Publications
213 found
Show per page
Töpfer, Kai, Erramilli, Shyamsunder, Ziegler, Lawrence D., & The Journal of Chemical Physics, 161(18). https://doi.org/10.1063/5.0235760
. (2024). Energy relaxation of N2O in gaseous, supercritical, and liquid xenon and SF6 [Journal-article].
Töpfer, Kai, Erramilli, Shyamsunder, Ziegler, Lawrence D., & The Journal of Chemical Physics, 161(18). https://doi.org/10.1063/5.0235760
. (2024). Energy relaxation of N2O in gaseous, supercritical, and liquid xenon and SF6 [Journal-article].
Töpfer, Kai, Boittier, Eric, Devereux, Mike, Pasti, Andrea, Hamm, Peter, & The Journal of Physical Chemistry B, 128(44), 10937–10949. https://doi.org/10.1021/acs.jpcb.4c05480
. (2024). Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy.
Töpfer, Kai, Boittier, Eric, Devereux, Mike, Pasti, Andrea, Hamm, Peter, & The Journal of Physical Chemistry B, 128(44), 10937–10949. https://doi.org/10.1021/acs.jpcb.4c05480
. (2024). Force Fields for Deep Eutectic Mixtures: Application to Structure, Thermodynamics and 2D-Infrared Spectroscopy.
Boittier, Eric, Töpfer, Kai, Devereux, Mike, & Journal of Chemical Theory and Computation, 20(18), 8088–8099. https://doi.org/10.1021/acs.jctc.4c00759
. (2024). Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations [Journal-article].
Boittier, Eric, Töpfer, Kai, Devereux, Mike, & Journal of Chemical Theory and Computation, 20(18), 8088–8099. https://doi.org/10.1021/acs.jctc.4c00759
. (2024). Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations [Journal-article].
Meenu Upadhyay, & Astronomy & Astrophysics, 689. https://doi.org/10.1051/0004-6361/202450091
. (2024). CO2 and NO2 formation on amorphous solid water.
Meenu Upadhyay, & Astronomy & Astrophysics, 689. https://doi.org/10.1051/0004-6361/202450091
. (2024). CO2 and NO2 formation on amorphous solid water.
Aydin, Sena, Salehi, Seyedeh Maryam, Töpfer, Kai, & The Journal of Chemical Physics, 161. https://doi.org/10.1063/5.0216657
. (2024). SCN as a local probe of protein structural dynamics [Journal-article].
Aydin, Sena, Salehi, Seyedeh Maryam, Töpfer, Kai, & The Journal of Chemical Physics, 161. https://doi.org/10.1063/5.0216657
. (2024). SCN as a local probe of protein structural dynamics [Journal-article].
Wang, JingChun, San Vicente Veliz, Juan Carlos, & The Journal of Physical Chemistry A, 128(39), 8322–8332. https://doi.org/10.1021/acs.jpca.4c02841
. (2024). High-Energy Reaction Dynamics of N 3 [Journal-article].
Wang, JingChun, San Vicente Veliz, Juan Carlos, & The Journal of Physical Chemistry A, 128(39), 8322–8332. https://doi.org/10.1021/acs.jpca.4c02841
. (2024). High-Energy Reaction Dynamics of N 3 [Journal-article].
Devereux, Mike, Boittier, Eric D., & Journal of Computational Chemistry, 45(22), 1899–1913. https://doi.org/10.1002/jcc.27367
. (2024). Systematic improvement of empirical energy functions in the era of machine learning [Journal-article].
Devereux, Mike, Boittier, Eric D., & Journal of Computational Chemistry, 45(22), 1899–1913. https://doi.org/10.1002/jcc.27367
. (2024). Systematic improvement of empirical energy functions in the era of machine learning [Journal-article].
Käser, S., & Meuwly, M. (2024). Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces. Journal of Physical Chemistry Letters, 15(12), 3419–3424. https://doi.org/10.1021/acs.jpclett.3c03405
Käser, S., & Meuwly, M. (2024). Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces. Journal of Physical Chemistry Letters, 15(12), 3419–3424. https://doi.org/10.1021/acs.jpclett.3c03405
Horn, K. P., Vazquez-Salazar, L. I., Koch, C. P., & Meuwly, M. (2024). Improving potential energy surfaces using measured Feshbach resonance states. Science Advances, 10(9). https://doi.org/10.1126/sciadv.adi6462
Horn, K. P., Vazquez-Salazar, L. I., Koch, C. P., & Meuwly, M. (2024). Improving potential energy surfaces using measured Feshbach resonance states. Science Advances, 10(9). https://doi.org/10.1126/sciadv.adi6462
Upadhyay, M., Töpfer, K., & Meuwly, M. (2024). Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide. Journal of Physical Chemistry Letters, 15(1), 90–96. https://doi.org/10.1021/acs.jpclett.3c03131
Upadhyay, M., Töpfer, K., & Meuwly, M. (2024). Molecular Simulation for Atmospheric Reactions: Non-Equilibrium Dynamics, Roaming, and Glycolaldehyde Formation following Photoinduced Decomposition of syn-Acetaldehyde Oxide. Journal of Physical Chemistry Letters, 15(1), 90–96. https://doi.org/10.1021/acs.jpclett.3c03131
Boittier, Eric, Töpfer, Kai, Devereux, Mike, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2406.00513
. (2024). Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations. In
Boittier, Eric, Töpfer, Kai, Devereux, Mike, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2406.00513
. (2024). Kernel-Based Minimal Distributed Charges: A Conformationally Dependent ESP-Model for Molecular Simulations. In
Song, Kaisheng, Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 26(16), 12698–12708 . https://doi.org/10.1039/d4cp00739e
. (2024). OH-Formation following vibrationally induced reaction dynamics of H₂COO.
Song, Kaisheng, Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 26(16), 12698–12708 . https://doi.org/10.1039/d4cp00739e
. (2024). OH-Formation following vibrationally induced reaction dynamics of H₂COO.
Töpfer, Kai, Boittier, Eric, Devereux, Mike, Pasti, Andrea, Hamm, Peter, & Arxiv. Cornell University. https://doi.org/10.1021/acs.jpcb.4c05480
. (2024). Force Fields for Deep Eutectic Mixtures: Application to Structure and 2D-Infrared Spectroscopy. In
Töpfer, Kai, Boittier, Eric, Devereux, Mike, Pasti, Andrea, Hamm, Peter, & Arxiv. Cornell University. https://doi.org/10.1021/acs.jpcb.4c05480
. (2024). Force Fields for Deep Eutectic Mixtures: Application to Structure and 2D-Infrared Spectroscopy. In
Wang, JingChun, San Vicente Veliz, Juan Carlos, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2404.18877
. (2024). High-Energy Reaction Dynamics of N3. In
Wang, JingChun, San Vicente Veliz, Juan Carlos, & Arxiv. Cornell University. https://doi.org/10.48550/arXiv.2404.18877
. (2024). High-Energy Reaction Dynamics of N3. In
Caracciolo, Adriana, San Vicente Veliz, Juan Carlos, Lu, Dandan, Guo, Hua, The Journal of Physical Chemistry A, 127(42), 8834–8848. https://doi.org/10.1021/acs.jpca.3c04516
, & Minton, Timothy K. (2023). Experimental and Theoretical Studies of Hyperthermal N + O<sub>2</sub> Collisions [Journal-article].
Caracciolo, Adriana, San Vicente Veliz, Juan Carlos, Lu, Dandan, Guo, Hua, The Journal of Physical Chemistry A, 127(42), 8834–8848. https://doi.org/10.1021/acs.jpca.3c04516
, & Minton, Timothy K. (2023). Experimental and Theoretical Studies of Hyperthermal N + O<sub>2</sub> Collisions [Journal-article].
Song, K., Käser, S., Töpfer, K., Vazquez-Salazar, L. I., & Meuwly, M. (2023). PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations. Journal of Chemical Physics, 159(2). https://doi.org/10.1063/5.0155992
Song, K., Käser, S., Töpfer, K., Vazquez-Salazar, L. I., & Meuwly, M. (2023). PhysNet meets CHARMM: A framework for routine machine learning/molecular mechanics simulations. Journal of Chemical Physics, 159(2). https://doi.org/10.1063/5.0155992
Käser, S., & Meuwly, M. (2023). Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality. Journal of Chemical Physics, 158(21). https://doi.org/10.1063/5.0151266
Käser, S., & Meuwly, M. (2023). Transfer-learned potential energy surfaces: Toward microsecond-scale molecular dynamics simulations in the gas phase at CCSD(T) quality. Journal of Chemical Physics, 158(21). https://doi.org/10.1063/5.0151266
Hickson, K. M., San Vicente Veliz, J. C., Koner, D., & Meuwly, M. (2023). Low-temperature kinetics for the N + NO reaction: experiment guides the way. Physical Chemistry Chemical Physics, 25(20), 13854–13863. https://doi.org/10.1039/d3cp00584d
Hickson, K. M., San Vicente Veliz, J. C., Koner, D., & Meuwly, M. (2023). Low-temperature kinetics for the N + NO reaction: experiment guides the way. Physical Chemistry Chemical Physics, 25(20), 13854–13863. https://doi.org/10.1039/d3cp00584d
Töpfer, K., Koner, D., Erramilli, S., Ziegler, L. D., & Meuwly, M. (2023). Molecular-level understanding of the rovibrational spectra of N2O in gaseous, supercritical, and liquid SF6and Xe. Journal of Chemical Physics, 158(14). https://doi.org/10.1063/5.0143395
Töpfer, K., Koner, D., Erramilli, S., Ziegler, L. D., & Meuwly, M. (2023). Molecular-level understanding of the rovibrational spectra of N2O in gaseous, supercritical, and liquid SF6and Xe. Journal of Chemical Physics, 158(14). https://doi.org/10.1063/5.0143395
Margulis, B., Horn, K. P., Reich, D. M., Upadhyay, M., Kahn, N., Christianen, A., van der Avoird, A., Groenenboom, G. C., Meuwly, M., Koch, C. P., & Narevicius, E. (2023). Tomography of Feshbach resonance states. Science, 380(6640), 77–81. https://doi.org/10.1126/science.adf9888
Margulis, B., Horn, K. P., Reich, D. M., Upadhyay, M., Kahn, N., Christianen, A., van der Avoird, A., Groenenboom, G. C., Meuwly, M., Koch, C. P., & Narevicius, E. (2023). Tomography of Feshbach resonance states. Science, 380(6640), 77–81. https://doi.org/10.1126/science.adf9888
Turan, H. T., Boittier, E., & Meuwly, M. (2023). Interaction at a distance: Xenon migration in Mb. Journal of Chemical Physics, 158(12). https://doi.org/10.1063/5.0124502
Turan, H. T., Boittier, E., & Meuwly, M. (2023). Interaction at a distance: Xenon migration in Mb. Journal of Chemical Physics, 158(12). https://doi.org/10.1063/5.0124502
Turan, H. T., & Meuwly, M. (2023). Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb). Journal of Physical Chemistry B, 127(7), 1526–1539. https://doi.org/10.1021/acs.jpcb.2c07371
Turan, H. T., & Meuwly, M. (2023). Local Hydration Control and Functional Implications Through S-Nitrosylation of Proteins: Kirsten Rat Sarcoma Virus (K-RAS) and Hemoglobin (Hb). Journal of Physical Chemistry B, 127(7), 1526–1539. https://doi.org/10.1021/acs.jpcb.2c07371
Käser, S., Vazquez-Salazar, L. I., Meuwly, M., & Töpfer, K. (2023). Neural network potentials for chemistry: concepts, applications and prospects. Digital Discovery, 2(1), 28–58. https://doi.org/10.1039/d2dd00102k
Käser, S., Vazquez-Salazar, L. I., Meuwly, M., & Töpfer, K. (2023). Neural network potentials for chemistry: concepts, applications and prospects. Digital Discovery, 2(1), 28–58. https://doi.org/10.1039/d2dd00102k
Salehi, S. M., Pezzella, M., Willard, A., Meuwly, M., & Karplus, M. (2023). Water dynamics around T0vs R4of hemoglobin from local hydrophobicity analysis. Journal of Chemical Physics, 158(2). https://doi.org/10.1063/5.0129990
Salehi, S. M., Pezzella, M., Willard, A., Meuwly, M., & Karplus, M. (2023). Water dynamics around T0vs R4of hemoglobin from local hydrophobicity analysis. Journal of Chemical Physics, 158(2). https://doi.org/10.1063/5.0129990
Caracciolo, Adriana, Juan Carlos San Vincente Veliz, Juan Carlos, Lu, Dandan, Guo, Hua, ChemRxiv. Cambridge University Press.
, & Minton, Timothy. (2023). Experimental and Theoretical Studies of Hyperthermal N + O2 Collisions. In
Caracciolo, Adriana, Juan Carlos San Vincente Veliz, Juan Carlos, Lu, Dandan, Guo, Hua, ChemRxiv. Cambridge University Press.
, & Minton, Timothy. (2023). Experimental and Theoretical Studies of Hyperthermal N + O2 Collisions. In
Kilaj, Ardita, Kaser, Silvan, Wang, Jia, Straňák, Patrik, Schwilk, Max, Xu, Lei, von Lilienfeld, O. Anatole, Küpper, Jochen, Physical Chemistry Chemical Physics, 25(20), 13933–13945. https://doi.org/10.1039/d3cp01416a
, & Willitsch, Stefan. (2023). Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions.
Kilaj, Ardita, Kaser, Silvan, Wang, Jia, Straňák, Patrik, Schwilk, Max, Xu, Lei, von Lilienfeld, O. Anatole, Küpper, Jochen, Physical Chemistry Chemical Physics, 25(20), 13933–13945. https://doi.org/10.1039/d3cp01416a
, & Willitsch, Stefan. (2023). Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions.
Pokratath, R., Van Den Eynden, D., Cooper, S. R., Mathiesen, J. K., Waser, V., Devereux, M., Billinge, S. J. L., Meuwly, M., Jensen, K. M. Ø., & De Roo, J. (2022). Erratum: Mechanistic Insight into the Precursor Chemistry of ZrO2and HfO2Nanocrystals, toward Size-Tunable Syntheses” (JACS Au (2022) 2:4 (827-838) DOI: 10.1021/jacsau.1c00568). JACS Au, 2(5). https://doi.org/10.1021/jacsau.2c00231
Pokratath, R., Van Den Eynden, D., Cooper, S. R., Mathiesen, J. K., Waser, V., Devereux, M., Billinge, S. J. L., Meuwly, M., Jensen, K. M. Ø., & De Roo, J. (2022). Erratum: Mechanistic Insight into the Precursor Chemistry of ZrO2and HfO2Nanocrystals, toward Size-Tunable Syntheses” (JACS Au (2022) 2:4 (827-838) DOI: 10.1021/jacsau.1c00568). JACS Au, 2(5). https://doi.org/10.1021/jacsau.2c00231
Boittier, Eric D., Devereux, Mike, & Journal of Chemical Theory and Computation, 18(12), 7544–7554. https://doi.org/10.1021/acs.jctc.2c00693
. (2022). Molecular Dynamics with Conformationally Dependent, Distributed Charges.
Boittier, Eric D., Devereux, Mike, & Journal of Chemical Theory and Computation, 18(12), 7544–7554. https://doi.org/10.1021/acs.jctc.2c00693
. (2022). Molecular Dynamics with Conformationally Dependent, Distributed Charges.
Goswami, Sugata, Veliz, Juan Carlos San Vicente, Upadhyay, Meenu, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 24(38), 23309–23322. https://doi.org/10.1039/d2cp02840a
. (2022). Quantum and quasi-classical dynamics of the C(3P) + O2(3Σ −g) → CO(1Σ+) + O(1D) reaction on its electronic ground state.
Goswami, Sugata, Veliz, Juan Carlos San Vicente, Upadhyay, Meenu, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 24(38), 23309–23322. https://doi.org/10.1039/d2cp02840a
. (2022). Quantum and quasi-classical dynamics of the C(3P) + O2(3Σ −g) → CO(1Σ+) + O(1D) reaction on its electronic ground state.
Käser, Silvan, & Physical Chemistry Chemical Physics, 24(29), 17899. https://doi.org/10.1039/d2cp90126a
. (2022). Correction: Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer.
Käser, Silvan, & Physical Chemistry Chemical Physics, 24(29), 17899. https://doi.org/10.1039/d2cp90126a
. (2022). Correction: Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer.
Käser, Silvan, Richardson, Jeremy O., & Journal of Chemical Theory and Computation, 18(11), 6840–6850. https://doi.org/10.1021/acs.jctc.2c00790
. (2022). Transfer Learning for Affordable and High Quality Tunneling Splittings from Instanton Calculations.
Käser, Silvan, Richardson, Jeremy O., & Journal of Chemical Theory and Computation, 18(11), 6840–6850. https://doi.org/10.1021/acs.jctc.2c00790
. (2022). Transfer Learning for Affordable and High Quality Tunneling Splittings from Instanton Calculations.
Journal of Physical Chemistry B, 126(11), 2155–2167. https://doi.org/10.1021/acs.jpcb.2c00212
. (2022). Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning - Quo Vadis?
Journal of Physical Chemistry B, 126(11), 2155–2167. https://doi.org/10.1021/acs.jpcb.2c00212
. (2022). Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning - Quo Vadis?
Chimia, 76(6), 589. https://doi.org/10.2533/chimia.2022.589
. (2022). Computational Vibrational Spectroscopy.
Chimia, 76(6), 589. https://doi.org/10.2533/chimia.2022.589
. (2022). Computational Vibrational Spectroscopy.
Patra, Sarbani, San Vicente Veliz, Juan Carlos, Koner, Debasish, Bieske, Evan J., & Journal of Clinical Physics, 156(12), 124307. https://doi.org/10.1063/5.0085081
. (2022). Photodissociation Dynamics of N⁺₃.
Patra, Sarbani, San Vicente Veliz, Juan Carlos, Koner, Debasish, Bieske, Evan J., & Journal of Clinical Physics, 156(12), 124307. https://doi.org/10.1063/5.0085081
. (2022). Photodissociation Dynamics of N⁺₃.
Pokratath, Rohan, Van den Eynden, Dietger, Cooper, Susan Rudd, Mathiesen, Jette Katja, Waser, Valérie, Devereux, Mike, Billinge, Simon J. L., JACS Au, 2(4), 827–838. https://doi.org/10.1021/jacsau.1c00568
, Jensen, Kirsten M. Ø., & De Roo, Jonathan. (2022). Mechanistic Insight into the Precursor Chemistry of ZrO₂ and HfO₂ Nanocrystals; towards Size-Tunable Syntheses.
Pokratath, Rohan, Van den Eynden, Dietger, Cooper, Susan Rudd, Mathiesen, Jette Katja, Waser, Valérie, Devereux, Mike, Billinge, Simon J. L., JACS Au, 2(4), 827–838. https://doi.org/10.1021/jacsau.1c00568
, Jensen, Kirsten M. Ø., & De Roo, Jonathan. (2022). Mechanistic Insight into the Precursor Chemistry of ZrO₂ and HfO₂ Nanocrystals; towards Size-Tunable Syntheses.
Salehi, Seyedeh Maryam, Kaser, Silvan, Töpfer, Kai, Diamantis, Polydefkis, Pfister, Rolf, Hamm, Peter, Rothlisberger, Ursula, & Physical Chemistry Chemical Physics, 24(42), 26046–26060. https://doi.org/10.1039/d2cp02857c
. (2022). Hydration dynamics and IR spectroscopy of 4-fluorophenol.
Salehi, Seyedeh Maryam, Kaser, Silvan, Töpfer, Kai, Diamantis, Polydefkis, Pfister, Rolf, Hamm, Peter, Rothlisberger, Ursula, & Physical Chemistry Chemical Physics, 24(42), 26046–26060. https://doi.org/10.1039/d2cp02857c
. (2022). Hydration dynamics and IR spectroscopy of 4-fluorophenol.
Salehi, Seyedeh Maryam, & Journal of Clinical Physics, 156(10), 105105. https://doi.org/10.1063/5.0077361
. (2022). Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme.
Salehi, Seyedeh Maryam, & Journal of Clinical Physics, 156(10), 105105. https://doi.org/10.1063/5.0077361
. (2022). Site-Selective Dynamics of Ligand-Free and Ligand-Bound Azidolysozyme.
Salehi, Seyedeh Maryam, & Molecules, 27(3), 839. https://doi.org/10.3390/molecules27030839
. (2022). Cross Correlated Motions in Azidolysozyme.
Salehi, Seyedeh Maryam, & Molecules, 27(3), 839. https://doi.org/10.3390/molecules27030839
. (2022). Cross Correlated Motions in Azidolysozyme.
Toepfer, Kai, Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 24(21), 12767–12786. https://doi.org/10.1039/d2cp01211a
. (2022). Quantitative molecular simulations.
Toepfer, Kai, Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 24(21), 12767–12786. https://doi.org/10.1039/d2cp01211a
. (2022). Quantitative molecular simulations.
Töpfer, Kai, Käser, Silvan, & Physical Chemistry Chemical Physics, 24(22), 13869–13882. https://doi.org/10.1039/d2cp01583h
. (2022). Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity.
Töpfer, Kai, Käser, Silvan, & Physical Chemistry Chemical Physics, 24(22), 13869–13882. https://doi.org/10.1039/d2cp01583h
. (2022). Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity.
Töpfer, Kai, Pasti, Andrea, Das, Anuradha, Salehi, Seyedeh Maryam, Vazquez-Salazar, Luis Itza, Rohrbach, David, Feurer, Thomas, Hamm, Peter, & Journal of the American Chemical Society, 144(31), 14170–14180. https://doi.org/10.1021/jacs.2c04169
. (2022). Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents.
Töpfer, Kai, Pasti, Andrea, Das, Anuradha, Salehi, Seyedeh Maryam, Vazquez-Salazar, Luis Itza, Rohrbach, David, Feurer, Thomas, Hamm, Peter, & Journal of the American Chemical Society, 144(31), 14170–14180. https://doi.org/10.1021/jacs.2c04169
. (2022). Structure, Organization, and Heterogeneity of Water-Containing Deep Eutectic Solvents.
Turan, Haydar Taylan, Brickel, Sebastian, & Journal of Physical Chemistry B, 126(9), 1951–1961. https://doi.org/10.1021/acs.jpcb.1c09710
. (2022). Solvent Effects on the Menshutkin Reaction.
Turan, Haydar Taylan, Brickel, Sebastian, & Journal of Physical Chemistry B, 126(9), 1951–1961. https://doi.org/10.1021/acs.jpcb.1c09710
. (2022). Solvent Effects on the Menshutkin Reaction.
Vazquez-Salazar, Luis Itza, Boittier, Eric D., & Chemical Science, 13(44), 13068–13084. https://doi.org/10.1039/d2sc04056e
. (2022). Uncertainty Quantification for Predictions of Atomistic Neural Networks.
Vazquez-Salazar, Luis Itza, Boittier, Eric D., & Chemical Science, 13(44), 13068–13084. https://doi.org/10.1039/d2sc04056e
. (2022). Uncertainty Quantification for Predictions of Atomistic Neural Networks.
Veliz, Juan Carlos San Vicente, Arnold, Julian, Bemish, Raymond J., & Journal of Physical Chemistry A, 126(43), 7971–7980. https://doi.org/10.1021/acs.jpca.2c06267
. (2022). Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions.
Veliz, Juan Carlos San Vicente, Arnold, Julian, Bemish, Raymond J., & Journal of Physical Chemistry A, 126(43), 7971–7980. https://doi.org/10.1021/acs.jpca.2c06267
. (2022). Combining Machine Learning and Spectroscopy to Model Reactive Atom + Diatom Collisions.
Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2021). Erratum: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X 3 ς g -) + N(4S) reaction at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2015) 142 (091104) DOI: 10.1063/1.4913975). Journal of Chemical Physics, 154(8). https://doi.org/10.1063/5.0046099
Castro-Palacio, J. C., Bemish, R. J., & Meuwly, M. (2021). Erratum: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X 3 ς g -) + N(4S) reaction at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2015) 142 (091104) DOI: 10.1063/1.4913975). Journal of Chemical Physics, 154(8). https://doi.org/10.1063/5.0046099
Castro-Palacio, J. C., Nagy, T., Bemish, R. J., & Meuwly, M. (2021). Erratum: Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2014) 141 (164319) DOI: 10.1063/1.4897263). Journal of Chemical Physics, 154(8). https://doi.org/10.1063/5.0046241
Castro-Palacio, J. C., Nagy, T., Bemish, R. J., & Meuwly, M. (2021). Erratum: Computational study of collisions between O(3P) and NO(2Π) at temperatures relevant to the hypersonic flight regime (J. Chem. Phys. (2014) 141 (164319) DOI: 10.1063/1.4897263). Journal of Chemical Physics, 154(8). https://doi.org/10.1063/5.0046241
Arnold, Julian, San Vicente Veliz, Juan Carlos, Koner, Debasish, Singh, Narendra, Bemish, Raymond J., & Journal of Chemical Physics, 156(3), 34301. https://doi.org/10.1063/5.0078008
. (2021). Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System.
Arnold, Julian, San Vicente Veliz, Juan Carlos, Koner, Debasish, Singh, Narendra, Bemish, Raymond J., & Journal of Chemical Physics, 156(3), 34301. https://doi.org/10.1063/5.0078008
. (2021). Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System.
Kaser, Silvan, Boittier, Eric D., Upadhyay, Meenu, & Journal of Chemical Theory and Computation, 17(6), 3687–3699. https://doi.org/10.1021/acs.jctc.1c00249
. (2021). Transfer Learning to CCSD (T): Accurate Anharmonic Frequencies from Machine Learning Models.
Kaser, Silvan, Boittier, Eric D., Upadhyay, Meenu, & Journal of Chemical Theory and Computation, 17(6), 3687–3699. https://doi.org/10.1021/acs.jctc.1c00249
. (2021). Transfer Learning to CCSD (T): Accurate Anharmonic Frequencies from Machine Learning Models.
Käser, Silvan, & Physical Chemistry Chemical Physics, 24(9), 5269–5281. https://doi.org/10.1039/d1cp04393e
. (2021). Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer.
Käser, Silvan, & Physical Chemistry Chemical Physics, 24(9), 5269–5281. https://doi.org/10.1039/d1cp04393e
. (2021). Transfer Learned Potential Energy Surfaces: Accurate Anharmonic Vibrational Dynamics and Dissociation Energies for the Formic Acid Monomer and Dimer.
Chemical Reviews, 121(16), 10218–10239. https://doi.org/10.1021/acs.chemrev.1c00033
(2021). Machine Learning for Chemical Reactions.
Chemical Reviews, 121(16), 10218–10239. https://doi.org/10.1021/acs.chemrev.1c00033
(2021). Machine Learning for Chemical Reactions.
Molecular Aspects of Medicine, 101042. https://doi.org/10.1016/j.mam.2021.101042
, & Karplus, Martin. (2021). The Functional Role of the Hemoglobin-Water Interface.
Molecular Aspects of Medicine, 101042. https://doi.org/10.1016/j.mam.2021.101042
, & Karplus, Martin. (2021). The Functional Role of the Hemoglobin-Water Interface.
Mondal, Padmabati, Cazade, Pierre-André, Das, Akshaya K., Bereau, Tristan, & Journal of Physical Chemistry B, 125(39), 10928–10938. https://doi.org/10.1021/acs.jpcb.1c05423
. (2021). Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine-Trimer.
Mondal, Padmabati, Cazade, Pierre-André, Das, Akshaya K., Bereau, Tristan, & Journal of Physical Chemistry B, 125(39), 10928–10938. https://doi.org/10.1021/acs.jpcb.1c05423
. (2021). Multipolar Force Fields for Amide-I Spectroscopy from Conformational Dynamics of the Alanine-Trimer.
Rivero, Uxia, Turan, Haydar Taylan, Molecular Physics, 119(1-2), e1825852. https://doi.org/10.1080/00268976.2020.1825852
, & Willitsch, Stefan. (2021). Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride.
Rivero, Uxia, Turan, Haydar Taylan, Molecular Physics, 119(1-2), e1825852. https://doi.org/10.1080/00268976.2020.1825852
, & Willitsch, Stefan. (2021). Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride.
Salehi, S. M., & Journal of Chemical Physics, 154(16), 165101. https://doi.org/10.1063/5.0047330
(2021). Site-Selective Dynamics of Azidolysozyme.
Salehi, S. M., & Journal of Chemical Physics, 154(16), 165101. https://doi.org/10.1063/5.0047330
(2021). Site-Selective Dynamics of Azidolysozyme.
Turan, Haydar Taylan, & Journal of Physical Chemistry B, 125(17), 4262–4273. https://doi.org/10.1021/acs.jpcb.0c10353
. (2021). Spectroscopy, Dynamics and Hydration of S-Nitrosylated Myoglobin.
Turan, Haydar Taylan, & Journal of Physical Chemistry B, 125(17), 4262–4273. https://doi.org/10.1021/acs.jpcb.0c10353
. (2021). Spectroscopy, Dynamics and Hydration of S-Nitrosylated Myoglobin.
Upadhyay, Meenu, & ACS Earth and Space Chemistry, 5(12), 3396–3406. https://doi.org/10.1021/acsearthspacechem.1c00249
. (2021). Thermal and Vibrationally Activated Decomposition of the syn-CHCHOO Criegee Intermediate.
Upadhyay, Meenu, & ACS Earth and Space Chemistry, 5(12), 3396–3406. https://doi.org/10.1021/acsearthspacechem.1c00249
. (2021). Thermal and Vibrationally Activated Decomposition of the syn-CHCHOO Criegee Intermediate.
Upadhyay, Meenu, & Frontiers in Chemistry, 9, 827085. https://doi.org/10.3389/fchem.2021.827085
. (2021). Energy Redistribution following CO2 Formation on Cold Amorphous Solid Water.
Upadhyay, Meenu, & Frontiers in Chemistry, 9, 827085. https://doi.org/10.3389/fchem.2021.827085
. (2021). Energy Redistribution following CO2 Formation on Cold Amorphous Solid Water.
Upadhyay, Meenu, Pezzella, Marco, & The Journal of Physical Chemistry Letters, 12(29), 6781–6787. https://doi.org/10.1021/acs.jpclett.1c01810
. (2021). Genesis of Polyatomic Molecules in Dark Clouds: CO2 Formation on Cold Amorphous Solid Water.
Upadhyay, Meenu, Pezzella, Marco, & The Journal of Physical Chemistry Letters, 12(29), 6781–6787. https://doi.org/10.1021/acs.jpclett.1c01810
. (2021). Genesis of Polyatomic Molecules in Dark Clouds: CO2 Formation on Cold Amorphous Solid Water.
Vazquez-Salazar, Luis Itza, Boittier, Eric D., Unke, Oliver T., & Journal of Chemical Theory and Computation, 17(8), 4769–4785. https://doi.org/10.1021/acs.jctc.1c00363
. (2021). Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Predictions of Tautomerization Energies.
Vazquez-Salazar, Luis Itza, Boittier, Eric D., Unke, Oliver T., & Journal of Chemical Theory and Computation, 17(8), 4769–4785. https://doi.org/10.1021/acs.jctc.1c00363
. (2021). Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Predictions of Tautomerization Energies.
Veliz, Juan Carlos San Vicente, Koner, Debasish, Schwilk, Max, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 23(19), 11251–11263. https://doi.org/10.1039/d1cp01101d
. (2021). The C(P-3) + O-2((3)sigma(-)(g)) -> CO2 CO((1)sigma(+)) + O(D-1)/O(P-3) reaction: thermal and vibrational relaxation rates from 15 K to 20 000 K.
Veliz, Juan Carlos San Vicente, Koner, Debasish, Schwilk, Max, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 23(19), 11251–11263. https://doi.org/10.1039/d1cp01101d
. (2021). The C(P-3) + O-2((3)sigma(-)(g)) -> CO2 CO((1)sigma(+)) + O(D-1)/O(P-3) reaction: thermal and vibrational relaxation rates from 15 K to 20 000 K.
Salehi, S. M., Koner, D., & Meuwly, M. (2020). Dynamics and Infrared Spectrocopy of Monomeric and Dimeric Wild Type and Mutant Insulin. Journal of Physical Chemistry B, 124(52), 11882–11894. https://doi.org/10.1021/acs.jpcb.0c08048
Salehi, S. M., Koner, D., & Meuwly, M. (2020). Dynamics and Infrared Spectrocopy of Monomeric and Dimeric Wild Type and Mutant Insulin. Journal of Physical Chemistry B, 124(52), 11882–11894. https://doi.org/10.1021/acs.jpcb.0c08048
Unke, O. T., Koner, D., Patra, S., Käser, S., & Meuwly, M. (2020). High-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning. Machine Learning: Science and Technology, 1(1). https://doi.org/10.1088/2632-2153/ab5922
Unke, O. T., Koner, D., Patra, S., Käser, S., & Meuwly, M. (2020). High-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning. Machine Learning: Science and Technology, 1(1). https://doi.org/10.1088/2632-2153/ab5922
Arnold, Julian, Koner, Debasish, Kaeser, Silvan, Singh, Narendra, Bemish, Raymond J., & Journal of Physical Chemistry A, 124(35), 7177–7190. https://doi.org/10.1021/acs.jpca.0c05173
. (2020). Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions.
Arnold, Julian, Koner, Debasish, Kaeser, Silvan, Singh, Narendra, Bemish, Raymond J., & Journal of Physical Chemistry A, 124(35), 7177–7190. https://doi.org/10.1021/acs.jpca.0c05173
. (2020). Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions.
Devereux, Mike, Pezzella, Marco, Raghunathan, Shampa, & Journal of Chemical Theory and Computation, 16(12), 7267–7280. https://doi.org/10.1021/acs.jctc.0c00883
. (2020). Polarizable Multipolar Molecular Dynamics Using Distributed Point Charges.
Devereux, Mike, Pezzella, Marco, Raghunathan, Shampa, & Journal of Chemical Theory and Computation, 16(12), 7267–7280. https://doi.org/10.1021/acs.jctc.0c00883
. (2020). Polarizable Multipolar Molecular Dynamics Using Distributed Point Charges.
Kaeser, Silvan, Koner, Debasish, Christensen, Anders S., von Lilienfeld, O. Anatole, & Journal of Physical Chemistry A, 124(42), 8853–8865. https://doi.org/10.1021/acs.jpca.0c05979
. (2020). Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet.
Kaeser, Silvan, Koner, Debasish, Christensen, Anders S., von Lilienfeld, O. Anatole, & Journal of Physical Chemistry A, 124(42), 8853–8865. https://doi.org/10.1021/acs.jpca.0c05979
. (2020). Machine Learning Models of Vibrating H2CO: Comparing Reproducing Kernels, FCHL, and PhysNet.
Kaser, Silvan, Unke, Oliver T., & Journal of Chemical Physics, 152(21), 214304. https://doi.org/10.1063/5.0008223
. (2020). Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces.
Kaser, Silvan, Unke, Oliver T., & Journal of Chemical Physics, 152(21), 214304. https://doi.org/10.1063/5.0008223
. (2020). Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces.
Kaser, Silvan, Unke, Oliver T., & New Journal of Physics, 22(5), 55002. https://doi.org/10.1088/1367-2630/ab81b5
. (2020). Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces.
Kaser, Silvan, Unke, Oliver T., & New Journal of Physics, 22(5), 55002. https://doi.org/10.1088/1367-2630/ab81b5
. (2020). Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces.
Koner, Debasish, Bemish, Raymond J., & The Journal of Physical Chemistry A, 124(31), 6255–6269. https://doi.org/10.1021/acs.jpca.0c01870
. (2020). Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics.
Koner, Debasish, Bemish, Raymond J., & The Journal of Physical Chemistry A, 124(31), 6255–6269. https://doi.org/10.1021/acs.jpca.0c01870
. (2020). Dynamics on Multiple Potential Energy Surfaces: Quantitative Studies of Elementary Processes Relevant to Hypersonics.
Koner, Debasish, & Journal of Chemical Theory and Computation, 16(9), 5474–5484. https://doi.org/10.1021/acs.jctc.0c00535
. (2020). Permutationally Invariant, Reproducing Kernel-Based Potential Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone.
Koner, Debasish, & Journal of Chemical Theory and Computation, 16(9), 5474–5484. https://doi.org/10.1021/acs.jctc.0c00535
. (2020). Permutationally Invariant, Reproducing Kernel-Based Potential Energy Surfaces for Polyatomic Molecules: From Formaldehyde to Acetone.
Koner, Debasish, Salehi, Seyedeh Maryam, Mondal, Padmabati, & Journal of Chemical Physics, 153(1), 10901. https://doi.org/10.1063/5.0009628
. (2020). Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics.
Koner, Debasish, Salehi, Seyedeh Maryam, Mondal, Padmabati, & Journal of Chemical Physics, 153(1), 10901. https://doi.org/10.1063/5.0009628
. (2020). Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics.
Koner, Debasish, San Vicente Veliz, Juan Carlos, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 22(33), 18257–18260. https://doi.org/10.1039/d0cp02509g
. (2020). Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N; 2; O and dynamics for the N + NO ↔ O + N; 2; and N; 2; + O → 2N + O reactions.
Koner, Debasish, San Vicente Veliz, Juan Carlos, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 22(33), 18257–18260. https://doi.org/10.1039/d0cp02509g
. (2020). Accurate reproducing kernel-based potential energy surfaces for the triplet ground states of N; 2; O and dynamics for the N + NO ↔ O + N; 2; and N; 2; + O → 2N + O reactions.
Koner, Debasish, Schwilk, Max, Patra, Sarbani, Bieske, Evan J., & Journal of Chemical Physics, 153(4), 44302. https://doi.org/10.1063/5.0011957
. (2020). N-3(+): Full-dimensional ground state potential energy surface, vibrational energy levels, and dynamics.
Koner, Debasish, Schwilk, Max, Patra, Sarbani, Bieske, Evan J., & Journal of Chemical Physics, 153(4), 44302. https://doi.org/10.1063/5.0011957
. (2020). N-3(+): Full-dimensional ground state potential energy surface, vibrational energy levels, and dynamics.
Pezzella, Marco, El Hage, Krystel, Niesen, Michiel J. M., Shin, Sucheol, Willard, Adam P., Journal of Physical Chemistry B, 124(30), 6540–6554. https://doi.org/10.1021/acs.jpcb.0c04320
, & Karplus, Martin. (2020). Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin.
Pezzella, Marco, El Hage, Krystel, Niesen, Michiel J. M., Shin, Sucheol, Willard, Adam P., Journal of Physical Chemistry B, 124(30), 6540–6554. https://doi.org/10.1021/acs.jpcb.0c04320
, & Karplus, Martin. (2020). Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin.
Pezzella, Marco, Koner, Debasish, & Journal of Physical Chemistry Letters, 11(6), 2171–2176. https://doi.org/10.1021/acs.jpclett.0c00130
. (2020). Formation and Stabilization of Ground and Excited-State Singlet O-2 upon Recombination of P-3 Oxygen on Amorphous Solid Water.
Pezzella, Marco, Koner, Debasish, & Journal of Physical Chemistry Letters, 11(6), 2171–2176. https://doi.org/10.1021/acs.jpclett.0c00130
. (2020). Formation and Stabilization of Ground and Excited-State Singlet O-2 upon Recombination of P-3 Oxygen on Amorphous Solid Water.
San Vicente Veliz, Juan Carlos, Koner, Debasish, Schwilk, Max, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 22(7), 3927–3939. https://doi.org/10.1039/c9cp06085e
. (2020). The N(4S) + O2(X3Sigma) O(3P) + NO(X2Pi) reaction: thermal and vibrational relaxation rates for the 2A’, 4A’ and 2A″ states.
San Vicente Veliz, Juan Carlos, Koner, Debasish, Schwilk, Max, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 22(7), 3927–3939. https://doi.org/10.1039/c9cp06085e
. (2020). The N(4S) + O2(X3Sigma) O(3P) + NO(X2Pi) reaction: thermal and vibrational relaxation rates for the 2A’, 4A’ and 2A″ states.
Sweeny, Brendan C., Pan, Hanqing, Kassem, Asmaa, Sawyer, Jordan C., Ard, Shaun G., Shuman, Nicholas S., Viggiano, Albert A., Brickel, Sebastian, Unke, Oliver T., Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 22(16), 8913–8923. https://doi.org/10.1039/d0cp00668h
. (2020). Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling.
Sweeny, Brendan C., Pan, Hanqing, Kassem, Asmaa, Sawyer, Jordan C., Ard, Shaun G., Shuman, Nicholas S., Viggiano, Albert A., Brickel, Sebastian, Unke, Oliver T., Upadhyay, Meenu, & Physical Chemistry Chemical Physics, 22(16), 8913–8923. https://doi.org/10.1039/d0cp00668h
. (2020). Thermal Activation of Methane by MgO+: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling.
Brickel, Sebastian, Das, Akshaya Kumar, Unke, Oliver Thorsten, Turan, Haydar Taylan, & Electronic Structure, 1(2), 24002. https://doi.org/10.1088/2516-1075/ab1edb
. (2019). Reactive molecular dynamics for the [Cl-CH3-Br]− reaction in the gas phase and in solution: a comparative study using empirical and neural network force fields.
Brickel, Sebastian, Das, Akshaya Kumar, Unke, Oliver Thorsten, Turan, Haydar Taylan, & Electronic Structure, 1(2), 24002. https://doi.org/10.1088/2516-1075/ab1edb
. (2019). Reactive molecular dynamics for the [Cl-CH3-Br]− reaction in the gas phase and in solution: a comparative study using empirical and neural network force fields.
Brickel, Sebastian, & Journal of Physical Chemistry B, 123(2), 448–456. https://doi.org/10.1021/acs.jpcb.8b11059
. (2019). Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction.
Brickel, Sebastian, & Journal of Physical Chemistry B, 123(2), 448–456. https://doi.org/10.1021/acs.jpcb.8b11059
. (2019). Molecular Determinants for Rate Acceleration in the Claisen Rearrangement Reaction.
Desmond, Jasmine L., Koner, Debasish, & Journal of Physical Chemistry B, 123(30), 6588–6598. https://doi.org/10.1021/acs.jpcb.9b04628
. (2019). Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy.
Desmond, Jasmine L., Koner, Debasish, & Journal of Physical Chemistry B, 123(30), 6588–6598. https://doi.org/10.1021/acs.jpcb.9b04628
. (2019). Probing the Differential Dynamics of the Monomeric and Dimeric Insulin from Amide-I IR Spectroscopy.
Diamantis, Polydefkis, El Hage, Krystel, & The Journal of Physical Chemistry B, 123(9), 1961–1972. https://doi.org/10.1021/acs.jpcb.8b11454
. (2019). Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin.
Diamantis, Polydefkis, El Hage, Krystel, & The Journal of Physical Chemistry B, 123(9), 1961–1972. https://doi.org/10.1021/acs.jpcb.8b11454
. (2019). Effect of Single-Point Mutations on Nitric Oxide Rebinding and the Thermodynamic Stability of Myoglobin.
Dörfler, Alexander D., Eberle, Pascal, Koner, Debasish, Tomza, Michał, Nature Communications, 10(1), 5429. https://doi.org/10.1038/s41467-019-13218-x
, & Willitsch, Stefan. (2019). Long-range versus short-range effects in cold molecular ion-neutral collisions.
Dörfler, Alexander D., Eberle, Pascal, Koner, Debasish, Tomza, Michał, Nature Communications, 10(1), 5429. https://doi.org/10.1038/s41467-019-13218-x
, & Willitsch, Stefan. (2019). Long-range versus short-range effects in cold molecular ion-neutral collisions.
El Hage, Krystel, Hedin, Florent, Gupta, Prashant K., eLife, 8, e45318. https://doi.org/10.7554/elife.45318
, & Karplus, Martin. (2019). Response to comment on ‘Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size’.
El Hage, Krystel, Hedin, Florent, Gupta, Prashant K., eLife, 8, e45318. https://doi.org/10.7554/elife.45318
, & Karplus, Martin. (2019). Response to comment on ‘Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size’.
Koner, Debasish, San Vicente Veliz, Juan Carlos, van der Avoird, Ad, & Physical Chemistry Chemical Physics, 21(45), 24976–24983. https://doi.org/10.1039/c9cp05259c
. (2019). Near dissociation states for H2+-He on MRCI and FCI potential energy surfaces.
Koner, Debasish, San Vicente Veliz, Juan Carlos, van der Avoird, Ad, & Physical Chemistry Chemical Physics, 21(45), 24976–24983. https://doi.org/10.1039/c9cp05259c
. (2019). Near dissociation states for H2+-He on MRCI and FCI potential energy surfaces.
Koner, Debasish, Unke, Oliver T., Boe, Kyle, Bemish, Raymond J., & Journal of Chemical Physics, 150(21), 211101. https://doi.org/10.1063/1.5097385
. (2019). Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation.
Koner, Debasish, Unke, Oliver T., Boe, Kyle, Bemish, Raymond J., & Journal of Chemical Physics, 150(21), 211101. https://doi.org/10.1063/1.5097385
. (2019). Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation.
WIREs: Computational Molecular Science, 9(1), e1386. https://doi.org/10.1002/wcms.1386
. (2019). Reactive molecular dynamics: From small molecules to proteins.
WIREs: Computational Molecular Science, 9(1), e1386. https://doi.org/10.1002/wcms.1386
. (2019). Reactive molecular dynamics: From small molecules to proteins.
Pezzella, Marco, & Physical Chemistry Chemical Physics, 21(11), 6247–6255. https://doi.org/10.1039/c8cp07474g
. (2019). O-2 formation in cold environments.
Pezzella, Marco, & Physical Chemistry Chemical Physics, 21(11), 6247–6255. https://doi.org/10.1039/c8cp07474g
. (2019). O-2 formation in cold environments.
Rivero, Uxia, Unke, Oliver T., Journal of Chemical Physics, 151(10), 104301. https://doi.org/10.1063/1.5114981
, & Willitsch, Stefan. (2019). Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations.
Rivero, Uxia, Unke, Oliver T., Journal of Chemical Physics, 151(10), 104301. https://doi.org/10.1063/1.5114981
, & Willitsch, Stefan. (2019). Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations.
Salehi, Seyedeh Maryam, Koner, Debasish, & Journal of Physical Chemistry B, 123(15), 3282–3290. https://doi.org/10.1021/acs.jpcb.8b11430
. (2019). Vibrational Spectroscopy of N-3(-) in the Gas and Condensed Phase.
Salehi, Seyedeh Maryam, Koner, Debasish, & Journal of Physical Chemistry B, 123(15), 3282–3290. https://doi.org/10.1021/acs.jpcb.8b11430
. (2019). Vibrational Spectroscopy of N-3(-) in the Gas and Condensed Phase.
Unke, Oliver T., Brickel, Sebastian, & Journal of Chemical Physics, 150(7), 74107. https://doi.org/10.1063/1.5082885
. (2019). Sampling reactive regions in phase space by following the minimum dynamic path.
Unke, Oliver T., Brickel, Sebastian, & Journal of Chemical Physics, 150(7), 74107. https://doi.org/10.1063/1.5082885
. (2019). Sampling reactive regions in phase space by following the minimum dynamic path.
Unke, Oliver T., & Journal of Chemical Theory and Computation, 15(6), 3678–3693. https://doi.org/10.1021/acs.jctc.9b00181
. (2019). PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
Unke, Oliver T., & Journal of Chemical Theory and Computation, 15(6), 3678–3693. https://doi.org/10.1021/acs.jctc.9b00181
. (2019). PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
Xu, Zhen-Hao, & Journal of Physical Chemistry B, 123(46), 9846–9861. https://doi.org/10.1021/acs.jpcb.9b03258
. (2019). Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk.
Xu, Zhen-Hao, & Journal of Physical Chemistry B, 123(46), 9846–9861. https://doi.org/10.1021/acs.jpcb.9b03258
. (2019). Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk.
Das, Akshaya Kumar, & Angewandte Chemie International Edition, 57(13), 3509–3513. https://doi.org/10.1002/anie.201711445
. (2018). Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated HemoglobinN.
Das, Akshaya Kumar, & Angewandte Chemie International Edition, 57(13), 3509–3513. https://doi.org/10.1002/anie.201711445
. (2018). Kinetic Analysis and Structural Interpretation of Competitive Ligand Binding for NO Dioxygenation in Truncated HemoglobinN.
El Hage, Krystel, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 20(27), 18610–18622. https://doi.org/10.1039/c8cp02899k
. (2018). From in silica to in silico: retention thermodynamics at solid-liquid interfaces.
El Hage, Krystel, Bemish, Raymond J., & Physical Chemistry Chemical Physics, 20(27), 18610–18622. https://doi.org/10.1039/c8cp02899k
. (2018). From in silica to in silico: retention thermodynamics at solid-liquid interfaces.
El Hage, Krystel, Brickel, Sebastian, Hermelin, Sylvain, Gaulier, Geoffrey, Schmidt, Cédric, Bonacina, Luigi, van Keulen, Siri C., Bhattacharyya, Swarnendu, Chergui, Majed, Hamm, Peter, Rothlisberger, Ursula, Wolf, Jean-Pierre, & Structural Dynamics, 5(1), 61507. https://doi.org/10.1063/1.4996448
. (2018). Implications of short time scale dynamics on long time processes.
El Hage, Krystel, Brickel, Sebastian, Hermelin, Sylvain, Gaulier, Geoffrey, Schmidt, Cédric, Bonacina, Luigi, van Keulen, Siri C., Bhattacharyya, Swarnendu, Chergui, Majed, Hamm, Peter, Rothlisberger, Ursula, Wolf, Jean-Pierre, & Structural Dynamics, 5(1), 61507. https://doi.org/10.1063/1.4996448
. (2018). Implications of short time scale dynamics on long time processes.
El Hage, Krystel, Hédin, Florent, Gupta, Prashant K., eLife, 7, e35560. https://doi.org/10.7554/elife.35560
, & Karplus, Martin. (2018). Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size.
El Hage, Krystel, Hédin, Florent, Gupta, Prashant K., eLife, 7, e35560. https://doi.org/10.7554/elife.35560
, & Karplus, Martin. (2018). Valid molecular dynamics simulations of human hemoglobin require a surprisingly large box size.
El Hage, Krystel, Mondal, Padmabati, & Molecular Simulation, 44(13-14), 1044–1061. https://doi.org/10.1080/08927022.2017.1416115
. (2018). Free energy simulations for protein ligand binding and stability.
El Hage, Krystel, Mondal, Padmabati, & Molecular Simulation, 44(13-14), 1044–1061. https://doi.org/10.1080/08927022.2017.1416115
. (2018). Free energy simulations for protein ligand binding and stability.
Koner, Debasish, Bemish, Raymond J., & Journal of Chemical Physics, 149(9), 94305. https://doi.org/10.1063/1.5046906
. (2018). The C(3P) + NO(X2Π) → O(3P) + CN(X2Σ+), N(2D)/N(4S) + CO(X1Σ+) reaction: Rates, branching ratios, and final states from 15 K to 20 000 K.
Koner, Debasish, Bemish, Raymond J., & Journal of Chemical Physics, 149(9), 94305. https://doi.org/10.1063/1.5046906
. (2018). The C(3P) + NO(X2Π) → O(3P) + CN(X2Σ+), N(2D)/N(4S) + CO(X1Σ+) reaction: Rates, branching ratios, and final states from 15 K to 20 000 K.
Mondal, Padmabati, & Scientific Reports, 8(1), 5281. https://doi.org/10.1038/s41598-018-22944-z
. (2018). Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase.
Mondal, Padmabati, & Scientific Reports, 8(1), 5281. https://doi.org/10.1038/s41598-018-22944-z
. (2018). Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase.
Pezzella, Marco, Unke, Oliver T., & Journal of Physical Chemistry Letters, 9(8), 1822–1826. https://doi.org/10.1021/acs.jpclett.8b00328
. (2018). Molecular Oxygen Formation in Interstellar Ices Does Not Require Tunneling.
Pezzella, Marco, Unke, Oliver T., & Journal of Physical Chemistry Letters, 9(8), 1822–1826. https://doi.org/10.1021/acs.jpclett.8b00328
. (2018). Molecular Oxygen Formation in Interstellar Ices Does Not Require Tunneling.
Raghunathan, Shampa, El Hage, Krystel, Desmond, Jasmine L., Zhang, Lixian, & Journal of Physical Chemistry B, 122(28), 7038–7048. https://doi.org/10.1021/acs.jpcb.8b04448
. (2018). The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers.
Raghunathan, Shampa, El Hage, Krystel, Desmond, Jasmine L., Zhang, Lixian, & Journal of Physical Chemistry B, 122(28), 7038–7048. https://doi.org/10.1021/acs.jpcb.8b04448
. (2018). The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers.