Publications
138 found
Show per page
Nyathi, N. A., Musakwa, W., Azilagbetor, D. M., & Kuhn, N. J. (2024). Perceptions of Cultural and Provisioning Ecosystem Services and Human Wellbeing Indicators Amongst Indigenous Communities Neighbouring the Greater Limpopo Transfrontier Conservation Area [Journal-article]. Heliyon, e41448. https://doi.org/10.1016/j.heliyon.2024.e41448
Nyathi, N. A., Musakwa, W., Azilagbetor, D. M., & Kuhn, N. J. (2024). Perceptions of Cultural and Provisioning Ecosystem Services and Human Wellbeing Indicators Amongst Indigenous Communities Neighbouring the Greater Limpopo Transfrontier Conservation Area [Journal-article]. Heliyon, e41448. https://doi.org/10.1016/j.heliyon.2024.e41448
Anderson, Karen, Tooth, Stephen, Kim, Daehyun, Resler, Lynn M, Schillereff, Daniel, Williams, John W, Rocchini, Duccio, Ponette-González, Alexandra G, Progress in Physical Geography: Earth and Environment, 48(1), 3–23. https://doi.org/10.1177/03091333231217881
, & Brian, Jayne V. (2024). A horizon scan for novel and impactful areas of physical geography research in 2023 and beyond [Journal-article].
Anderson, Karen, Tooth, Stephen, Kim, Daehyun, Resler, Lynn M, Schillereff, Daniel, Williams, John W, Rocchini, Duccio, Ponette-González, Alexandra G, Progress in Physical Geography: Earth and Environment, 48(1), 3–23. https://doi.org/10.1177/03091333231217881
, & Brian, Jayne V. (2024). A horizon scan for novel and impactful areas of physical geography research in 2023 and beyond [Journal-article].
Merron, James, The Lower !Garib – Orange River: Pasts and Presents of a Southern African Border Region (pp. 287–296). Transcript. https://doi.org/10.1515/9783839466391-020
, & Kuhn, Brigitte. (2023). Landscape Archives, Aerial Photography and Geomorphic Change along the Lower Orange River. In Luregn Lenggenhager, Martha Akawa, Giorgio Miescher, Romie Nghitevelekwa, Ndidzulafhi Innocent Sinthumule (ed.),
Merron, James, The Lower !Garib – Orange River: Pasts and Presents of a Southern African Border Region (pp. 287–296). Transcript. https://doi.org/10.1515/9783839466391-020
, & Kuhn, Brigitte. (2023). Landscape Archives, Aerial Photography and Geomorphic Change along the Lower Orange River. In Luregn Lenggenhager, Martha Akawa, Giorgio Miescher, Romie Nghitevelekwa, Ndidzulafhi Innocent Sinthumule (ed.),
In 30 Tagen durch die Schweiz: Einblicke in ungeahnte Ort (pp. 131–136). Helvetiq .
. (2023). Die Badewanne der Dinosaurier. In Francisco Klauser; Sara Landolt; Martin Müller; Isabelle Schoepfer (Ed.),
In 30 Tagen durch die Schweiz: Einblicke in ungeahnte Ort (pp. 131–136). Helvetiq .
. (2023). Die Badewanne der Dinosaurier. In Francisco Klauser; Sara Landolt; Martin Müller; Isabelle Schoepfer (Ed.),
Nyathi, Nesisa Analisa, Musakwa, Walter, Delzeit, Ruth, & Diversity, 14(5), 359. https://doi.org/10.3390/d14050359
. (2022). Ecosystem Services in Southern Africa: Current and Emerging Trends-A Bibliometric Review.
Nyathi, Nesisa Analisa, Musakwa, Walter, Delzeit, Ruth, & Diversity, 14(5), 359. https://doi.org/10.3390/d14050359
. (2022). Ecosystem Services in Southern Africa: Current and Emerging Trends-A Bibliometric Review.
Prudat, Brice, Fister, Wolfgang, Bloemertz, Lena, Krenz, Juliane, & Geographica Helvetica, 77, 39–51. https://doi.org/10.5194/gh-77-39-2022
(2022). The potential of fragipans in sustaining pearl millet during drought periods in north-central Namibia.
Prudat, Brice, Fister, Wolfgang, Bloemertz, Lena, Krenz, Juliane, & Geographica Helvetica, 77, 39–51. https://doi.org/10.5194/gh-77-39-2022
(2022). The potential of fragipans in sustaining pearl millet during drought periods in north-central Namibia.
Vos, Heleen C., Karst, Isabel G., Eckardt, Frank D., Fister, Wolfgang, & Agronomy, 12(2), 457. https://doi.org/10.3390/agronomy12020457
(2022). Influence of Crop and Land Management onWind Erosion from Sandy Soils in Dryland Agriculture.
Vos, Heleen C., Karst, Isabel G., Eckardt, Frank D., Fister, Wolfgang, & Agronomy, 12(2), 457. https://doi.org/10.3390/agronomy12020457
(2022). Influence of Crop and Land Management onWind Erosion from Sandy Soils in Dryland Agriculture.
Bloemertz, Lena, Nghitevelekwa, Romie, Prudat, Brice, Weidmann, Laura, Dobler, Gregor, Graefe, Olivier, & Integrated Land Management Institute (ILMI) Working Paper, Working Paper No. 13, 11.
(2021). Social meaning and material constraints of land scarcity in Northern Namibia.
Bloemertz, Lena, Nghitevelekwa, Romie, Prudat, Brice, Weidmann, Laura, Dobler, Gregor, Graefe, Olivier, & Integrated Land Management Institute (ILMI) Working Paper, Working Paper No. 13, 11.
(2021). Social meaning and material constraints of land scarcity in Northern Namibia.
Bontognali, Tomaso, Meister, Yardena, Kuhn, Brigitte, Josset, Jean-Luc, Hofmann, Beda A., & Planetary and Space Science, 208, 105355. https://doi.org/10.1016/j.pss.2021.105355
(2021). Identifying optimal working conditions for close-up imagining during the ExoMars rover mission.
Bontognali, Tomaso, Meister, Yardena, Kuhn, Brigitte, Josset, Jean-Luc, Hofmann, Beda A., & Planetary and Space Science, 208, 105355. https://doi.org/10.1016/j.pss.2021.105355
(2021). Identifying optimal working conditions for close-up imagining during the ExoMars rover mission.
Greenwood, Philip, Bauer, Jan, & Journal of Mountain Science, 18(2), 377–391. https://doi.org/10.1007/s11629-019-5867-z
(2021). Sediment generation and soil mound denudation in areas of high-density tree throw along a river valley in the Jura Mountains, Switzerland.
Greenwood, Philip, Bauer, Jan, & Journal of Mountain Science, 18(2), 377–391. https://doi.org/10.1007/s11629-019-5867-z
(2021). Sediment generation and soil mound denudation in areas of high-density tree throw along a river valley in the Jura Mountains, Switzerland.
Hu , Yaxian, Schneider , Vincent, Kuhn, Brigitte, Guo , Shengli, & Frontiers of Environmental Science, 9, 688286. https://doi.org/10.3389/fenvs.2021.688286
(2021). Capturing the Scale Dependency of Erosion-Induced Variation in CO2 Emissions on Terraced Slopes.
Hu , Yaxian, Schneider , Vincent, Kuhn, Brigitte, Guo , Shengli, & Frontiers of Environmental Science, 9, 688286. https://doi.org/10.3389/fenvs.2021.688286
(2021). Capturing the Scale Dependency of Erosion-Induced Variation in CO2 Emissions on Terraced Slopes.
Krenz, Juliane, Greenwood, Philip, & Anthropocene, 34, 100290. https://doi.org/10.1016/j.ancene.2021.100290
(2021). Anthropogenic erosion-induced small-scale soil heterogeneity in South African rangelands.
Krenz, Juliane, Greenwood, Philip, & Anthropocene, 34, 100290. https://doi.org/10.1016/j.ancene.2021.100290
(2021). Anthropogenic erosion-induced small-scale soil heterogeneity in South African rangelands.
Salawu-Rotimi, Adeola, Lebre, Pedro H., Vos, Heleen Cornelia, Fister, Wolfgang, Microbial Ecology, 82(4), 859–869. https://doi.org/10.1007/s00248-021-01717-8
, Eckard, Frank D., & Cowan, Don A. (2021). Gone with the Wind: Microbial Communities Associated with Dust from Emissive Farmlands.
Salawu-Rotimi, Adeola, Lebre, Pedro H., Vos, Heleen Cornelia, Fister, Wolfgang, Microbial Ecology, 82(4), 859–869. https://doi.org/10.1007/s00248-021-01717-8
, Eckard, Frank D., & Cowan, Don A. (2021). Gone with the Wind: Microbial Communities Associated with Dust from Emissive Farmlands.
Van Leeuwen, C. C. E., Fister, Wolfgang, Vos, Heleen Cornelia, Cammeraat, L. H., & Aeolian Research, 49, 100661. https://doi.org/10.1016/j.aeolia.2020.100661
(2021). A cross-comparison of threshold friction velocities for PM10 emissions between a traditional portable straight-line wind tunnel and PI-SWERL.
Van Leeuwen, C. C. E., Fister, Wolfgang, Vos, Heleen Cornelia, Cammeraat, L. H., & Aeolian Research, 49, 100661. https://doi.org/10.1016/j.aeolia.2020.100661
(2021). A cross-comparison of threshold friction velocities for PM10 emissions between a traditional portable straight-line wind tunnel and PI-SWERL.
Vos, Heleen, Fister, Wolfgang, von Holdt, Johanna, Eckardt, Frank, Palmer, Anthony, & Aeolian Research, 53, 100747. https://doi.org/10.1016/j.aeolia.2021.100747
(2021). Assessing the PM10 emission potential of sandy, dryland soils in South Africa using the PI-SWERL.
Vos, Heleen, Fister, Wolfgang, von Holdt, Johanna, Eckardt, Frank, Palmer, Anthony, & Aeolian Research, 53, 100747. https://doi.org/10.1016/j.aeolia.2021.100747
(2021). Assessing the PM10 emission potential of sandy, dryland soils in South Africa using the PI-SWERL.
Collins, Courtney G., Spasojevic, Marko J., Alados, Concepción L., Aronson, Emma L., Benavides, Juan C., Cannone, Nicoletta, Caviezel, Chatrina, Grau, Oriol, Guo, Hui, Kudo, Gaku, Global Change Biology, 26(12), 7112–7127. https://doi.org/10.1111/gcb.15340
, Müllerová, Jana, Phillips, Michala L., Pombubpa, Nuttapon, Reverchon, Frédérique, Shulman, Hannah B., Stajich, Jason E., Stokes, Alexia, Weber, Sören E., & Diez, Jeffrey M. (2020). Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions.
Collins, Courtney G., Spasojevic, Marko J., Alados, Concepción L., Aronson, Emma L., Benavides, Juan C., Cannone, Nicoletta, Caviezel, Chatrina, Grau, Oriol, Guo, Hui, Kudo, Gaku, Global Change Biology, 26(12), 7112–7127. https://doi.org/10.1111/gcb.15340
, Müllerová, Jana, Phillips, Michala L., Pombubpa, Nuttapon, Reverchon, Frédérique, Shulman, Hannah B., Stajich, Jason E., Stokes, Alexia, Weber, Sören E., & Diez, Jeffrey M. (2020). Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions.
Eckardt, F. D., Bekiswa, S., von Hold, J. R., Jack, C., Aeolian Research, 47, 100637. https://doi.org/10.1016/j.aeolia.2020.100637
, Mogane, F., Murray, J. E., Ndara, N., & Palmer, A. R. (2020). South Africa’s agricultural dust sources and events from MSG SEVIRI.
Eckardt, F. D., Bekiswa, S., von Hold, J. R., Jack, C., Aeolian Research, 47, 100637. https://doi.org/10.1016/j.aeolia.2020.100637
, Mogane, F., Murray, J. E., Ndara, N., & Palmer, A. R. (2020). South Africa’s agricultural dust sources and events from MSG SEVIRI.
Greenwood, Philip, Gange, Alan c., & Journal of Weed Research, 60(1), 26–36. https://doi.org/10.1111/wre.12397
. (2020). Evidence of sedimentation inequality along riparian areas colonised by Impatiens glandulifera (Himalayan Balsam).
Greenwood, Philip, Gange, Alan c., & Journal of Weed Research, 60(1), 26–36. https://doi.org/10.1111/wre.12397
. (2020). Evidence of sedimentation inequality along riparian areas colonised by Impatiens glandulifera (Himalayan Balsam).
Hu, Yaxian, Fister, Wolfgang, He, Yao, & PeerJ, 8, e8487. https://doi.org/10.7717/peerj.8487
(2020). Assessment of crusting effects on interrill erosion by laser scanning.
Hu, Yaxian, Fister, Wolfgang, He, Yao, & PeerJ, 8, e8487. https://doi.org/10.7717/peerj.8487
(2020). Assessment of crusting effects on interrill erosion by laser scanning.
Quijano, Laura, Soil & Tillage Research, 196, 104461. https://doi.org/10.1016/j.still.2019.104461
, & Navas, Ana. (2020). Effects of interrill erosion on the distribution of soil organic and inorganic carbon in different sized particles of Mediterranean Calcisols.
Quijano, Laura, Soil & Tillage Research, 196, 104461. https://doi.org/10.1016/j.still.2019.104461
, & Navas, Ana. (2020). Effects of interrill erosion on the distribution of soil organic and inorganic carbon in different sized particles of Mediterranean Calcisols.
Vos, Heleen C., Fister, Wolfgang, Eckardt, Frank D., Palmer, Anthony R., & Land, 9(12), 503. https://doi.org/10.3390/land9120503
(2020). Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands.
Vos, Heleen C., Fister, Wolfgang, Eckardt, Frank D., Palmer, Anthony R., & Land, 9(12), 503. https://doi.org/10.3390/land9120503
(2020). Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands.
Xiao, Liangang, Zhao, Rongqin, & Science of the Total Environment, 736, 139478. https://doi.org/10.1016/j.scitotenv.2020.139478
(2020). No tillage is not an ideal management for water erosion control in China.
Xiao, Liangang, Zhao, Rongqin, & Science of the Total Environment, 736, 139478. https://doi.org/10.1016/j.scitotenv.2020.139478
(2020). No tillage is not an ideal management for water erosion control in China.
Xiao, Liangang, Zhou, Senqiu, Zhao, Rongqin, Greenwood, Philip, & Agriculture, Ecosystems & Environment, 300, 106982. https://doi.org/10.1016/j.agee.2020.106982
(2020). Evaluating soil organic carbon stock changes induced by no-tillage based on fixed depth and equivalent soil mass approaches.
Xiao, Liangang, Zhou, Senqiu, Zhao, Rongqin, Greenwood, Philip, & Agriculture, Ecosystems & Environment, 300, 106982. https://doi.org/10.1016/j.agee.2020.106982
(2020). Evaluating soil organic carbon stock changes induced by no-tillage based on fixed depth and equivalent soil mass approaches.
Prudat, Brice, Bloemertz, Lena, Graefe, Olivier, & Towards shared research : participatory and integrative approaches in researching African environments (pp. 25–45). Transcript. https://doi.org/10.14361/9783839451502-003
. (2020). Soil classifications. Between material facts and socio-ecological narratives. In Haller, Tobias; Zingerli, Claudia (ed.),
Prudat, Brice, Bloemertz, Lena, Graefe, Olivier, & Towards shared research : participatory and integrative approaches in researching African environments (pp. 25–45). Transcript. https://doi.org/10.14361/9783839451502-003
. (2020). Soil classifications. Between material facts and socio-ecological narratives. In Haller, Tobias; Zingerli, Claudia (ed.),
Fister, Wolfgang, Goldman, Nina, Mayer, Marius, Suter, Manuel, & Geographica Helvetica, 74, 81–91. https://doi.org/10.5194/gh-74-81-2019
(2019). Testing of photogrammetry for differentiation of soil organic carbon and biochar in sandy substrates.
Fister, Wolfgang, Goldman, Nina, Mayer, Marius, Suter, Manuel, & Geographica Helvetica, 74, 81–91. https://doi.org/10.5194/gh-74-81-2019
(2019). Testing of photogrammetry for differentiation of soil organic carbon and biochar in sandy substrates.
Krenz, Juliane, Greenwood, Philip, & Soil Systems, 3(2), 33. https://doi.org/10.3390/soilsystems3020033
(2019). Soil Degradation Mapping in Drylands Using Unmanned Aerial Vehicle (UAV) Data.
Krenz, Juliane, Greenwood, Philip, & Soil Systems, 3(2), 33. https://doi.org/10.3390/soilsystems3020033
(2019). Soil Degradation Mapping in Drylands Using Unmanned Aerial Vehicle (UAV) Data.
Bloemertz, Lena, Naana, Martha, Wingate, Vladimir, Angombe, Simon, & ILLH Working Paper (Vol. 10). Namibia University of Science and Technology (NUST), Integrated Land Management Institute (ILMI). https://ilmi.nust.na/sites/default/files/WP10-BLOEMERTZ-ET-AL-Ecosystem-services-and-small-holder-farming-practices-WEB-20190123-Update.pdf
. (2018). Ecosystem Services and small-holder farming practices - between payments, development support and right- an integrated approach. In
Bloemertz, Lena, Naana, Martha, Wingate, Vladimir, Angombe, Simon, & ILLH Working Paper (Vol. 10). Namibia University of Science and Technology (NUST), Integrated Land Management Institute (ILMI). https://ilmi.nust.na/sites/default/files/WP10-BLOEMERTZ-ET-AL-Ecosystem-services-and-small-holder-farming-practices-WEB-20190123-Update.pdf
. (2018). Ecosystem Services and small-holder farming practices - between payments, development support and right- an integrated approach. In
Greenwood, Philip, Baumann, Patrick, Pulley, Simon, & Journal of Soils and Sediments, 18(12), 3463–3477. https://doi.org/10.1007/s11368-018-2041-0
(2018). The invasive alien plant, Impatiens glandulifera (Himalayan Balsam) and increased soil erosion: causation or association? Case studies from a river system in Switzerland and the UK.
Greenwood, Philip, Baumann, Patrick, Pulley, Simon, & Journal of Soils and Sediments, 18(12), 3463–3477. https://doi.org/10.1007/s11368-018-2041-0
(2018). The invasive alien plant, Impatiens glandulifera (Himalayan Balsam) and increased soil erosion: causation or association? Case studies from a river system in Switzerland and the UK.
Greenwood, Philip, Haley, Stephen, Zehringer, Markus, & Science of the Total Environment, 654, 1–9. https://doi.org/10.1016/j.scitotenv.2018.11.079
(2018). A prototype tracing-technique to assess the mobility of dispersed earthworm casts on a vegetated hillslope using caesium-134 and cobalt-60.
Greenwood, Philip, Haley, Stephen, Zehringer, Markus, & Science of the Total Environment, 654, 1–9. https://doi.org/10.1016/j.scitotenv.2018.11.079
(2018). A prototype tracing-technique to assess the mobility of dispersed earthworm casts on a vegetated hillslope using caesium-134 and cobalt-60.
Hu, Yaxian, Schäfer, Gerhard, Duplay, Joelle, & PloS One, 13(7), e0200901. https://doi.org/10.1371/journal.pone.0200901
(2018). Bioenergy crop induced changes in soil properties: a case study on Miscanthus fields in the Upper Rhine Region.
Hu, Yaxian, Schäfer, Gerhard, Duplay, Joelle, & PloS One, 13(7), e0200901. https://doi.org/10.1371/journal.pone.0200901
(2018). Bioenergy crop induced changes in soil properties: a case study on Miscanthus fields in the Upper Rhine Region.
Prudat, Brice, Bloemertz, Lena, & SOIL, 4(1), 47–62. https://doi.org/10.5194/soil-4-47-2018
(2018). Local soil quality assessment of north-central Namibia: integrating farmers’ and technical knowledge.
Prudat, Brice, Bloemertz, Lena, & SOIL, 4(1), 47–62. https://doi.org/10.5194/soil-4-47-2018
(2018). Local soil quality assessment of north-central Namibia: integrating farmers’ and technical knowledge.
Krenz, Juliane, & Badlands Dynamics in a Context of Global Change (pp. 255–276). Elsevier. https://doi.org/10.1016/b978-0-12-813054-4.00008-3
(2018). Chapter 8 - Assessing Badland Sediment Sources Using Unmanned Aerial Vehicles. In Nadal-Romero, Estela; Martãnez-Murillo, Juan F.; (Ed.),
Krenz, Juliane, & Badlands Dynamics in a Context of Global Change (pp. 255–276). Elsevier. https://doi.org/10.1016/b978-0-12-813054-4.00008-3
(2018). Chapter 8 - Assessing Badland Sediment Sources Using Unmanned Aerial Vehicles. In Nadal-Romero, Estela; Martãnez-Murillo, Juan F.; (Ed.),
Caviezel, Chatrina, Hunziker, Matthias, & Catena, 159, 149–158. https://doi.org/10.1016/j.catena.2017.08.006
(2017). Green alder encroachment in the European Alps: The need for analyzing the spread of a native-invasive species across spatial data.
Caviezel, Chatrina, Hunziker, Matthias, & Catena, 159, 149–158. https://doi.org/10.1016/j.catena.2017.08.006
(2017). Green alder encroachment in the European Alps: The need for analyzing the spread of a native-invasive species across spatial data.
Caviezel, Chatrina, Hunziker, Matthias, & Land, 6(4), 87. https://doi.org/10.3390/land6040087
(2017). Bequest of the Norseman - The Potential for Agricultural Intensification and Expansion in Southern Greenland under Climate Change.
Caviezel, Chatrina, Hunziker, Matthias, & Land, 6(4), 87. https://doi.org/10.3390/land6040087
(2017). Bequest of the Norseman - The Potential for Agricultural Intensification and Expansion in Southern Greenland under Climate Change.
Foster, Ian D. L., Boardman, John, Collins, Adrian, Copeland-Phillips, Ruth, International Association of Hydrological Sciences, 375, 29–34. https://doi.org/10.5194/piahs-375-29-2017
, Mighall, Tim M., Pulley, Simon, & Rowntree, Kate M. (2017). The potential for gamma-emitting radionuclides to contribute to an understanding of erosion processes in South Africa.
Foster, Ian D. L., Boardman, John, Collins, Adrian, Copeland-Phillips, Ruth, International Association of Hydrological Sciences, 375, 29–34. https://doi.org/10.5194/piahs-375-29-2017
, Mighall, Tim M., Pulley, Simon, & Rowntree, Kate M. (2017). The potential for gamma-emitting radionuclides to contribute to an understanding of erosion processes in South Africa.
Hunziker, Matthias, Caviezel, Chatrina, & Catena, 157, 35–46. https://doi.org/10.1016/j.catena.2017.05.005
(2017). Shrub encroachment by green alder on subalpine pastures: Changes in mineral soil organic carbon characteristics.
Hunziker, Matthias, Caviezel, Chatrina, & Catena, 157, 35–46. https://doi.org/10.1016/j.catena.2017.05.005
(2017). Shrub encroachment by green alder on subalpine pastures: Changes in mineral soil organic carbon characteristics.
Krenz, Juliane, Regio Basiliensis, 58(3), 167–174.
, Kuhn, Brigitte, Greenwood, Philip, & Heckrath, Goswin J. (2017). Kohlenstoffkreislauf und Landschaftswandel in der Grossen Karoo - eine methologische Betrachtung.
Krenz, Juliane, Regio Basiliensis, 58(3), 167–174.
, Kuhn, Brigitte, Greenwood, Philip, & Heckrath, Goswin J. (2017). Kohlenstoffkreislauf und Landschaftswandel in der Grossen Karoo - eine methologische Betrachtung.
Wingate, Vladimir R., Phinn, Stuart R., International Journal of Remote Sensing, 39(2), 577–606. https://doi.org/10.1080/01431161.2017.1390271
, & Scarth, Peter. (2017). Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets.
Wingate, Vladimir R., Phinn, Stuart R., International Journal of Remote Sensing, 39(2), 577–606. https://doi.org/10.1080/01431161.2017.1390271
, & Scarth, Peter. (2017). Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets.
Ali, Seid, & Scientific and Technical Review, 35(2), 435–444. https://doi.org/10.20506/rst.35.2.2534
(2016). The role of pastoralism in regulating ecosystem services.
Ali, Seid, & Scientific and Technical Review, 35(2), 435–444. https://doi.org/10.20506/rst.35.2.2534
(2016). The role of pastoralism in regulating ecosystem services.
Hu, Yaxian, Fister, Wolfgang, & Journal of Soils and Sediments, 16(6), 1809–1814. https://doi.org/10.1007/s11368-016-1367-8
(2016). Inherent interreplicate variability during small-scale rainfall simulations.
Hu, Yaxian, Fister, Wolfgang, & Journal of Soils and Sediments, 16(6), 1809–1814. https://doi.org/10.1007/s11368-016-1367-8
(2016). Inherent interreplicate variability during small-scale rainfall simulations.
Hu, Yaxian, & Catena, 137, 517–525. https://doi.org/10.1016/j.catena.2015.10.024
(2016). Erosion-induced exposure of SOC to mineralization in aggregated sediment.
Hu, Yaxian, & Catena, 137, 517–525. https://doi.org/10.1016/j.catena.2015.10.024
(2016). Erosion-induced exposure of SOC to mineralization in aggregated sediment.
Agriculture, Ecosystems and Environment, 216, 155–165. https://doi.org/10.1016/j.agee.2015.10.001
, Hu, Yaxia, Bloemertz, Lena, He, Jin, Li, Hongwen, & Greenwood, Philip. (2016). Conservation tillage and sustainable intensification of agriculture: regional vs. global benefit analysis.
Agriculture, Ecosystems and Environment, 216, 155–165. https://doi.org/10.1016/j.agee.2015.10.001
, Hu, Yaxia, Bloemertz, Lena, He, Jin, Li, Hongwen, & Greenwood, Philip. (2016). Conservation tillage and sustainable intensification of agriculture: regional vs. global benefit analysis.
Wingate, V., Phinn, S. R., Remote Sensing, 8(8), 681. https://doi.org/10.3390/rs8080681
, Bloemertz, L., & Dhanjal-Adams, K. L. (2016). Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data.
Wingate, V., Phinn, S. R., Remote Sensing, 8(8), 681. https://doi.org/10.3390/rs8080681
, Bloemertz, L., & Dhanjal-Adams, K. L. (2016). Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data.
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Greenwood, P., & Kuhn, N. J. (2015). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4–25, 2014. DOI 10.1002/esp.3397 [Journal-article]. Earth Surface Processes and Landforms, 40(1), 131–134. https://doi.org/10.1002/esp.3672
Experiments in reduced gravity : sediment settling on Mars. Elsevier . https://doi.org/10.1016/c2013-0-13083-8
(2015).
Experiments in reduced gravity : sediment settling on Mars. Elsevier . https://doi.org/10.1016/c2013-0-13083-8
(2015).
Experiments in Reduced Gravity. Sediment Settling on Mars (pp. 53–68). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00005-4
. (2015). Experiments on Martian Surface Properties and Processes. In
Experiments in Reduced Gravity. Sediment Settling on Mars (pp. 53–68). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00005-4
. (2015). Experiments on Martian Surface Properties and Processes. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 91–101). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00009-1
. (2015). Key Results of the MarsSedEx I Mission. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 91–101). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00009-1
. (2015). Key Results of the MarsSedEx I Mission. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 69–78). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00006-6
. (2015). MarsSedEx I: Instrument Development. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 69–78). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00006-6
. (2015). MarsSedEx I: Instrument Development. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 103–114). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00010-8
. (2015). MarsSedEx II. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 103–114). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00010-8
. (2015). MarsSedEx II. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 115–130). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00011-x
. (2015). MarsSedEx II Results. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 115–130). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00011-x
. (2015). MarsSedEx II Results. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 39–51). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00004-2
. (2015). Modeling Sedimentation. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 39–51). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00004-2
. (2015). Modeling Sedimentation. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 131–147). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00012-1
. (2015). Outlook: More Experiments or Better Models for Sedimentation on Mars? In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 131–147). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00012-1
. (2015). Outlook: More Experiments or Better Models for Sedimentation on Mars? In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 17–26). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00002-9
. (2015). Overview of Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 17–26). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00002-9
. (2015). Overview of Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 79–86). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00007-8
. (2015). Preparing and Flying the MarsSedEx I Research Flight. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 79–86). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00007-8
. (2015). Preparing and Flying the MarsSedEx I Research Flight. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 27–38). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00003-0
. (2015). Search for Life on Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 27–38). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00003-0
. (2015). Search for Life on Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 1–15). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00001-7
. (2015). Sediment, Life, and Models on Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 1–15). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00001-7
. (2015). Sediment, Life, and Models on Mars. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 87–90). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00008-x
. (2015). The Human Dimension of Reduced Gravity. In
Experiments in Reduced Gravity: Sediment Settling on Mars (pp. 87–90). Elsevier. https://doi.org/10.1016/b978-0-12-799965-4.00008-x
. (2015). The Human Dimension of Reduced Gravity. In
Xiao, Liangang, Hu, Yaxian, Greenwood, Philip, & Geographica Helvetica, 70(2), 167–174. https://doi.org/10.5194/gh-70-167-2015
(2015). The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport.
Xiao, Liangang, Hu, Yaxian, Greenwood, Philip, & Geographica Helvetica, 70(2), 167–174. https://doi.org/10.5194/gh-70-167-2015
(2015). The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport.
Xiao, Liangang, Hu, Yaxian, Greenwood, Philip, & Hydrology, 2(4), 176–192. https://doi.org/10.3390/hydrology2040176
(2015). A combined raindrop aggregate destruction test-settling tube (RADT-ST) approach to identify the settling velocity of sediment.
Xiao, Liangang, Hu, Yaxian, Greenwood, Philip, & Hydrology, 2(4), 176–192. https://doi.org/10.3390/hydrology2040176
(2015). A combined raindrop aggregate destruction test-settling tube (RADT-ST) approach to identify the settling velocity of sediment.
Geomorphological Fieldwork (pp. 175–200). Elsevier.
, Greenwood, Philip, & Fister, Wolfgang. (2015). Use of Field Experiments in Soil Erosion Research. In Thornbush, Mary J.; Allen, Casey; Fitzpatrick, Faith A. (Ed.),
Geomorphological Fieldwork (pp. 175–200). Elsevier.
, Greenwood, Philip, & Fister, Wolfgang. (2015). Use of Field Experiments in Soil Erosion Research. In Thornbush, Mary J.; Allen, Casey; Fitzpatrick, Faith A. (Ed.),
Kirkels, F.M.S.A., Cammeraat, L.H., & Geomorphology, 226, 94–105. https://doi.org/10.1016/j.geomorph.2014.07.023
(2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes - A review of different concepts.
Kirkels, F.M.S.A., Cammeraat, L.H., & Geomorphology, 226, 94–105. https://doi.org/10.1016/j.geomorph.2014.07.023
(2014). The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes - A review of different concepts.
Caviezel, C., Hunziker, M., Schaffner, M., & Earth Surface Processes and Landforms, 39(4), 509–521. https://doi.org/10.1002/esp.3513
(2014). Soil-vegetation interaction on slopes with bush encroachment in the central Alps - adapting slope stability measurements to shifting process domains.
Caviezel, C., Hunziker, M., Schaffner, M., & Earth Surface Processes and Landforms, 39(4), 509–521. https://doi.org/10.1002/esp.3513
(2014). Soil-vegetation interaction on slopes with bush encroachment in the central Alps - adapting slope stability measurements to shifting process domains.
Croft, H., Anderson, K., & European Journal of Soil Science, 65(4), 605–612. https://doi.org/10.1111/ejss.12142
(2014). Evaluating the influence of surface soil moisture and soil surface roughness on optical directional reflectance factors.
Croft, H., Anderson, K., & European Journal of Soil Science, 65(4), 605–612. https://doi.org/10.1111/ejss.12142
(2014). Evaluating the influence of surface soil moisture and soil surface roughness on optical directional reflectance factors.
Greenwood, Philip, & Journal of Soils and Sediments, 14(3), 637–650. https://doi.org/10.1007/s11368-013-0825-9
(2014). Does the invasive plant, Impatiens glandulifera, promote soil erosion along the riparian zone? An investigation on a small watercourse in northwest Switzerland.
Greenwood, Philip, & Journal of Soils and Sediments, 14(3), 637–650. https://doi.org/10.1007/s11368-013-0825-9
(2014). Does the invasive plant, Impatiens glandulifera, promote soil erosion along the riparian zone? An investigation on a small watercourse in northwest Switzerland.
Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S., & Geoderma, 232-234, 270–283. https://doi.org/10.1016/j.geoderma.2014.04.038
(2014). Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps).
Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S., & Geoderma, 232-234, 270–283. https://doi.org/10.1016/j.geoderma.2014.04.038
(2014). Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps).
Hoffmann, Ulrike, Hoffmann, Thomas, Johnson, E. A., & Catena, 113, 107–121. https://doi.org/10.1016/j.catena.2013.09.009
(2014). Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta).
Hoffmann, Ulrike, Hoffmann, Thomas, Johnson, E. A., & Catena, 113, 107–121. https://doi.org/10.1016/j.catena.2013.09.009
(2014). Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta).
Hunziker, Matthias, Carle, Nina, Halldorsson, Gudmundur, & JRC Scientific and Policy Reports. Publications Office of the European Union. https://doi.org/10.2788/17815
. (2014). The sequestration potential of re-vegetated land - is the SOC stock the only relevant parameter? In Sigurdsson, Bjarni D.; Halldorsson, Gudmundur; Bampa, Francesca; Arnalds, Andrés; Montanarella, Luca; Thorsteinsdottir, Arna Björk (Ed.),
Hunziker, Matthias, Carle, Nina, Halldorsson, Gudmundur, & JRC Scientific and Policy Reports. Publications Office of the European Union. https://doi.org/10.2788/17815
. (2014). The sequestration potential of re-vegetated land - is the SOC stock the only relevant parameter? In Sigurdsson, Bjarni D.; Halldorsson, Gudmundur; Bampa, Francesca; Arnalds, Andrés; Montanarella, Luca; Thorsteinsdottir, Arna Björk (Ed.),
Hunziker, Matthias, Sigurdsson, Bjarni D., Halldorsson, Gudmundur, Schwanghart, Wolfgang, & Icelandic Agricultural Sciences, 27, 111–125.
. (2014). Biomass allometries and coarse root biomass distribution of mountain birch in southern Iceland.
Hunziker, Matthias, Sigurdsson, Bjarni D., Halldorsson, Gudmundur, Schwanghart, Wolfgang, & Icelandic Agricultural Sciences, 27, 111–125.
. (2014). Biomass allometries and coarse root biomass distribution of mountain birch in southern Iceland.
Hu, Y., & Biogeosciences, 11(22), 6209–6219. https://doi.org/10.5194/bg-11-6209-2014
(2014). Aggregates reduce transport distance of soil organic carbon: are our balances correct?
Hu, Y., & Biogeosciences, 11(22), 6209–6219. https://doi.org/10.5194/bg-11-6209-2014
(2014). Aggregates reduce transport distance of soil organic carbon: are our balances correct?
Earth Surface Processes and Landforms, 40, 131–134. https://doi.org/10.1002/esp.3672
. (2014). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4-25, 2014. DOI 10,1002/esp.3397.
Earth Surface Processes and Landforms, 40, 131–134. https://doi.org/10.1002/esp.3672
. (2014). Earth Surface Exchanges (ESEX) Commentary on ‘Plants as river system engineers’ by A. Gurnell. Earth Surface Processes and Landforms 39: 4-25, 2014. DOI 10,1002/esp.3397.
The soil underfoot : infinite possibilities for a finite resource (pp. 37–48). CRC Press.
(2014). Soil Loss. In G. Jock Churchman, Edward R. Landa (Ed.),
The soil underfoot : infinite possibilities for a finite resource (pp. 37–48). CRC Press.
(2014). Soil Loss. In G. Jock Churchman, Edward R. Landa (Ed.),
Geomorphological Fieldwork (pp. 175–200). Elsevier. https://doi.org/10.1016/b978-0-444-63402-3.00011-x
, Greenwood, Philip, & Fister, Wolfgang. (2014). Use of Field Experiments in Soil Erosion Research. In Thornbush, Mary J.; Allen, Casey D.; Fitzpatrick, Faith A. (Ed.),
Geomorphological Fieldwork (pp. 175–200). Elsevier. https://doi.org/10.1016/b978-0-444-63402-3.00011-x
, Greenwood, Philip, & Fister, Wolfgang. (2014). Use of Field Experiments in Soil Erosion Research. In Thornbush, Mary J.; Allen, Casey D.; Fitzpatrick, Faith A. (Ed.),
Croft, H., Anderson, K., Brazier, R.E., & Water Resources Research, 49(4), 1858–1870. https://doi.org/10.1002/wrcr.20172
(2013). Modeling fine-scale soil surface structure using geostatistics.
Croft, H., Anderson, K., Brazier, R.E., & Water Resources Research, 49(4), 1858–1870. https://doi.org/10.1002/wrcr.20172
(2013). Modeling fine-scale soil surface structure using geostatistics.
Evans, M., Quine, T., & Kuhn, N. (2013). Geomorphology and terrestrial carbon cycling. Earth Surface Processes and Landforms, 38(1), 103–105. https://doi.org/10.1002/esp.3337
Evans, M., Quine, T., & Kuhn, N. (2013). Geomorphology and terrestrial carbon cycling. Earth Surface Processes and Landforms, 38(1), 103–105. https://doi.org/10.1002/esp.3337
Fister, W., Heckrath, G., Greenwood, P., & Erodibility of biochar from a sandy soil in Denmark. http://2sc.unccd.int/fileadmin/unccd/upload/documents/Extended_Abstracts.pdf
(2013, January 1).
Fister, W., Heckrath, G., Greenwood, P., & Erodibility of biochar from a sandy soil in Denmark. http://2sc.unccd.int/fileadmin/unccd/upload/documents/Extended_Abstracts.pdf
(2013, January 1).
Fister, W., Heckrath, G., Greenwood, P., & American Geophysical Union, Fall Meeting 2013. http://fallmeeting.agu.org/2013/
(2013, January 1). Biochar erosion: A potential threat to its suitability for carbon sequestration?
Fister, W., Heckrath, G., Greenwood, P., & American Geophysical Union, Fall Meeting 2013. http://fallmeeting.agu.org/2013/
(2013, January 1). Biochar erosion: A potential threat to its suitability for carbon sequestration?
Greenwood, P., Fister, W., Kinnell, P. I. A., Rüegg, H. -R., & Developing and testing a precision erosion measurement facility for elucidating mobilization mechanisms in shallow-flow conditions.
(2013, January 1).
Greenwood, P., Fister, W., Kinnell, P. I. A., Rüegg, H. -R., & Developing and testing a precision erosion measurement facility for elucidating mobilization mechanisms in shallow-flow conditions.
(2013, January 1).
Hikel, Harald, Yair, Aaron, Schwanghart, Wolfgang, Hoffmann, Ulrike, Straehl, Sarah, & Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57, 39–58. https://doi.org/10.1127/0372-8854/2012/s-00116
(2013). Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev Highlands, Israel.
Hikel, Harald, Yair, Aaron, Schwanghart, Wolfgang, Hoffmann, Ulrike, Straehl, Sarah, & Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57, 39–58. https://doi.org/10.1127/0372-8854/2012/s-00116
(2013). Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev Highlands, Israel.
Hu, Yaxian, Fister, Wolfgang, & Agriculture, 3, 726–740. https://doi.org/10.3390/agriculture3040726
(2013). Temporal variation of SOC enrichment from interrill erosion over prolonged rainfall simulations.
Hu, Yaxian, Fister, Wolfgang, & Agriculture, 3, 726–740. https://doi.org/10.3390/agriculture3040726
(2013). Temporal variation of SOC enrichment from interrill erosion over prolonged rainfall simulations.
Iserloh, T., Fister, W., Marzen, M., Seeger, M., Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57(1), 193–201. https://doi.org/10.1127/0372-8854/2012/s-00118
, & Ries, J. B. (2013). The role of wind-driven rain for soil erosion - an experimental approach.
Iserloh, T., Fister, W., Marzen, M., Seeger, M., Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57(1), 193–201. https://doi.org/10.1127/0372-8854/2012/s-00118
, & Ries, J. B. (2013). The role of wind-driven rain for soil erosion - an experimental approach.
Iserloh, T., Ries, J. B., Cerdá, A., Echeverría, M. T., Fister, W., Geißler, C., Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57(1), 11–26. https://doi.org/10.1127/0372-8854/2012/s-00085
, León, F. J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., & Seeger, M. (2013). Comparative measurements with seven rainfall simulators on uniform bare fallow land.
Iserloh, T., Ries, J. B., Cerdá, A., Echeverría, M. T., Fister, W., Geißler, C., Zeitschrift Für Geomorphologie. Supplementbände. Neue Folge, 57(1), 11–26. https://doi.org/10.1127/0372-8854/2012/s-00085
, León, F. J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., & Seeger, M. (2013). Comparative measurements with seven rainfall simulators on uniform bare fallow land.
Assessing lateral organic Carbon movement in small agricultural catchments (Graf, Christoph, Ed.). WSL.
(2013).
Assessing lateral organic Carbon movement in small agricultural catchments (Graf, Christoph, Ed.). WSL.
(2013).
American Geophysical Union. 46th Fall Meeting , 1.
(2013). Sediment on Mars: settling faster, moving slower .
American Geophysical Union. 46th Fall Meeting , 1.
(2013). Sediment on Mars: settling faster, moving slower .
Schwanghart, Wolfgang, Groom, Geoffrey Brian, Earth Surface Processes and Landforms, 38(13), 1576–1586.
, & Heckrath, Goswin Johann. (2013). Flow network derivation from a high resolution DEM in a low relief, agrarian landscape.
Schwanghart, Wolfgang, Groom, Geoffrey Brian, Earth Surface Processes and Landforms, 38(13), 1576–1586.
, & Heckrath, Goswin Johann. (2013). Flow network derivation from a high resolution DEM in a low relief, agrarian landscape.
Yair, Aaron, Bryan, Rorke B., Lavee, Hanoch, Schwanghart, Wolfgang, & Catena, 106, 12–21. https://doi.org/10.1016/j.catena.2012.04.006
(2013). The resilience of a badland area to climate change in an arid environment.
Yair, Aaron, Bryan, Rorke B., Lavee, Hanoch, Schwanghart, Wolfgang, & Catena, 106, 12–21. https://doi.org/10.1016/j.catena.2012.04.006
(2013). The resilience of a badland area to climate change in an arid environment.
Yao, Y., Zhang, E., Die Erde, 144(1), 17–29.
, N.J., Jones, R., Langdon, P., Shen, J., Greenwood, & P. (2013). Sediment provenence in the Shudu lake basin, northwest Yunnan province, China, as revealed by composite fingerprinting.
Yao, Y., Zhang, E., Die Erde, 144(1), 17–29.
, N.J., Jones, R., Langdon, P., Shen, J., Greenwood, & P. (2013). Sediment provenence in the Shudu lake basin, northwest Yunnan province, China, as revealed by composite fingerprinting.