, Arkady, Persson, Petter, & Inorganic Chemistry, 61(40), 15853–15863. https://doi.org/10.1021/acs.inorgchem.2c01667
(2022). Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics.
Schmid, Lucius, Chábera, Pavel, Rüter, Isabelle, Prescimone, Alessandro, Meyer, Franc, Yartsev, Arkady, Persson, Petter, & Inorganic Chemistry, 61(40), 15853–15863. https://doi.org/10.1021/acs.inorgchem.2c01667
(2022). Borylation in the Second Coordination Sphere of Fe(II) Cyanido Complexes and Its Impact on Their Electronic Structures and Excited-State Dynamics.
Schmid, Lucius, Fokin, Igor, Brändlin, Mathis, Wagner, Dorothee, Siewert, Inke, & Chemistry - A European Journal, 28(72), e202202386. https://doi.org/10.1002/chem.202202386
(2022). Accumulation of Four Electrons on a Terphenyl (Bis)disulfide.
Schmid, Lucius, Fokin, Igor, Brändlin, Mathis, Wagner, Dorothee, Siewert, Inke, & Chemistry - A European Journal, 28(72), e202202386. https://doi.org/10.1002/chem.202202386
(2022). Accumulation of Four Electrons on a Terphenyl (Bis)disulfide.
Schmid, Lucius, Glaser, Felix, Schaer, Raoul, & Journal of the American Chemical Society, 144(2), 963–976. https://doi.org/10.1021/jacs.1c11667
(2022). High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis.
Schmid, Lucius, Glaser, Felix, Schaer, Raoul, & Journal of the American Chemical Society, 144(2), 963–976. https://doi.org/10.1021/jacs.1c11667
(2022). High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis.
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, Ward, Thomas R., Kerzig, Christoph, & Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
(2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Schreier, Mirjam R., Guo, Xingwei, Pfund, Björn, Okamoto, Yasunori, Ward, Thomas R., Kerzig, Christoph, & Accounts of Chemical Research, 55(9), 1290–1300. https://doi.org/10.1021/acs.accounts.2c00075
(2022). Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
Sinha, Narayan, Pfund, Björn, Wegeberg, Christina, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(22), 9859–9873. https://doi.org/10.1021/jacs.2c02592
(2022). Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds.
Sinha, Narayan, Pfund, Björn, Wegeberg, Christina, Prescimone, Alessandro, & Journal of the American Chemical Society, 144(22), 9859–9873. https://doi.org/10.1021/jacs.2c02592
(2022). Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds.
Wegeberg, Christina, & Dalton Transactions, 51(4), 1297–1302. https://doi.org/10.1039/d1dt03763c
(2022). Luminescent chromium(0) and manganese(i) complexes.
Wegeberg, Christina, & Dalton Transactions, 51(4), 1297–1302. https://doi.org/10.1039/d1dt03763c
(2022). Luminescent chromium(0) and manganese(i) complexes.
Zhang, Lei, Pfund, Björn, Angewandte Chemie International Edition, 61(20), e202202649. https://doi.org/10.1002/anie.202202649
, & Hu, Xile. (2022). Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst.
Zhang, Lei, Pfund, Björn, Angewandte Chemie International Edition, 61(20), e202202649. https://doi.org/10.1002/anie.202202649
, & Hu, Xile. (2022). Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst.
Sinha, Narayan, Jiménez, Juan‐Ramón, Pfund, Björn, Prescimone, Alessandro, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23920. https://doi.org/10.1002/anie.202111510
(2021). Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021) [Journal-article].
Sinha, Narayan, Jiménez, Juan‐Ramón, Pfund, Björn, Prescimone, Alessandro, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23920. https://doi.org/10.1002/anie.202111510
(2021). Back Cover: A Near‐Infrared‐II Emissive Chromium(III) Complex (Angew. Chem. Int. Ed. 44/2021) [Journal-article].
Bilger, Jakob B., Kerzig, Christoph, Larsen, Christopher B., & Journal of the American Chemical Society, 143(3), 1651–1663. https://doi.org/10.1021/jacs.0c12805
(2021). A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion.
Bilger, Jakob B., Kerzig, Christoph, Larsen, Christopher B., & Journal of the American Chemical Society, 143(3), 1651–1663. https://doi.org/10.1021/jacs.0c12805
(2021). A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and its Application in Red-to-Blue Upconversion.
Bürgin, Tobias H., & Energy and Fuels, 35(23), 18848–18856. https://doi.org/10.1021/acs.energyfuels.1c02073
(2021). Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review.
Bürgin, Tobias H., & Energy and Fuels, 35(23), 18848–18856. https://doi.org/10.1021/acs.energyfuels.1c02073
(2021). Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review.
Glaser, Felix, Kerzig, Christoph, & Chemical Science, 12(29), 9922–9933. https://doi.org/10.1039/d1sc02085d
(2021). Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications.
Glaser, Felix, Kerzig, Christoph, & Chemical Science, 12(29), 9922–9933. https://doi.org/10.1039/d1sc02085d
(2021). Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications.
Herr, Patrick, Kerzig, Christoph, Larsen, Christopher B., Häussinger, Daniel, & Nature Chemistry, 13(10), 956–962. https://doi.org/10.1038/s41557-021-00744-9
(2021). Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity.
Herr, Patrick, Kerzig, Christoph, Larsen, Christopher B., Häussinger, Daniel, & Nature Chemistry, 13(10), 956–962. https://doi.org/10.1038/s41557-021-00744-9
(2021). Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity.
Neumann, Svenja, Chemistry - A European Journal, 27(12), 4115–4123. https://doi.org/10.1002/chem.202004638
, & Kerzig, Christoph. (2021). Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis.
Neumann, Svenja, Chemistry - A European Journal, 27(12), 4115–4123. https://doi.org/10.1002/chem.202004638
, & Kerzig, Christoph. (2021). Controlling Spin-Correlated Radical Pairs with Donor-Acceptor Dyads: A New Concept to Generate Reduced Metal Complexes for More Efficient Photocatalysis.
Schmid, Lucius, Kerzig, Christoph, Prescimone, Alessandro, & JACS Au, 1(6), 819–832. https://doi.org/10.1021/jacsau.1c00137
(2021). Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis.
Schmid, Lucius, Kerzig, Christoph, Prescimone, Alessandro, & JACS Au, 1(6), 819–832. https://doi.org/10.1021/jacsau.1c00137
(2021). Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis.
Sinha, Narayan, Jiménez, Juan-Ramon, Pfund, Björn, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23722–23728. https://doi.org/10.1002/anie.202106398
(2021). A Near-Infrared-II Emissive Chromium(III) Complex.
Sinha, Narayan, Jiménez, Juan-Ramon, Pfund, Björn, Piguet, Claude, & Angewandte Chemie International Edition, 60(44), 23722–23728. https://doi.org/10.1002/anie.202106398
(2021). A Near-Infrared-II Emissive Chromium(III) Complex.
Wegeberg, Christina, Häussinger, Daniel, & Journal of the American Chemical Society, 143(38), 15800–15811. https://doi.org/10.1021/jacs.1c07345
(2021). Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes.
Wegeberg, Christina, Häussinger, Daniel, & Journal of the American Chemical Society, 143(38), 15800–15811. https://doi.org/10.1021/jacs.1c07345
(2021). Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d6 Metal Complexes.
Wegeberg, Christina, & JACS Au, 1(11), 1860–1876. https://doi.org/10.1021/jacsau.1c00353
(2021). Luminescent First-Row Transition Metal Complexes.
Wegeberg, Christina, & JACS Au, 1(11), 1860–1876. https://doi.org/10.1021/jacsau.1c00353
(2021). Luminescent First-Row Transition Metal Complexes.
Chemistry - A European Journal, 27(7), 2270–2278. https://doi.org/10.1002/chem.202003974
(2021). Photoactive nickel complexes in cross coupling catalysis.
Chemistry - A European Journal, 27(7), 2270–2278. https://doi.org/10.1002/chem.202003974
(2021). Photoactive nickel complexes in cross coupling catalysis.
Heinze, K., & Wenger, O. S. (2020). Light-Controlled Reactivity of Metal Complexes. Inorganic Chemistry, 59(20), 14627–14628. https://doi.org/10.1021/acs.inorgchem.0c02791
Heinze, K., & Wenger, O. S. (2020). Light-Controlled Reactivity of Metal Complexes. Inorganic Chemistry, 59(20), 14627–14628. https://doi.org/10.1021/acs.inorgchem.0c02791
Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie, 132(26), 10350–10370. https://doi.org/10.1002/ange.201915762
(2020). Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden [Journal-article].
Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie, 132(26), 10350–10370. https://doi.org/10.1002/ange.201915762
(2020). Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden [Journal-article].
Brandl, Thomas, Kerzig, Christoph, Le Pleux, Loic, Prescimone, Alessandro, Chemistry - A European Journal, 26(14), 3119–3128. https://doi.org/10.1002/chem.201904754
, & Mayor, Marcel. (2020). Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands.
Brandl, Thomas, Kerzig, Christoph, Le Pleux, Loic, Prescimone, Alessandro, Chemistry - A European Journal, 26(14), 3119–3128. https://doi.org/10.1002/chem.201904754
, & Mayor, Marcel. (2020). Improved Photostability of a CuI Complex by Macrocyclization of the Phenanthroline Ligands.
Fischer, Christian, Kerzig, Christoph, Zilate, Bouthayna, ACS Catalysis, 10(1), 210–215. https://doi.org/10.1021/acscatal.9b03606
, & Sparr, Christof. (2020). Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies.
Fischer, Christian, Kerzig, Christoph, Zilate, Bouthayna, ACS Catalysis, 10(1), 210–215. https://doi.org/10.1021/acscatal.9b03606
, & Sparr, Christof. (2020). Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies.
García‐López, Victor, Zalibera, Michal, Trapp, Nils, Kuss‐Petermann, Martin, Chemistry - A European Journal, 26(50), 11451–11461. https://doi.org/10.1002/chem.202001788
, & Diederich, François. (2020). Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers.
García‐López, Victor, Zalibera, Michal, Trapp, Nils, Kuss‐Petermann, Martin, Chemistry - A European Journal, 26(50), 11451–11461. https://doi.org/10.1002/chem.202001788
, & Diederich, François. (2020). Stimuli‐Responsive Resorcin[4]arene Cavitands: Toward Visible‐Light‐Activated Molecular Grippers.
Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie International Edition, 59(26), 10266–10284. https://doi.org/10.1002/anie.201915762
(2020). Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods.
Glaser, Felix, Kerzig, Christoph, & Angewandte Chemie International Edition, 59(26), 10266–10284. https://doi.org/10.1002/anie.201915762
(2020). Multi‐Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods.
Glaser, Felix, Larsen, Christopher B., Kerzig, Christoph, & Photochemical and Photobiological Sciences, 19(8), 1035–1041. https://doi.org/10.1039/d0pp00127a
(2020). Aryl dechlorination and defluorination with an organic super-photoreductant.
Glaser, Felix, Larsen, Christopher B., Kerzig, Christoph, & Photochemical and Photobiological Sciences, 19(8), 1035–1041. https://doi.org/10.1039/d0pp00127a
(2020). Aryl dechlorination and defluorination with an organic super-photoreductant.
Glaser, Felix, & Coordination chemistry reviews, 405, 213129. https://doi.org/10.1016/j.ccr.2019.213129
(2020). Recent progress in the development of transition-metal based photoredox catalysts.
Glaser, Felix, & Coordination chemistry reviews, 405, 213129. https://doi.org/10.1016/j.ccr.2019.213129
(2020). Recent progress in the development of transition-metal based photoredox catalysts.
Herr, Patrick, & Inorganics, 8(2), 14. https://doi.org/10.3390/inorganics8020014
(2020). Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands.
Herr, Patrick, & Inorganics, 8(2), 14. https://doi.org/10.3390/inorganics8020014
(2020). Excited-State Relaxation in Luminescent Molybdenum(0) Complexes with Isocyanide Chelate Ligands.
Hörmann, Fabian M., Kerzig, Christoph, Chung, Tim S., Bauer, Andreas, Angewandte Chemie International Edition, 59(24), 9659–9668. https://doi.org/10.1002/anie.202001634
, & Bach, Thorsten. (2020). Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition.
Hörmann, Fabian M., Kerzig, Christoph, Chung, Tim S., Bauer, Andreas, Angewandte Chemie International Edition, 59(24), 9659–9668. https://doi.org/10.1002/anie.202001634
, & Bach, Thorsten. (2020). Triplet Energy Transfer from Ruthenium Complexes to Chiral Eniminium Ions: Enantioselective Synthesis of Cyclobutanecarbaldehydes by [2+2] Photocycloaddition.
Hua, Shao-Ann, Cattaneo, Mauricio, Oelschlegel, Manuel, Heindl, Moritz, Schmid, Lucius, Dechert, Sebastian, Inorganic Chemistry, 59(7), 4972–4984. https://doi.org/10.1021/acs.inorgchem.0c00220
, Siewert, Inke, González, Leticia, & Meyer, Franc. (2020). Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands.
Hua, Shao-Ann, Cattaneo, Mauricio, Oelschlegel, Manuel, Heindl, Moritz, Schmid, Lucius, Dechert, Sebastian, Inorganic Chemistry, 59(7), 4972–4984. https://doi.org/10.1021/acs.inorgchem.0c00220
, Siewert, Inke, González, Leticia, & Meyer, Franc. (2020). Electrochemical and Photophysical Properties of Ruthenium(II) Complexes Equipped with Sulfurated Bipyridine Ligands.
Larsen, Christopher B., Farrow, George A., Smith, Lian D., Appleby, Martin, Chekulaev, Dimitri, Weinstein, Julia, & Inorganic Chemistry, 59(15), 10430–10438. https://doi.org/10.1021/acs.inorgchem.0c00679
(2020). Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad.
Larsen, Christopher B., Farrow, George A., Smith, Lian D., Appleby, Martin, Chekulaev, Dimitri, Weinstein, Julia, & Inorganic Chemistry, 59(15), 10430–10438. https://doi.org/10.1021/acs.inorgchem.0c00679
(2020). Solvent-Mediated Activation/Deactivation of Photoinduced Electron-Transfer in a Molecular Dyad.
Pfund, Björn, Steffen, Debora M., Schreier, Mirjam R., Bertrams, Maria-Sophie, Ye, Chen, Börjesson, Karl, Journal of the American Chemical Society, 142(23), 10468–10476. https://doi.org/10.1021/jacs.0c02835
, & Kerzig, Christoph. (2020). UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water.
Pfund, Björn, Steffen, Debora M., Schreier, Mirjam R., Bertrams, Maria-Sophie, Ye, Chen, Börjesson, Karl, Journal of the American Chemical Society, 142(23), 10468–10476. https://doi.org/10.1021/jacs.0c02835
, & Kerzig, Christoph. (2020). UV Light Generation and Challenging Photoreactions Enabled by Upconversion in Water.
Schreier, Mirjam R., Pfund, Björn, Guo, Xingwei, & Chemical Science, 11(32), 8582–8594. https://doi.org/10.1039/d0sc01820a
(2020). Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins.
Schreier, Mirjam R., Pfund, Björn, Guo, Xingwei, & Chemical Science, 11(32), 8582–8594. https://doi.org/10.1039/d0sc01820a
(2020). Photo-triggered hydrogen atom transfer from an iridium hydride complex to unactivated olefins.
Nature Chemistry, 12(4), 323–324. https://doi.org/10.1038/s41557-020-0448-x
(2020). A bright future for photosensitizers.
Nature Chemistry, 12(4), 323–324. https://doi.org/10.1038/s41557-020-0448-x
(2020). A bright future for photosensitizers.
Castrogiovanni, Alessandro, Herr, Patrick, Larsen, Christopher Bryan, Guo, Xingwei, Sparr, Christof, & Chemistry - A European Journal, 25, 16748–16754. https://doi.org/10.1002/chem.201904771
(2019). Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes.
Castrogiovanni, Alessandro, Herr, Patrick, Larsen, Christopher Bryan, Guo, Xingwei, Sparr, Christof, & Chemistry - A European Journal, 25, 16748–16754. https://doi.org/10.1002/chem.201904771
(2019). Shortcuts for Electron-Transfer through the Secondary Structure of Helical Oligo-1,2-Naphthylenes.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
(2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & European Journal of Organic Chemistry, 10, 1288–1293. https://doi.org/10.1002/ejoc.201900777
(2019). Reductive Amination and Enantioselective Amine Synthesis by Photoredox Catalysis.
Herr, Patrick, Glaser, Felix, Büldt, Laura A., Larsen, Christopher B., & Journal of the American Chemical Society, 141(36), 14394–14402. https://doi.org/10.1021/jacs.9b07373
(2019). Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides.
Herr, Patrick, Glaser, Felix, Büldt, Laura A., Larsen, Christopher B., & Journal of the American Chemical Society, 141(36), 14394–14402. https://doi.org/10.1021/jacs.9b07373
(2019). Long-Lived, Strongly Emissive, and Highly Reducing Excited States in Mo(0) Complexes with Chelating Isocyanides.
Irmler, Peter, Gogesch, Franciska S., Larsen, Christopher B., Dalton Transactions, 48(4), 1171–1174. https://doi.org/10.1039/c8dt04823a
, & Winter, Rainer F. (2019). Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad.
Irmler, Peter, Gogesch, Franciska S., Larsen, Christopher B., Dalton Transactions, 48(4), 1171–1174. https://doi.org/10.1039/c8dt04823a
, & Winter, Rainer F. (2019). Four different emissions from a Pt(Bodipy)(PEt3)(2)(S-Pyrene) dyad.
Irmler, Peter, Gogesch, Franciska S., Mang, Andé, Bodensteiner, Michael, Larsen, Christopher B., Dalton Transactions, 48(31), 11690–11705. https://doi.org/10.1039/c9dt01737b
, & Winter, Rainer F. (2019). Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads.
Irmler, Peter, Gogesch, Franciska S., Mang, Andé, Bodensteiner, Michael, Larsen, Christopher B., Dalton Transactions, 48(31), 11690–11705. https://doi.org/10.1039/c9dt01737b
, & Winter, Rainer F. (2019). Directing energy transfer in Pt(bodipy)(mercaptopyrene) dyads.
Kerzig, Christoph, Guo, Xingwei, & Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
(2019). Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis.
Kerzig, Christoph, Guo, Xingwei, & Journal of the American Chemical Society, 141(5), 2122–2127. https://doi.org/10.1021/jacs.8b12223
(2019). Unexpected Hydrated Electron Source for Preparative Visible-Light Driven Photoredox Catalysis.
Kerzig, Christoph, & Chemical Science, 10(48), 11023–11029. https://doi.org/10.1039/c9sc04584h
(2019). Reactivity control of a photocatalytic system by changing the light intensity.
Kerzig, Christoph, & Chemical Science, 10(48), 11023–11029. https://doi.org/10.1039/c9sc04584h
(2019). Reactivity control of a photocatalytic system by changing the light intensity.
Malzkuhn, Sabine, Guo, Xingwei, Häussinger, Daniel, & Journal of Physical Chemistry A, 123(1), 96–102. https://doi.org/10.1021/acs.jpca.8b11236
(2019). Electron Transfer across o-Phenylene Wires.
Malzkuhn, Sabine, Guo, Xingwei, Häussinger, Daniel, & Journal of Physical Chemistry A, 123(1), 96–102. https://doi.org/10.1021/acs.jpca.8b11236
(2019). Electron Transfer across o-Phenylene Wires.
Nemann, Svenja, & Inorganic Chemistry, 58(1), 855–860. https://doi.org/10.1021/acs.inorgchem.8b02973
(2019). Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces.
Nemann, Svenja, & Inorganic Chemistry, 58(1), 855–860. https://doi.org/10.1021/acs.inorgchem.8b02973
(2019). Fundamentally Different Distance Dependences of Electron-Transfer Rates for Low and High Driving Forces.
Neumann, Svenja, Kerzig, Christoph, & Chemical Science, 10(21), 5624–5633. https://doi.org/10.1039/c9sc01381d
(2019). Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis.
Neumann, Svenja, Kerzig, Christoph, & Chemical Science, 10(21), 5624–5633. https://doi.org/10.1039/c9sc01381d
(2019). Quantitative Insights into Charge-Separated States from One- and Two-Pulse Laser Experiments Relevant for Artificial Photosynthesis.
Pannwitz, Andrea, & Chemical Communications, 55(28), 4004–4014. https://doi.org/10.1039/c9cc00821g
(2019). Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis.
Pannwitz, Andrea, & Chemical Communications, 55(28), 4004–4014. https://doi.org/10.1039/c9cc00821g
(2019). Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis.
Pannwitz, Andrea, & Dalton Transactions, 48(18), 5861–5868. https://doi.org/10.1039/c8dt04373f
(2019). Recent Advances in Bioinspired Proton-Coupled Electron Transfer.
Pannwitz, Andrea, & Dalton Transactions, 48(18), 5861–5868. https://doi.org/10.1039/c8dt04373f
(2019). Recent Advances in Bioinspired Proton-Coupled Electron Transfer.
Skaisgirski, Michael, Larsen, Christopher B., Kerzig, Christoph, & European Journal of Inorganic Chemistry, 2019(39-40), 4256–4262. https://doi.org/10.1002/ejic.201900453
(2019). Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad.
Skaisgirski, Michael, Larsen, Christopher B., Kerzig, Christoph, & European Journal of Inorganic Chemistry, 2019(39-40), 4256–4262. https://doi.org/10.1002/ejic.201900453
(2019). Stepwise Photoinduced Electron Transfer in a Tetrathiafulvalene-Phenothiazine-Ruthenium Triad.
Chemistry - A European Journal, 25(24), 6043–6052. https://doi.org/10.1002/chem.201806148
(2019). Is Iron the New Ruthenium?
Chemistry - A European Journal, 25(24), 6043–6052. https://doi.org/10.1002/chem.201806148
(2019). Is Iron the New Ruthenium?
Suntrup, L., Stein, F., Hermann, G., Kleoff, M., Kuss-Petermann, M., Klein, J., Wenger, O. S., Tremblay, J. C., & Sarkar, B. (2018). Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study. Inorganic Chemistry, 57(21), 13973–13984. https://doi.org/10.1021/acs.inorgchem.8b02551
Suntrup, L., Stein, F., Hermann, G., Kleoff, M., Kuss-Petermann, M., Klein, J., Wenger, O. S., Tremblay, J. C., & Sarkar, B. (2018). Influence of Mesoionic Carbenes on Electro- and Photoactive Ru and Os Complexes: A Combined (Spectro-)Electrochemical, Photochemical, and Computational Study. Inorganic Chemistry, 57(21), 13973–13984. https://doi.org/10.1021/acs.inorgchem.8b02551
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie International Edition, 57(22), 6706. https://doi.org/10.1002/anie.201803955
(2018). Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018) [Journal-article].
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie International Edition, 57(22), 6706. https://doi.org/10.1002/anie.201803955
(2018). Back Cover: Electron Transfer around a Molecular Corner (Angew. Chem. Int. Ed. 22/2018) [Journal-article].
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6818. https://doi.org/10.1002/ange.201803955
(2018). Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018) [Journal-article].
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6818. https://doi.org/10.1002/ange.201803955
(2018). Rücktitelbild: Elektronentransfer um eine molekulare Ecke (Angew. Chem. 22/2018) [Journal-article].
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6806–6810. https://doi.org/10.1002/ange.201800396
(2018). Elektronentransfer um eine molekulare Ecke [Journal-article].
Schmidt, Hauke C., Larsen, Christopher B., & Angewandte Chemie, 130(22), 6806–6810. https://doi.org/10.1002/ange.201800396
(2018). Elektronentransfer um eine molekulare Ecke [Journal-article].
Milić, J., Zalibera, M., Talaat, D., Nomrowski, J., Trapp, N., Ruhlmann, L., Boudon, C., Wenger, O. S., Savitsky, A., Lubitz, W., & Diederich, F. (2018). Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry - A European Journal, 24(6), 1431–1440. https://doi.org/10.1002/chem.201704788
Milić, J., Zalibera, M., Talaat, D., Nomrowski, J., Trapp, N., Ruhlmann, L., Boudon, C., Wenger, O. S., Savitsky, A., Lubitz, W., & Diederich, F. (2018). Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry - A European Journal, 24(6), 1431–1440. https://doi.org/10.1002/chem.201704788
Guo, Xingwei, & Angewandte Chemie, 130(9), 2494–2498. https://doi.org/10.1002/ange.201711467
(2018). Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer [Journal-article].
Guo, Xingwei, & Angewandte Chemie, 130(9), 2494–2498. https://doi.org/10.1002/ange.201711467
(2018). Reduktive Aminierung durch Photoredoxkatalyse über polaritätsangepassten Wasserstoffatomtransfer [Journal-article].
Brandl, Thomas, Hoffmann, Viktor, Pannwitz, Andrea, Häussinger, Daniel, Neuburger, Markus, Fuhr, Olaf, Bernhard, Stefan, Chemical Science, 9(15), 3837–3843. https://doi.org/10.1039/c7sc05285e
, & Mayor, Marcel. (2018). Chiral macrocyclic terpyridine complexes.
Brandl, Thomas, Hoffmann, Viktor, Pannwitz, Andrea, Häussinger, Daniel, Neuburger, Markus, Fuhr, Olaf, Bernhard, Stefan, Chemical Science, 9(15), 3837–3843. https://doi.org/10.1039/c7sc05285e
, & Mayor, Marcel. (2018). Chiral macrocyclic terpyridine complexes.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
(2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network.
Guo, Xingwei, Okamoto, Yasunori, Schreier, Mirjam R., Ward, Thomas R., & Chemical Science, 9, 5052–5056. https://doi.org/10.1039/c8sc01561a
(2018). Enantioselective Synthesis of Amines by Combining Photoredox and Enzymatic Catalysis in a Cyclic Reaction Network.
Guo, Xingwei, & Angewandte Chemie International Edition, 57(9), 2469–2473. https://doi.org/10.1002/anie.201711467
(2018). Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer.
Guo, Xingwei, & Angewandte Chemie International Edition, 57(9), 2469–2473. https://doi.org/10.1002/anie.201711467
(2018). Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer.
Kerzig, Christoph, & Chemical Science, 9(32), 6670–6678. https://doi.org/10.1039/c8sc01829d
(2018). Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations.
Kerzig, Christoph, & Chemical Science, 9(32), 6670–6678. https://doi.org/10.1039/c8sc01829d
(2018). Sensitized Triplet-Triplet Annihilation Upconversion in Water and its Application to Photochemical Transformations.
Larsen, Christopher B., & Chemistry - A European Journal, 24(9), 2039–2058. https://doi.org/10.1002/chem.201703602
(2018). Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.
Larsen, Christopher B., & Chemistry - A European Journal, 24(9), 2039–2058. https://doi.org/10.1002/chem.201703602
(2018). Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.