Publications
72 found
Show per page
Tocchini, Cristina, Bassett, Palmer, & . (2025). A short conserved sequence in the HOT region of the C. elegans dlg-1 gene largely recapitulates its transcriptional behavior during embryogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.06.13.659077
Tocchini, Cristina, Bassett, Palmer, & . (2025). A short conserved sequence in the HOT region of the C. elegans dlg-1 gene largely recapitulates its transcriptional behavior during embryogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.06.13.659077
Bayer, Emily A, , Hobert, Oliver, & Schier, Alexander F. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
Bayer, Emily A, , Hobert, Oliver, & Schier, Alexander F. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
Gutnik, Silvia, You, Jia Emil, Sawh, Ahilya N., Andriollo, Aude, & (2024). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. Genome Biology, 25(1). https://doi.org/10.1186/s13059-024-03199-6
Gutnik, Silvia, You, Jia Emil, Sawh, Ahilya N., Andriollo, Aude, & (2024). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. Genome Biology, 25(1). https://doi.org/10.1186/s13059-024-03199-6
Delaney, Colin E., You, Jia Emil, Gasser, Susan, Padeken, Jan, & . (2024). H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.29.615660
Delaney, Colin E., You, Jia Emil, Gasser, Susan, Padeken, Jan, & . (2024). H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.29.615660
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, , Yu, Guoqiang, Bintu, Bogdan, & Schier, Alexander F. (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, , Yu, Guoqiang, Bintu, Bogdan, & Schier, Alexander F. (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
Tocchini, C., & Mango, S. E. (2024). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans [Journal-article]. PLOS Biology, 22(3), e3002526. https://doi.org/10.1371/journal.pbio.3002526
Tocchini, C., & Mango, S. E. (2024). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans [Journal-article]. PLOS Biology, 22(3), e3002526. https://doi.org/10.1371/journal.pbio.3002526
Tocchini, C., & Mango, S. E. (2023). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i> [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.06.13.544769
Tocchini, C., & Mango, S. E. (2023). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i> [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.06.13.544769
Gutnik, Silvia, Sawh, Ahilya, & (2022). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. bioRxiv. https://doi.org/10.1101/2022.11.01.514763
Gutnik, Silvia, Sawh, Ahilya, & (2022). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. bioRxiv. https://doi.org/10.1101/2022.11.01.514763
Sawh, Ahilya N., & (2022). Chromosome organization in 4D: insights from C. elegans development. Current Opinion in Genetics & Development, 75, 101939. https://doi.org/10.1016/j.gde.2022.101939
Sawh, Ahilya N., & (2022). Chromosome organization in 4D: insights from C. elegans development. Current Opinion in Genetics & Development, 75, 101939. https://doi.org/10.1016/j.gde.2022.101939
Tocchini, Cristina, Rohner, Michèle, Guerard, Laurent, Ray, Poulomi, Von Stetina, Stephen E., & (2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. Development, 148(24), 200027. https://doi.org/10.1242/dev.200027
Tocchini, Cristina, Rohner, Michèle, Guerard, Laurent, Ray, Poulomi, Von Stetina, Stephen E., & (2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. Development, 148(24), 200027. https://doi.org/10.1242/dev.200027
Tocchini, Cristina, Rohner, Michèle, Von Stetina, Stephen E., & (2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. bioRxiv. https://doi.org/10.1101/2021.05.20.444977
Tocchini, Cristina, Rohner, Michèle, Von Stetina, Stephen E., & (2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. bioRxiv. https://doi.org/10.1101/2021.05.20.444977
Wasson, Jadiel A., Harris, Gareth, Keppler-Ross, Sabine, Brock, Trisha J., Dar, Abdul R., Butcher, Rebecca A., Fischer, Sylvia E. J., Kagias, Konstantinos, Clardy, Jon, Zhang, Yun, & (2021). Neuronal control of maternal provisioning in response to social cues. Science Advances, 7(34), eabf8782. https://doi.org/10.1126/sciadv.abf8782
Wasson, Jadiel A., Harris, Gareth, Keppler-Ross, Sabine, Brock, Trisha J., Dar, Abdul R., Butcher, Rebecca A., Fischer, Sylvia E. J., Kagias, Konstantinos, Clardy, Jon, Zhang, Yun, & (2021). Neuronal control of maternal provisioning in response to social cues. Science Advances, 7(34), eabf8782. https://doi.org/10.1126/sciadv.abf8782
Choi, Joonhee, Zhou, Hengyun, Landig, Renate, Wu, Hai-Yin, Yu, Xiaofei, Von Stetina, Stephen E., Kucsko, Georg, , Needleman, Daniel J., Samuel, Aravinthan D. T., Maurer, Peter C., Park, Hongkun, & Lukin, Mikhail D. (2020). Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proceedings of the National Academy of Sciences of the United States of America, 117(26), 14636–14641. https://doi.org/10.1073/pnas.1922730117
Choi, Joonhee, Zhou, Hengyun, Landig, Renate, Wu, Hai-Yin, Yu, Xiaofei, Von Stetina, Stephen E., Kucsko, Georg, , Needleman, Daniel J., Samuel, Aravinthan D. T., Maurer, Peter C., Park, Hongkun, & Lukin, Mikhail D. (2020). Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proceedings of the National Academy of Sciences of the United States of America, 117(26), 14636–14641. https://doi.org/10.1073/pnas.1922730117
Sawh, Ahilya N., & (2020). Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos. STAR Protocols, 1(3), 100107. https://doi.org/10.1016/j.xpro.2020.100107
Sawh, Ahilya N., & (2020). Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos. STAR Protocols, 1(3), 100107. https://doi.org/10.1016/j.xpro.2020.100107
Sawh, Ahilya N., Shafer, Maxwell E. R., Su, Jun-Han, Zhuang, Xiaowei, Wang, Siyuan, & (2020). Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos. Molecular Cell, 78(1), 96–111. https://doi.org/10.1016/j.molcel.2020.02.006
Sawh, Ahilya N., Shafer, Maxwell E. R., Su, Jun-Han, Zhuang, Xiaowei, Wang, Siyuan, & (2020). Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos. Molecular Cell, 78(1), 96–111. https://doi.org/10.1016/j.molcel.2020.02.006
Mutlu, Beste, Chen, Huei-Mei, Gutnik, Silvia, Hall, David H., Keppler-Ross, Sabine, & (2019). Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge, England), 146(19), dev174516. https://doi.org/10.1242/dev.174516
Mutlu, Beste, Chen, Huei-Mei, Gutnik, Silvia, Hall, David H., Keppler-Ross, Sabine, & (2019). Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge, England), 146(19), dev174516. https://doi.org/10.1242/dev.174516
Mutlu, B., Chen, H.-M., Hall, D. H., & Mango, S. E. (2018, September 28). MET-2, a SETDB1 family methyltransferase, coordinates embryo events through distinct histone H3 methylation states [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/429902
Mutlu, B., Chen, H.-M., Hall, D. H., & Mango, S. E. (2018, September 28). MET-2, a SETDB1 family methyltransferase, coordinates embryo events through distinct histone H3 methylation states [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/429902
Mutlu, B., Chen, H.-M., Moresco, J. J., Orelo, B. D., Yang, B., Gaspar, J. M., Keppler-Ross, S., Yates, J. R., Hall, D. H., Maine, E. M., & Mango, S. E. (2018, May 18). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in<i>C. elegans</i>embryos [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/326231
Mutlu, B., Chen, H.-M., Moresco, J. J., Orelo, B. D., Yang, B., Gaspar, J. M., Keppler-Ross, S., Yates, J. R., Hall, D. H., Maine, E. M., & Mango, S. E. (2018, May 18). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in<i>C. elegans</i>embryos [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/326231
Chen, H. M., Mutlu, B., Sackton, T., Wang, J., Keppler-Ross, S., Levine, E., Liu, T., & (2018). A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters. bioRxiv. https://doi.org/10.1101/429191
Chen, H. M., Mutlu, B., Sackton, T., Wang, J., Keppler-Ross, S., Levine, E., Liu, T., & (2018). A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters. bioRxiv. https://doi.org/10.1101/429191
Mutlu, Beste, Chen, Huei-Mei, Moresco, James J., Orelo, Barbara D., Yang, Bing, Gaspar, John M., Keppler-Ross, Sabine, Yates, John R., Hall, David H., Maine, Eleanor M., & (2018). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos. Science Advances, 4(8), eaat6224. https://doi.org/10.1126/sciadv.aat6224
Mutlu, Beste, Chen, Huei-Mei, Moresco, James J., Orelo, Barbara D., Yang, Bing, Gaspar, John M., Keppler-Ross, Sabine, Yates, John R., Hall, David H., Maine, Eleanor M., & (2018). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos. Science Advances, 4(8), eaat6224. https://doi.org/10.1126/sciadv.aat6224
Von Stetina, Stephen E., Liang, Jennifer, Marnellos, Georgios, & (2017). Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Molecular Biology of the Cell, 28(15), 2042–2065. https://doi.org/10.1091/mbc.e16-09-0644
Von Stetina, Stephen E., Liang, Jennifer, Marnellos, Georgios, & (2017). Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Molecular Biology of the Cell, 28(15), 2042–2065. https://doi.org/10.1091/mbc.e16-09-0644
Von Stetina, S. E., Liang, J., Marnellos, G., & Mango, S. E. (2016, September 21). Temporal regulation of epithelium formation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/076570
Von Stetina, S. E., Liang, J., Marnellos, G., & Mango, S. E. (2016, September 21). Temporal regulation of epithelium formation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/076570
Zaret, Kenneth S., & (2016). Pioneer transcription factors, chromatin dynamics, and cell fate control. Current Opinion in Genetics & Development, 37, 76–81. https://doi.org/10.1016/j.gde.2015.12.003
Zaret, Kenneth S., & (2016). Pioneer transcription factors, chromatin dynamics, and cell fate control. Current Opinion in Genetics & Development, 37, 76–81. https://doi.org/10.1016/j.gde.2015.12.003
Hsu, H.T., Chen, H.M., Yang, Z., Wang, J., Lee, N.K., Burger, A., Zaret, K., Liu, T., Levine, E., & (2015). Erratum: Recruitment of RNA polymerase II by the pioneer transcription factor PHA4 (Science (2015) 19 (1372-1376)). Science, 350(6258). https://doi.org/10.1126/science.aad5928
Hsu, H.T., Chen, H.M., Yang, Z., Wang, J., Lee, N.K., Burger, A., Zaret, K., Liu, T., Levine, E., & (2015). Erratum: Recruitment of RNA polymerase II by the pioneer transcription factor PHA4 (Science (2015) 19 (1372-1376)). Science, 350(6258). https://doi.org/10.1126/science.aad5928
Hsu, H.-T., Chen, H.-M., Yang, Z., Wang, J., Lee, N. K., Burger, A., Zaret, K., Liu, T., Levine, E., & (2015). Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science, 348(6241), 6–1372. https://doi.org/10.1126/science.aab1223
Hsu, H.-T., Chen, H.-M., Yang, Z., Wang, J., Lee, N. K., Burger, A., Zaret, K., Liu, T., Levine, E., & (2015). Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science, 348(6241), 6–1372. https://doi.org/10.1126/science.aab1223
Von Stetina, Stephen E., & (2015). PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Developmental Biology, 403(1), 5–14. https://doi.org/10.1016/j.ydbio.2015.03.002
Von Stetina, Stephen E., & (2015). PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Developmental Biology, 403(1), 5–14. https://doi.org/10.1016/j.ydbio.2015.03.002
Choi, Youngeun, & (2014). Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), 53–1440. https://doi.org/10.1016/j.bbagrm.2014.05.011
Choi, Youngeun, & (2014). Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), 53–1440. https://doi.org/10.1016/j.bbagrm.2014.05.011
Rosains, Jacqueline, & (2012). Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay. PLoS ONE, 7(11), e49490. https://doi.org/10.1371/journal.pone.0049490
Rosains, Jacqueline, & (2012). Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay. PLoS ONE, 7(11), e49490. https://doi.org/10.1371/journal.pone.0049490
Mango, S. E. (2011). Erratum: Ageing: Generations of longevity (Nature (2011) 479 (302-303)). Nature, 480(7376). https://doi.org/10.1038/480191a
Mango, S. E. (2011). Erratum: Ageing: Generations of longevity (Nature (2011) 479 (302-303)). Nature, 480(7376). https://doi.org/10.1038/480191a
(2011). Ageing: generations of longevity. Nature, 479(7373), 302–303. https://doi.org/10.1038/479302a
(2011). Ageing: generations of longevity. Nature, 479(7373), 302–303. https://doi.org/10.1038/479302a
Meister, Peter, , & Gasser, Susan M. (2011). Locking the genome: nuclear organization and cell fate. Current Opinion in Genetics & Development, 21(2), 74–167. https://doi.org/10.1016/j.gde.2011.01.023
Meister, Peter, , & Gasser, Susan M. (2011). Locking the genome: nuclear organization and cell fate. Current Opinion in Genetics & Development, 21(2), 74–167. https://doi.org/10.1016/j.gde.2011.01.023
Fakhouri, Tala H. I., Stevenson, Jeff, Chisholm, Andrew D., & (2010). Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genetics, 6(8), e1001060. https://doi.org/10.1371/journal.pgen.1001060
Fakhouri, Tala H. I., Stevenson, Jeff, Chisholm, Andrew D., & (2010). Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA. PLoS Genetics, 6(8), e1001060. https://doi.org/10.1371/journal.pgen.1001060
Zhong, Mei, Niu, Wei, Lu, Zhi John, Sarov, Mihail, Murray, John I., Janette, Judith, Raha, Debasish, Sheaffer, Karyn L., Lam, Hugo Y. K., Preston, Elicia, Slightham, Cindie, Hillier, LaDeana W., Brock, Trisha, Agarwal, Ashish, Auerbach, Raymond, Hyman, Anthony A., Gerstein, Mark, , Kim, Stuart K., et al. (2010). Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genetics, 6(2), e1000848. https://doi.org/10.1371/journal.pgen.1000848
Zhong, Mei, Niu, Wei, Lu, Zhi John, Sarov, Mihail, Murray, John I., Janette, Judith, Raha, Debasish, Sheaffer, Karyn L., Lam, Hugo Y. K., Preston, Elicia, Slightham, Cindie, Hillier, LaDeana W., Brock, Trisha, Agarwal, Ashish, Auerbach, Raymond, Hyman, Anthony A., Gerstein, Mark, , Kim, Stuart K., et al. (2010). Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response. PLoS Genetics, 6(2), e1000848. https://doi.org/10.1371/journal.pgen.1000848
Mango, S. (2009). Susan Mango [Journal-article]. Current Biology, 19(7), R276–R277. https://doi.org/10.1016/j.cub.2009.01.035
Mango, S. (2009). Susan Mango [Journal-article]. Current Biology, 19(7), R276–R277. https://doi.org/10.1016/j.cub.2009.01.035
(2009). The molecular basis of organ formation: insights from the C. elegans foregut. Annual Review of Cell and Developmental Biology, 25, 597–628. https://doi.org/10.1146/annurev.cellbio.24.110707.175411
(2009). The molecular basis of organ formation: insights from the C. elegans foregut. Annual Review of Cell and Developmental Biology, 25, 597–628. https://doi.org/10.1146/annurev.cellbio.24.110707.175411
Yuzyuk, T., Fakhouri, T. H. I., Kiefer, J., & (2009). The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Developmental Cell, 16(5), 699–710. https://doi.org/10.1016/j.devcel.2009.03.008
Yuzyuk, T., Fakhouri, T. H. I., Kiefer, J., & (2009). The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos. Developmental Cell, 16(5), 699–710. https://doi.org/10.1016/j.devcel.2009.03.008
Sheaffer, Karyn L., Updike, Dustin L., & (2008). The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Current Biology, 18(18), 1355–1364. https://doi.org/10.1016/j.cub.2008.07.097
Sheaffer, Karyn L., Updike, Dustin L., & (2008). The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Current Biology, 18(18), 1355–1364. https://doi.org/10.1016/j.cub.2008.07.097
Von Stetina, Stephen E., & (2008). Wormnet: a crystal ball for Caenorhabditis elegans. Genome Biology, 9(6), 226. https://doi.org/10.1186/gb-2008-9-6-226
Von Stetina, Stephen E., & (2008). Wormnet: a crystal ball for Caenorhabditis elegans. Genome Biology, 9(6), 226. https://doi.org/10.1186/gb-2008-9-6-226
Kiefer, Julie C., Smith, Pliny A., & (2007). PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut. Developmental Biology, 303(2), 24–611. https://doi.org/10.1016/j.ydbio.2006.11.042
Kiefer, Julie C., Smith, Pliny A., & (2007). PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut. Developmental Biology, 303(2), 24–611. https://doi.org/10.1016/j.ydbio.2006.11.042
(2007). The C. elegans pharynx: a model for organogenesis. WormBook : The Online Review of C. Elegans Biology, 1–26. https://doi.org/10.1895/wormbook.1.129.1
(2007). The C. elegans pharynx: a model for organogenesis. WormBook : The Online Review of C. Elegans Biology, 1–26. https://doi.org/10.1895/wormbook.1.129.1
(2007). A green light to expression in time and space. Nature Biotechnology, 25(6), 645–646. https://doi.org/10.1038/nbt0607-645
(2007). A green light to expression in time and space. Nature Biotechnology, 25(6), 645–646. https://doi.org/10.1038/nbt0607-645
Smith, Pliny A., & (2007). Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans. Developmental Biology, 302(1), 25–39. https://doi.org/10.1016/j.ydbio.2006.08.023
Smith, Pliny A., & (2007). Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans. Developmental Biology, 302(1), 25–39. https://doi.org/10.1016/j.ydbio.2006.08.023
Updike, Dustin L., & (2007). Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics, 177(2), 33–819. https://doi.org/10.1534/genetics.107.076653
Updike, Dustin L., & (2007). Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics, 177(2), 33–819. https://doi.org/10.1534/genetics.107.076653
Deplancke, Bart, Mukhopadhyay, Arnab, Ao, Wanyuan, Elewa, Ahmed M., Grove, Christian A., Martinez, Natalia J., Sequerra, Reynaldo, Doucette-Stamm, Lynn, Reece-Hoyes, John S., Hope, Ian A., Tissenbaum, Heidi A., , & Walhout, Albertha J. M. (2006). A gene-centered C. elegans protein-DNA interaction network. Cell, 125(6), 1193–1205. https://doi.org/10.1016/j.cell.2006.04.038
Deplancke, Bart, Mukhopadhyay, Arnab, Ao, Wanyuan, Elewa, Ahmed M., Grove, Christian A., Martinez, Natalia J., Sequerra, Reynaldo, Doucette-Stamm, Lynn, Reece-Hoyes, John S., Hope, Ian A., Tissenbaum, Heidi A., , & Walhout, Albertha J. M. (2006). A gene-centered C. elegans protein-DNA interaction network. Cell, 125(6), 1193–1205. https://doi.org/10.1016/j.cell.2006.04.038
Jenkins, Noah, Saam, Jennifer R., & (2006). CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science, 313(5791), 301–1298. https://doi.org/10.1126/science.1130291
Jenkins, Noah, Saam, Jennifer R., & (2006). CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science, 313(5791), 301–1298. https://doi.org/10.1126/science.1130291
Updike, Dustin L., & (2006). Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genetics, 2(9), e161. https://doi.org/10.1371/journal.pgen.0020161
Updike, Dustin L., & (2006). Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genetics, 2(9), e161. https://doi.org/10.1371/journal.pgen.0020161
Han, Zhenbo, Riefler, Gary M., Saam, Jennifer R., , & Schumacher, Jill M. (2005). The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase. Current Biology, 15(10), 894–904. https://doi.org/10.1016/j.cub.2005.04.019
Han, Zhenbo, Riefler, Gary M., Saam, Jennifer R., , & Schumacher, Jill M. (2005). The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase. Current Biology, 15(10), 894–904. https://doi.org/10.1016/j.cub.2005.04.019
Kaltenbach, Linda S., Updike, Dustin L., & (2005). Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans. Developmental Dynamics, 234(2), 54–346. https://doi.org/10.1002/dvdy.20550
Kaltenbach, Linda S., Updike, Dustin L., & (2005). Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans. Developmental Dynamics, 234(2), 54–346. https://doi.org/10.1002/dvdy.20550
Ao, Wanyuan, Gaudet, Jeb, Kent, W. James, Muttumu, Srikanth, & (2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science, 305(5691), 6–1743. https://doi.org/10.1126/science.1102216
Ao, Wanyuan, Gaudet, Jeb, Kent, W. James, Muttumu, Srikanth, & (2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR. Science, 305(5691), 6–1743. https://doi.org/10.1126/science.1102216
Fay, David S., Qiu, Xiaohui, Large, Edward, Smith, Christopher P., , & Johanson, Bethany L. (2004). The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Developmental Biology, 271(1), 11–25. https://doi.org/10.1016/j.ydbio.2004.03.022
Fay, David S., Qiu, Xiaohui, Large, Edward, Smith, Christopher P., , & Johanson, Bethany L. (2004). The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Developmental Biology, 271(1), 11–25. https://doi.org/10.1016/j.ydbio.2004.03.022
Gaudet, Jeb, Muttumu, Srikanth, Horner, Michael, & (2004). Whole-genome analysis of temporal gene expression during foregut development. PLoS Biology, 2(11), e352. https://doi.org/10.1371/journal.pbio.0020352
Gaudet, Jeb, Muttumu, Srikanth, Horner, Michael, & (2004). Whole-genome analysis of temporal gene expression during foregut development. PLoS Biology, 2(11), e352. https://doi.org/10.1371/journal.pbio.0020352
Li, Siming, Armstrong, Christopher M., Bertin, Nicolas, Ge, Hui, Milstein, Stuart, Boxem, Mike, Vidalain, Pierre-Olivier, Han, Jing-Dong J., Chesneau, Alban, Hao, Tong, Goldberg, Debra S., Li, Ning, Martinez, Monica, Rual, Jean-François, Lamesch, Philippe, Xu, Lai, Tewari, Muneesh, Wong, Sharyl L., Zhang, Lan V., et al. (2004). A map of the interactome network of the metazoan C. elegans. Science, 303(5657), 540–543. https://doi.org/10.1126/science.1091403
Li, Siming, Armstrong, Christopher M., Bertin, Nicolas, Ge, Hui, Milstein, Stuart, Boxem, Mike, Vidalain, Pierre-Olivier, Han, Jing-Dong J., Chesneau, Alban, Hao, Tong, Goldberg, Debra S., Li, Ning, Martinez, Monica, Rual, Jean-François, Lamesch, Philippe, Xu, Lai, Tewari, Muneesh, Wong, Sharyl L., Zhang, Lan V., et al. (2004). A map of the interactome network of the metazoan C. elegans. Science, 303(5657), 540–543. https://doi.org/10.1126/science.1091403
Portereiko, Michael F., Saam, Jennifer, & (2004). ZEN-4/MKLP1 is required to polarize the foregut epithelium. Current Biology, 14(11), 41–932. https://doi.org/10.1016/j.cub.2004.05.052
Portereiko, Michael F., Saam, Jennifer, & (2004). ZEN-4/MKLP1 is required to polarize the foregut epithelium. Current Biology, 14(11), 41–932. https://doi.org/10.1016/j.cub.2004.05.052
Alder, Matthew N., Dames, Shale, Gaudet, Jeffrey, & (2003). Gene silencing in Caenorhabditis elegans by transitive RNA interference. Rna, 9(1), 25–32. https://doi.org/10.1261/rna.2650903
Alder, Matthew N., Dames, Shale, Gaudet, Jeffrey, & (2003). Gene silencing in Caenorhabditis elegans by transitive RNA interference. Rna, 9(1), 25–32. https://doi.org/10.1261/rna.2650903
Han, Zhenbo, Saam, Jennifer R., Adams, Henry P., , & Schumacher, Jill M. (2003). The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription. Current Biology, 13(22), 1921–1929. https://doi.org/10.1016/j.cub.2003.10.035
Han, Zhenbo, Saam, Jennifer R., Adams, Henry P., , & Schumacher, Jill M. (2003). The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription. Current Biology, 13(22), 1921–1929. https://doi.org/10.1016/j.cub.2003.10.035
Gaudet, J., & (2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science, 295(5556), 5–821. https://doi.org/10.1126/science.1065175
Gaudet, J., & (2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science, 295(5556), 5–821. https://doi.org/10.1126/science.1065175
Jorgensen, Erik M., & (2002). The art and design of genetic screens: caenorhabditis elegans. Nature Reviews. Genetics, 3(5), 356–369. https://doi.org/10.1038/nrg794
Jorgensen, Erik M., & (2002). The art and design of genetic screens: caenorhabditis elegans. Nature Reviews. Genetics, 3(5), 356–369. https://doi.org/10.1038/nrg794
(2001). Stop making nonSense: the C. elegans smg genes. Trends in Genetics : TIG, 17(11), 53–646. https://doi.org/10.1016/s0168-9525(01)02479-9
(2001). Stop making nonSense: the C. elegans smg genes. Trends in Genetics : TIG, 17(11), 53–646. https://doi.org/10.1016/s0168-9525(01)02479-9
Portereiko, Michael F., & (2001). Early morphogenesis of the Caenorhabditis elegans pharynx. Developmental Biology, 233(2), 94–482. https://doi.org/10.1006/dbio.2001.0235
Portereiko, Michael F., & (2001). Early morphogenesis of the Caenorhabditis elegans pharynx. Developmental Biology, 233(2), 94–482. https://doi.org/10.1006/dbio.2001.0235
Domeier, Mary Ellen, Morse, Daniel P., Knight, Scott W., Portereiko, Michael, Bass, Brenda L., & (2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science, 289(5486), 1928–1930. https://doi.org/10.1126/science.289.5486.1928
Domeier, Mary Ellen, Morse, Daniel P., Knight, Scott W., Portereiko, Michael, Bass, Brenda L., & (2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science, 289(5486), 1928–1930. https://doi.org/10.1126/science.289.5486.1928
Kaltenbach, Linda, Horner, Michael A., Rothman, Joel H., & (2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Molecular Cell, 6(3), 705–713. https://doi.org/10.1016/s1097-2765(00)00068-x
Kaltenbach, Linda, Horner, Michael A., Rothman, Joel H., & (2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Molecular Cell, 6(3), 705–713. https://doi.org/10.1016/s1097-2765(00)00068-x
Labouesse, Michel, & (1999). Patterning the C. elegans embryo: moving beyond the cell lineage. Trends in Genetics, 15(8), 13–307. https://doi.org/10.1016/s0168-9525(99)01750-3
Labouesse, Michel, & (1999). Patterning the C. elegans embryo: moving beyond the cell lineage. Trends in Genetics, 15(8), 13–307. https://doi.org/10.1016/s0168-9525(99)01750-3
Horner, Michael A., Quintin, Sophie, Domeier, Mary Ellen, Kimble, Judith, Labouesse, Michel, & (1998). pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes and Development, 12(13), 52–1947. https://doi.org/10.1101/gad.12.13.1947
Horner, Michael A., Quintin, Sophie, Domeier, Mary Ellen, Kimble, Judith, Labouesse, Michel, & (1998). pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes and Development, 12(13), 52–1947. https://doi.org/10.1101/gad.12.13.1947
Goodwin, E. B., Hofstra, K., Hurney, C. A., , & Kimble, J. (1997). A genetic pathway for regulation of tra-2 translation. Development, 124(3), 749–758.
Goodwin, E. B., Hofstra, K., Hurney, C. A., , & Kimble, J. (1997). A genetic pathway for regulation of tra-2 translation. Development, 124(3), 749–758.
, Lambie, E. J., & Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development, 120(10), 3019–3031.
, Lambie, E. J., & Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development, 120(10), 3019–3031.
, Thorpe, C. J., Martin, P. R., Chamberlain, S. H., & Bowerman, B. (1994). Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo. Development, 120(8), 15–2305.
, Thorpe, C. J., Martin, P. R., Chamberlain, S. H., & Bowerman, B. (1994). Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo. Development, 120(8), 15–2305.
Kimble, J., Crittenden, S., Lambie, E., Kodoyianni, V., , & Troemel, E. (1992). Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 57, 7–401. https://doi.org/10.1101/sqb.1992.057.01.045
Kimble, J., Crittenden, S., Lambie, E., Kodoyianni, V., , & Troemel, E. (1992). Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 57, 7–401. https://doi.org/10.1101/sqb.1992.057.01.045
, Maine, Eleanor M., & Kimble, Judith. (1991). Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature, 352(6338), 5–811. https://doi.org/10.1038/352811a0
, Maine, Eleanor M., & Kimble, Judith. (1991). Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans. Nature, 352(6338), 5–811. https://doi.org/10.1038/352811a0
Cole, M. D., & (1990). cis-acting determinants of c-myc mRNA stability. Enzyme, 44(1-4), 80–167. https://doi.org/10.1159/000468755
Cole, M. D., & (1990). cis-acting determinants of c-myc mRNA stability. Enzyme, 44(1-4), 80–167. https://doi.org/10.1159/000468755
, Schuler, G. D., Steele, M. E., & Cole, M. D. (1989). Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors. Molecular and Cellular Biology, 9(8), 90–3482. https://doi.org/10.1128/mcb.9.8.3482
, Schuler, G. D., Steele, M. E., & Cole, M. D. (1989). Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors. Molecular and Cellular Biology, 9(8), 90–3482. https://doi.org/10.1128/mcb.9.8.3482
Postel, E. H., , & Flint, S. J. (1989). A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Molecular and Cellular Biology, 9(11), 5123–5133. https://doi.org/10.1128/mcb.9.11.5123
Postel, E. H., , & Flint, S. J. (1989). A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Molecular and Cellular Biology, 9(11), 5123–5133. https://doi.org/10.1128/mcb.9.11.5123
Ueno-Nishio, Shizue, , Reitzer, Lawrence J., & Magasanik, Boris. (1984). Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. Journal of Bacteriology, 160(1), 84–379. https://doi.org/10.1128/jb.160.1.379-384.1984
Ueno-Nishio, Shizue, , Reitzer, Lawrence J., & Magasanik, Boris. (1984). Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. Journal of Bacteriology, 160(1), 84–379. https://doi.org/10.1128/jb.160.1.379-384.1984