Publications by Type
32 found
Show per page
Peer-Reviewed Publication Types
Miriam Groß-Schmölders, Egu. https://doi.org/10.5194/egusphere-egu25-15330
, Annett Wania, Maddie Grady, Jens Leifeld, & Christine Alewell. (2025, January 1). Building a Framework to Differentiate between Natural and Drained Peatlands in Europe by comparing Molecular and Remote Sensing Data. Weber, T. K. D., Weihermüller, L., Nemes, A., Bechtold, M., Degré, A., Diamantopoulos, E., Fatichi, S., Filipović, V., Hydrology and Earth System Sciences, 28(14), 3391–3433. https://doi.org/10.5194/hess-28-3391-2024
, Hohenbrink, T. L., Hirmas, D. R., Jackisch, C., de Jong van Lier, Q., Koestel, J., Lehmann, P., Marthews, T. R., Minasny, B., Pagel, H., van der Ploeg, M., et al. (2024). Hydro-pedotransfer functions: A roadmap for future development. Geoderma Regional, 36, e00747. https://doi.org/10.1016/j.geodrs.2023.e00747
, Hasler, Julia Kim, & Alewell, Christine. (2024). Mining soil data of Switzerland: New maps for soil texture, soil organic carbon, nitrogen, and phosphorus [Journal-article]. Science of The Total Environment, 908. https://doi.org/10.1016/j.scitotenv.2023.168249
, Borrelli, Pasquale, Panagos, Panos, & Alewell, Christine. (2024). An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity. Bouasria, Abdelkrim, Bouslihim, Yassine, Ecological Informatics, 78. https://doi.org/10.1016/j.ecoinf.2023.102294
, Taghizadeh-Mehrjardi, Ruhollah, & Hengl, Tomislav. (2023). Predictive performance of machine learning model with varying sampling designs, sample sizes, and spatial extents. Journal of Advances in Modeling Earth Systems, 15(11). https://doi.org/10.1029/2022MS003277
, Lehmann, Peter, Bickel, Samuel, Bonetti, Sara, & Or, Dani. (2023). Global Mapping of Potential and Climatic Plant-Available Soil Water. Borrelli, P., Alewell, C., Yang, J. E., Bezak, N., Chen, Y. X., Fenta, A. A., Fendrich, A. N., International Soil and Water Conservation Research, 11(4), 713–725. https://doi.org/10.1016/j.iswcr.2023.07.008
, Matthews, F., Modugno, S., Haregeweyn, N., Robinson, D. A., Tan, F. R. C., Vanmaercke, M., Verstraeten, G., Vieira, D. C. S., & Panagos, P. (2023). Towards a better understanding of pathways of multiple co-occurring erosion processes on global cropland. Kukal, M.S., Irmak, S., Dobos, R., & Geoderma, 429. https://doi.org/10.1016/j.geoderma.2022.116270
(2023). Atmospheric dryness impacts on crop yields are buffered in soils with higher available water capacity. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01481-5
, Papritz, Andreas, Lehmann, Peter, Hengl, Tomislav, Bonetti, Sara, & Or, Dani. (2022). Global Soil Hydraulic Properties dataset based on legacy site observations and robust parameterization. Remote Sensing, 14(8). https://doi.org/10.3390/rs14081947
, Papritz, Andreas, Lehmann, Peter, Hengl, Tomislav, Bonetti, Sara, & Or, Dani. (2022). Global Mapping of Soil Water Characteristics Parameters— Fusing Curated Data with Machine Learning and Environmental Covariates. Environmental Research Letters, 17(3). https://doi.org/10.1088/1748-9326/ac5206
, Bonetti, Sara, Lehmann, Peter, & Or, Dani. (2022). Limited role of soil texture in mediating natural vegetation response to rainfall anomalies. Li, Lu, Dai, Yongjiu, Shangguan, Wei, Wei, Nan, Wei, Zhongwang, & Journal of Hydrometeorology, 23(3), 337–350. https://doi.org/10.1175/JHM-D-21-0131.1
. (2022). Multistep Forecasting of Soil Moisture Using Spatiotemporal Deep Encoder–Decoder Networks. Adla, Soham, Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.798241
, Karumanchi, Sri Harsha, Tripathi, Shivam, Disse, Markus, & Pande, Saket. (2022). Agricultural Advisory Diagnostics Using a Data-Based Approach: Test Case in an Intensively Managed Rural Landscape in the Ganga River Basin, India. Lehmann, P., Leshchinsky, B., Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021gl095311
, Mirus, B. B., Bickel, S., Lu, N., & Or, D. (2021). Clays Are Not Created Equal: How Clay Mineral Type Affects Soil Parameterization [Journal-article]. Earth System Science Data, 13(4), 1593–1612. https://doi.org/10.5194/essd-13-1593-2021
, Hengl, Tomislav, Lehmann, Peter, Bonetti, Sara, & Or, Dani. (2021). SoilKsatDB: Global database of soil saturated hydraulic conductivity measurements for geoscience applications. Journal of Advances in Modeling Earth Systems, 13(4). https://doi.org/10.1029/2020MS002242
, Lehmann, Peter, Bonetti, Sara, Papritz, Andreas, & Or, Dani. (2021). Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework. Eos, Transactions American Geophysical Union, 100. https://doi.org/10.1029/2019eo117683
, Karumanchi, Sri, Dash, Saroj, Adla, Soham, Tripathi, Shivam, Sinha, Rajiv, Paul, Debajyoti, & Sen, Indra. (2019). Monitoring Ecosystem Health in India’s Food Basket. A new critical zone observatory in India’s Ganga Basin helps researchers and farmers understand and improve the ways that human activities shape environmental processes. [Journal-article]. Sinha, Rajiv, Current Science, 114(12), 2482–2493. https://doi.org/10.18520/cs/v114/i12/2482-2493
, & Nepal, Santosh. (2018). Groundwater dynamics in North Bihar plains. Environmental Earth Sciences, 76(11). https://doi.org/10.1007/s12665-017-6720-8
, & Kumar, Suresh. (2017). Simulating climate change impact on soil carbon sequestration in agro-ecosystem of mid-Himalayan landscape using CENTURY model. Gupta, S., & Kumar, S. (2017). Simulating climate change impact on soil erosion using RUSLE model − A case study in a watershed of mid-Himalayan landscape. Journal of Earth System Science, 126(3). https://doi.org/10.1007/s12040-017-0823-1
Kumar, Suresh, & Journal of Earth System Science, 125(7), 1463–1472. https://doi.org/10.1007/s12040-016-0738-2
. (2016). Geospatial approach in mapping soil erodibility using CartoDEM – a case study in hilly watershed of Lower Himalayan Range. Journal of Agricultural Research, 51(2), 175–180.
, & Singh, J.P. (2014). Multiple well point system for irrigation and drainage for south-western districts of Punjab. Books
Sinha, Rajiv, Gaurav, Kumar, Mishra, Kanchan, & Fluvial megafans on Earth and Mars (1 ed., pp. 202–218). Cambridge University Press. https://doi.org/https://doi.org/10.1017/9781108525923.014
. (2023). The Kosi Megafan, India. In M. Justin Wilkinson, Yanni Gunnell (Ed.), Other Publications
Dicen, G., Guillevic, F., Gupta, S., Chaboche, P.-A., Meusburger, K., Sabatier, P., Evrard, O., & Alewell, C. (2025). Distribution and sources of fallout 137 Cs and 239+240 Pu in equatorial and Southern Hemisphere reference soils [Journal-article]. Earth System Science Data, 17(4), 1529–1549. https://doi.org/10.5194/essd-17-1529-2025
Avcioglu, A., Gupta, S., Dicen, G., Vandromme, R., Alewell, C., Cerdan, O., Evrard, O., Bernard--Coquard, R., Angot, H., Sabatier, P., & Meusburger, K. (2025). Reconstruction of 137Cs and 239+240Pu baseline inventories in the Southern Hemisphere and Equatorial Soils [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu25-9055
Gupta, S., Scheper, S., Borrelli, P., Panagos, P., & Alewell, C. (2025). Exploring the influence of soil erosion on lake eutrophication through remote sensing across Europe [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-egu25-1329
Dicen, G., Guillevic, F., Gupta, S., Chaboche, P.-A., Meusburger, K., Sabatier, P., Evrard, O., & Alewell, C. (2024). Distribution and sources of fallout 137 Cs and 239+240 Pu in Equatorial and Southern Hemisphere reference soils [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/essd-2024-509
Weber, T. K. D., Weihermüller, L., Nemes, A., Bechtold, M., Degré, A., Diamantopoulos, E., Fatichi, S., Filipović, V., Gupta, S., Hohenbrink, T. L., Hirmas, D. R., Jackisch, C., de Jong van Lier, Q., Koestel, J., Lehmann, P., Marthews, T. R., Minasny, B., Pagel, H., van der Ploeg, M., et al. (2023). Hydro-pedotransfer functions: A roadmap for future development [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/egusphere-2023-1860
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., Papritz, A., & Or, D. (2020). Global prediction of soil saturated hydraulic conductivity using random forest in a Covariate-based Geo Transfer Functions (CoGTF) framework [Posted-content]. Wiley. https://doi.org/10.1002/essoar.10503663.1
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., & Or, D. (2020). SoilKsatDB: global soil saturated hydraulic conductivity measurements for geoscience applications [Posted-content]. Copernicus GmbH. https://doi.org/10.5194/essd-2020-149
Gupta, S., Tripathi, S., Sinha, R., Karumanchi, S. H., Paul, D., Tripathi, S. N., Sen, I. S., & Dash, S. K. (2018). Setting up a new CZO in the Ganga basin: instrumentation, stakeholder engagement and preliminary observations [Posted-content]. Wiley. https://doi.org/10.1002/essoar.bfe245c93cb55808.b3f3df49a9514dcb.1
Supplementary Publications
Hengl, Tom, & Soil water content (volumetric %) for 33kPa and 1500kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Zenodo, Ed.) [dataset]. https://doi.org/10.5281/zenodo.2784001
. (2019).