Publications
71 found
Show per page
Bayer, Emily A, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
, Hobert, Oliver, & Schier, Alexander F. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In
Bayer, Emily A, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.01.01.631014
, Hobert, Oliver, & Schier, Alexander F. (2025). The mechanosensory DEG/ENaC channel DEGT-1 is a proprioceptor of C. elegans foregut movement [Posted-content]. In
Delaney, Colin E., You, Jia Emil, Gasser, Susan, Padeken, Jan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.29.615660
. (2024). H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis [Posted-content]. In
Delaney, Colin E., You, Jia Emil, Gasser, Susan, Padeken, Jan, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.29.615660
. (2024). H3K9 methylation-independent activity for HPL-2/HP1 in heterochromatin foci, gene repression, and organogenesis [Posted-content]. In
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
, Yu, Guoqiang, Bintu, Bogdan, & Schier, Alexander F. (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In
Wan, Yinan, El Kholtei, Jakob, Jenie, Ignatius, Colomer-Rosell, Mariona, Liu, Jialin, Acedo, Joaquin Navajas, Du, Lucia Y., Codina-Tobias, Mireia, Wang, Mengfan, Sawh, Ahilya, Lin, Edward, Chuang, Tzy-Harn, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609868
, Yu, Guoqiang, Bintu, Bogdan, & Schier, Alexander F. (2024). Whole-embryo Spatial Transcriptomics at Subcellular Resolution from Gastrulation to Organogenesis [Posted-content]. In
Tocchini, C., & Mango, S. E. (2024). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans [Journal-article]. PLOS Biology, 22(3), e3002526. https://doi.org/10.1371/journal.pbio.3002526
Tocchini, C., & Mango, S. E. (2024). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in Caenorhabditis elegans [Journal-article]. PLOS Biology, 22(3), e3002526. https://doi.org/10.1371/journal.pbio.3002526
Gutnik, Silvia, You, Jia Emil, Sawh, Ahilya N., Andriollo, Aude, & Genome Biology, 25. https://doi.org/10.1186/s13059-024-03199-6
(2024). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes.
Gutnik, Silvia, You, Jia Emil, Sawh, Ahilya N., Andriollo, Aude, & Genome Biology, 25. https://doi.org/10.1186/s13059-024-03199-6
(2024). Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes.
Tocchini, C., & Mango, S. E. (2023). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i> [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.06.13.544769
Tocchini, C., & Mango, S. E. (2023). An adapted MS2-MCP system to visualize endogenous cytoplasmic mRNA with live imaging in<i>Caenorhabditis elegans</i> [Posted-content]. bioRxiv. https://doi.org/10.1101/2023.06.13.544769
Gutnik, Silvia, Sawh, Ahilya, & Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. bioRxiv. https://doi.org/10.1101/2022.11.01.514763
(2022).
Gutnik, Silvia, Sawh, Ahilya, & Multiplex DNA fluorescence in situ hybridization to analyze maternal vs. paternal C. elegans chromosomes. bioRxiv. https://doi.org/10.1101/2022.11.01.514763
(2022).
Sawh, Ahilya N., & Current Opinion in Genetics & Development, 75, 101939. https://doi.org/10.1016/j.gde.2022.101939
(2022). Chromosome organization in 4D: insights from C. elegans development.
Sawh, Ahilya N., & Current Opinion in Genetics & Development, 75, 101939. https://doi.org/10.1016/j.gde.2022.101939
(2022). Chromosome organization in 4D: insights from C. elegans development.
Tocchini, Cristina, Rohner, Michèle, Guerard, Laurent, Ray, Poulomi, Von Stetina, Stephen E., & Development, 148(24), 200027. https://doi.org/10.1242/dev.200027
(2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions.
Tocchini, Cristina, Rohner, Michèle, Guerard, Laurent, Ray, Poulomi, Von Stetina, Stephen E., & Development, 148(24), 200027. https://doi.org/10.1242/dev.200027
(2021). Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions.
Tocchini, Cristina, Rohner, Michèle, Von Stetina, Stephen E., & Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. bioRxiv. https://doi.org/10.1101/2021.05.20.444977
(2021).
Tocchini, Cristina, Rohner, Michèle, Von Stetina, Stephen E., & Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. bioRxiv. https://doi.org/10.1101/2021.05.20.444977
(2021).
Wasson, Jadiel A., Harris, Gareth, Keppler-Ross, Sabine, Brock, Trisha J., Dar, Abdul R., Butcher, Rebecca A., Fischer, Sylvia E. J., Kagias, Konstantinos, Clardy, Jon, Zhang, Yun, & Science Advances, 7(34), eabf8782. https://doi.org/10.1126/sciadv.abf8782
(2021). Neuronal control of maternal provisioning in response to social cues.
Wasson, Jadiel A., Harris, Gareth, Keppler-Ross, Sabine, Brock, Trisha J., Dar, Abdul R., Butcher, Rebecca A., Fischer, Sylvia E. J., Kagias, Konstantinos, Clardy, Jon, Zhang, Yun, & Science Advances, 7(34), eabf8782. https://doi.org/10.1126/sciadv.abf8782
(2021). Neuronal control of maternal provisioning in response to social cues.
Choi, Joonhee, Zhou, Hengyun, Landig, Renate, Wu, Hai-Yin, Yu, Xiaofei, Von Stetina, Stephen E., Kucsko, Georg, Proceedings of the National Academy of Sciences of the United States of America, 117(26), 14636–14641. https://doi.org/10.1073/pnas.1922730117
, Needleman, Daniel J., Samuel, Aravinthan D. T., Maurer, Peter C., Park, Hongkun, & Lukin, Mikhail D. (2020). Probing and manipulating embryogenesis via nanoscale thermometry and temperature control.
Choi, Joonhee, Zhou, Hengyun, Landig, Renate, Wu, Hai-Yin, Yu, Xiaofei, Von Stetina, Stephen E., Kucsko, Georg, Proceedings of the National Academy of Sciences of the United States of America, 117(26), 14636–14641. https://doi.org/10.1073/pnas.1922730117
, Needleman, Daniel J., Samuel, Aravinthan D. T., Maurer, Peter C., Park, Hongkun, & Lukin, Mikhail D. (2020). Probing and manipulating embryogenesis via nanoscale thermometry and temperature control.
Sawh, Ahilya N., & STAR Protocols, 1(3), 100107. https://doi.org/10.1016/j.xpro.2020.100107
(2020). Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos.
Sawh, Ahilya N., & STAR Protocols, 1(3), 100107. https://doi.org/10.1016/j.xpro.2020.100107
(2020). Multiplexed Sequential DNA FISH in Caenorhabditis elegans Embryos.
Sawh, Ahilya N., Shafer, Maxwell E. R., Su, Jun-Han, Zhuang, Xiaowei, Wang, Siyuan, & Molecular Cell, 78(1), 96–111. https://doi.org/10.1016/j.molcel.2020.02.006
(2020). Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos.
Sawh, Ahilya N., Shafer, Maxwell E. R., Su, Jun-Han, Zhuang, Xiaowei, Wang, Siyuan, & Molecular Cell, 78(1), 96–111. https://doi.org/10.1016/j.molcel.2020.02.006
(2020). Lamina-Dependent Stretching and Unconventional Chromosome Compartments in Early C. elegans Embryos.
Mutlu, Beste, Chen, Huei-Mei, Gutnik, Silvia, Hall, David H., Keppler-Ross, Sabine, & Development (Cambridge, England), 146(19), dev174516. https://doi.org/10.1242/dev.174516
(2019). Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis.
Mutlu, Beste, Chen, Huei-Mei, Gutnik, Silvia, Hall, David H., Keppler-Ross, Sabine, & Development (Cambridge, England), 146(19), dev174516. https://doi.org/10.1242/dev.174516
(2019). Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis.
Mutlu, B., Chen, H.-M., Hall, D. H., & Mango, S. E. (2018, September 28). MET-2, a SETDB1 family methyltransferase, coordinates embryo events through distinct histone H3 methylation states [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/429902
Mutlu, B., Chen, H.-M., Hall, D. H., & Mango, S. E. (2018, September 28). MET-2, a SETDB1 family methyltransferase, coordinates embryo events through distinct histone H3 methylation states [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/429902
Mutlu, B., Chen, H.-M., Moresco, J. J., Orelo, B. D., Yang, B., Gaspar, J. M., Keppler-Ross, S., Yates, J. R., Hall, D. H., Maine, E. M., & Mango, S. E. (2018, May 18). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in<i>C. elegans</i>embryos [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/326231
Mutlu, B., Chen, H.-M., Moresco, J. J., Orelo, B. D., Yang, B., Gaspar, J. M., Keppler-Ross, S., Yates, J. R., Hall, D. H., Maine, E. M., & Mango, S. E. (2018, May 18). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in<i>C. elegans</i>embryos [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/326231
Chen, H. M., Mutlu, B., Sackton, T., Wang, J., Keppler-Ross, S., Levine, E., Liu, T., & A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters. bioRxiv. https://doi.org/10.1101/429191
(2018).
Chen, H. M., Mutlu, B., Sackton, T., Wang, J., Keppler-Ross, S., Levine, E., Liu, T., & A heterochromatic histone methyltransferase lowers nucleosome occupancy at euchromatic promoters. bioRxiv. https://doi.org/10.1101/429191
(2018).
Mutlu, Beste, Chen, Huei-Mei, Moresco, James J., Orelo, Barbara D., Yang, Bing, Gaspar, John M., Keppler-Ross, Sabine, Yates, John R., Hall, David H., Maine, Eleanor M., & Science Advances, 4(8), eaat6224. https://doi.org/10.1126/sciadv.aat6224
(2018). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos.
Mutlu, Beste, Chen, Huei-Mei, Moresco, James J., Orelo, Barbara D., Yang, Bing, Gaspar, John M., Keppler-Ross, Sabine, Yates, John R., Hall, David H., Maine, Eleanor M., & Science Advances, 4(8), eaat6224. https://doi.org/10.1126/sciadv.aat6224
(2018). Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in; C. elegans; embryos.
Von Stetina, Stephen E., Liang, Jennifer, Marnellos, Georgios, & Molecular Biology of the Cell, 28(15), 2042–2065. https://doi.org/10.1091/mbc.e16-09-0644
(2017). Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6.
Von Stetina, Stephen E., Liang, Jennifer, Marnellos, Georgios, & Molecular Biology of the Cell, 28(15), 2042–2065. https://doi.org/10.1091/mbc.e16-09-0644
(2017). Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6.
Von Stetina, S. E., Liang, J., Marnellos, G., & Mango, S. E. (2016, September 21). Temporal regulation of epithelium formation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/076570
Von Stetina, S. E., Liang, J., Marnellos, G., & Mango, S. E. (2016, September 21). Temporal regulation of epithelium formation [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/076570
Zaret, Kenneth S., & Current Opinion in Genetics & Development, 37, 76–81. https://doi.org/10.1016/j.gde.2015.12.003
(2016). Pioneer transcription factors, chromatin dynamics, and cell fate control.
Zaret, Kenneth S., & Current Opinion in Genetics & Development, 37, 76–81. https://doi.org/10.1016/j.gde.2015.12.003
(2016). Pioneer transcription factors, chromatin dynamics, and cell fate control.
Hsu, H.T., Chen, H.M., Yang, Z., Wang, J., Lee, N.K., Burger, A., Zaret, K., Liu, T., Levine, E., & Science, 350(6258). https://doi.org/10.1126/science.aad5928
(2015). Erratum: Recruitment of RNA polymerase II by the pioneer transcription factor PHA4 (Science (2015) 19 (1372-1376)).
Hsu, H.T., Chen, H.M., Yang, Z., Wang, J., Lee, N.K., Burger, A., Zaret, K., Liu, T., Levine, E., & Science, 350(6258). https://doi.org/10.1126/science.aad5928
(2015). Erratum: Recruitment of RNA polymerase II by the pioneer transcription factor PHA4 (Science (2015) 19 (1372-1376)).
Hsu, H.-T., Chen, H.-M., Yang, Z., Wang, J., Lee, N. K., Burger, A., Zaret, K., Liu, T., Levine, E., & Science, 348(6241), 1372–1376. https://doi.org/10.1126/science.aab1223
(2015). Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4.
Hsu, H.-T., Chen, H.-M., Yang, Z., Wang, J., Lee, N. K., Burger, A., Zaret, K., Liu, T., Levine, E., & Science, 348(6241), 1372–1376. https://doi.org/10.1126/science.aab1223
(2015). Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4.
Von Stetina, Stephen E., & Developmental Biology, 403(1), 5–14. https://doi.org/10.1016/j.ydbio.2015.03.002
(2015). PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans.
Von Stetina, Stephen E., & Developmental Biology, 403(1), 5–14. https://doi.org/10.1016/j.ydbio.2015.03.002
(2015). PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans.
Choi, Youngeun, & Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), 1440–1453. https://doi.org/10.1016/j.bbagrm.2014.05.011
(2014). Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation.
Choi, Youngeun, & Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1839(12), 1440–1453. https://doi.org/10.1016/j.bbagrm.2014.05.011
(2014). Hunting for Darwin’s gemmules and Lamarck’s fluid: transgenerational signaling and histone methylation.
Rosains, Jacqueline, & PLoS ONE, 7(11), e49490. https://doi.org/10.1371/journal.pone.0049490
(2012). Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay.
Rosains, Jacqueline, & PLoS ONE, 7(11), e49490. https://doi.org/10.1371/journal.pone.0049490
(2012). Genetic characterization of smg-8 mutants reveals no role in C. elegans nonsense mediated decay.
Mango, S. E. (2011). Erratum: Ageing: Generations of longevity (Nature (2011) 479 (302-303)). Nature, 480(7376). https://doi.org/10.1038/480191a
Mango, S. E. (2011). Erratum: Ageing: Generations of longevity (Nature (2011) 479 (302-303)). Nature, 480(7376). https://doi.org/10.1038/480191a
Nature, 479(7373), 302–303. https://doi.org/10.1038/479302a
(2011). Ageing: generations of longevity.
Nature, 479(7373), 302–303. https://doi.org/10.1038/479302a
(2011). Ageing: generations of longevity.
Meister, Peter, Current Opinion in Genetics & Development, 21(2), 167–174. https://doi.org/10.1016/j.gde.2011.01.023
, & Gasser, Susan M. (2011). Locking the genome: nuclear organization and cell fate.
Meister, Peter, Current Opinion in Genetics & Development, 21(2), 167–174. https://doi.org/10.1016/j.gde.2011.01.023
, & Gasser, Susan M. (2011). Locking the genome: nuclear organization and cell fate.
Fakhouri, Tala H. I., Stevenson, Jeff, Chisholm, Andrew D., & PLoS Genetics, 6(8), e1001060. https://doi.org/10.1371/journal.pgen.1001060
(2010). Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA.
Fakhouri, Tala H. I., Stevenson, Jeff, Chisholm, Andrew D., & PLoS Genetics, 6(8), e1001060. https://doi.org/10.1371/journal.pgen.1001060
(2010). Dynamic chromatin organization during foregut development mediated by the organ selector gene PHA-4/FoxA.
Zhong, Mei, Niu, Wei, Lu, Zhi John, Sarov, Mihail, Murray, John I., Janette, Judith, Raha, Debasish, Sheaffer, Karyn L., Lam, Hugo Y. K., Preston, Elicia, Slightham, Cindie, Hillier, LaDeana W., Brock, Trisha, Agarwal, Ashish, Auerbach, Raymond, Hyman, Anthony A., Gerstein, Mark, PLoS Genetics, 6(2), e1000848. https://doi.org/10.1371/journal.pgen.1000848
, Kim, Stuart K., et al. (2010). Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response.
Zhong, Mei, Niu, Wei, Lu, Zhi John, Sarov, Mihail, Murray, John I., Janette, Judith, Raha, Debasish, Sheaffer, Karyn L., Lam, Hugo Y. K., Preston, Elicia, Slightham, Cindie, Hillier, LaDeana W., Brock, Trisha, Agarwal, Ashish, Auerbach, Raymond, Hyman, Anthony A., Gerstein, Mark, PLoS Genetics, 6(2), e1000848. https://doi.org/10.1371/journal.pgen.1000848
, Kim, Stuart K., et al. (2010). Genome-wide identification of binding sites defines distinct functions for Caenorhabditis elegans PHA-4/FOXA in development and environmental response.
Mango, S. (2009). Susan Mango [Journal-article]. Current Biology, 19(7), R276–R277. https://doi.org/10.1016/j.cub.2009.01.035
Mango, S. (2009). Susan Mango [Journal-article]. Current Biology, 19(7), R276–R277. https://doi.org/10.1016/j.cub.2009.01.035
Annual Review of Cell and Developmental Biology, 25, 597–628. https://doi.org/10.1146/annurev.cellbio.24.110707.175411
(2009). The molecular basis of organ formation: insights from the C. elegans foregut.
Annual Review of Cell and Developmental Biology, 25, 597–628. https://doi.org/10.1146/annurev.cellbio.24.110707.175411
(2009). The molecular basis of organ formation: insights from the C. elegans foregut.
Yuzyuk, T., Fakhouri, T. H. I., Kiefer, J., & Developmental Cell, 16(5), 699–710. https://doi.org/10.1016/j.devcel.2009.03.008
(2009). The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos.
Yuzyuk, T., Fakhouri, T. H. I., Kiefer, J., & Developmental Cell, 16(5), 699–710. https://doi.org/10.1016/j.devcel.2009.03.008
(2009). The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos.
Sheaffer, Karyn L., Updike, Dustin L., & Current Biology, 18(18), 1355–1364. https://doi.org/10.1016/j.cub.2008.07.097
(2008). The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging.
Sheaffer, Karyn L., Updike, Dustin L., & Current Biology, 18(18), 1355–1364. https://doi.org/10.1016/j.cub.2008.07.097
(2008). The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging.
Von Stetina, Stephen E., & Genome Biology, 9(6), 226. https://doi.org/10.1186/gb-2008-9-6-226
(2008). Wormnet: a crystal ball for Caenorhabditis elegans.
Von Stetina, Stephen E., & Genome Biology, 9(6), 226. https://doi.org/10.1186/gb-2008-9-6-226
(2008). Wormnet: a crystal ball for Caenorhabditis elegans.
Kiefer, Julie C., Smith, Pliny A., & Developmental Biology, 303(2), 611–624. https://doi.org/10.1016/j.ydbio.2006.11.042
(2007). PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut.
Kiefer, Julie C., Smith, Pliny A., & Developmental Biology, 303(2), 611–624. https://doi.org/10.1016/j.ydbio.2006.11.042
(2007). PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut.
WormBook : The Online Review of C. Elegans Biology, 1–26. https://doi.org/10.1895/wormbook.1.129.1
(2007). The C. elegans pharynx: a model for organogenesis.
WormBook : The Online Review of C. Elegans Biology, 1–26. https://doi.org/10.1895/wormbook.1.129.1
(2007). The C. elegans pharynx: a model for organogenesis.
Nature Biotechnology, 25(6), 645–646. https://doi.org/10.1038/nbt0607-645
(2007). A green light to expression in time and space.
Nature Biotechnology, 25(6), 645–646. https://doi.org/10.1038/nbt0607-645
(2007). A green light to expression in time and space.
Smith, Pliny A., & Developmental Biology, 302(1), 25–39. https://doi.org/10.1016/j.ydbio.2006.08.023
(2007). Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans.
Smith, Pliny A., & Developmental Biology, 302(1), 25–39. https://doi.org/10.1016/j.ydbio.2006.08.023
(2007). Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans.
Updike, Dustin L., & Genetics, 177(2), 819–833. https://doi.org/10.1534/genetics.107.076653
(2007). Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB.
Updike, Dustin L., & Genetics, 177(2), 819–833. https://doi.org/10.1534/genetics.107.076653
(2007). Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB.
Deplancke, Bart, Mukhopadhyay, Arnab, Ao, Wanyuan, Elewa, Ahmed M., Grove, Christian A., Martinez, Natalia J., Sequerra, Reynaldo, Doucette-Stamm, Lynn, Reece-Hoyes, John S., Hope, Ian A., Tissenbaum, Heidi A., Cell, 125(6), 1193–1205. https://doi.org/10.1016/j.cell.2006.04.038
, & Walhout, Albertha J. M. (2006). A gene-centered C. elegans protein-DNA interaction network.
Deplancke, Bart, Mukhopadhyay, Arnab, Ao, Wanyuan, Elewa, Ahmed M., Grove, Christian A., Martinez, Natalia J., Sequerra, Reynaldo, Doucette-Stamm, Lynn, Reece-Hoyes, John S., Hope, Ian A., Tissenbaum, Heidi A., Cell, 125(6), 1193–1205. https://doi.org/10.1016/j.cell.2006.04.038
, & Walhout, Albertha J. M. (2006). A gene-centered C. elegans protein-DNA interaction network.
Jenkins, Noah, Saam, Jennifer R., & Science, 313(5791), 1298–1301. https://doi.org/10.1126/science.1130291
(2006). CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization.
Jenkins, Noah, Saam, Jennifer R., & Science, 313(5791), 1298–1301. https://doi.org/10.1126/science.1130291
(2006). CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization.
Updike, Dustin L., & PLoS Genetics, 2(9), e161. https://doi.org/10.1371/journal.pgen.0020161
(2006). Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA.
Updike, Dustin L., & PLoS Genetics, 2(9), e161. https://doi.org/10.1371/journal.pgen.0020161
(2006). Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA.
Han, Zhenbo, Riefler, Gary M., Saam, Jennifer R., Current Biology, 15(10), 894–904. https://doi.org/10.1016/j.cub.2005.04.019
, & Schumacher, Jill M. (2005). The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase.
Han, Zhenbo, Riefler, Gary M., Saam, Jennifer R., Current Biology, 15(10), 894–904. https://doi.org/10.1016/j.cub.2005.04.019
, & Schumacher, Jill M. (2005). The C. elegans Tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the Aurora B kinase.
Kaltenbach, Linda S., Updike, Dustin L., & Developmental Dynamics, 234(2), 346–354. https://doi.org/10.1002/dvdy.20550
(2005). Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans.
Kaltenbach, Linda S., Updike, Dustin L., & Developmental Dynamics, 234(2), 346–354. https://doi.org/10.1002/dvdy.20550
(2005). Contribution of the amino and carboxyl termini for PHA-4/FoxA function in Caenorhabditis elegans.
Ao, Wanyuan, Gaudet, Jeb, Kent, W. James, Muttumu, Srikanth, & Science, 305(5691), 1743–1746. https://doi.org/10.1126/science.1102216
(2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao, Wanyuan, Gaudet, Jeb, Kent, W. James, Muttumu, Srikanth, & Science, 305(5691), 1743–1746. https://doi.org/10.1126/science.1102216
(2004). Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Fay, David S., Qiu, Xiaohui, Large, Edward, Smith, Christopher P., Developmental Biology, 271(1), 11–25. https://doi.org/10.1016/j.ydbio.2004.03.022
, & Johanson, Bethany L. (2004). The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18.
Fay, David S., Qiu, Xiaohui, Large, Edward, Smith, Christopher P., Developmental Biology, 271(1), 11–25. https://doi.org/10.1016/j.ydbio.2004.03.022
, & Johanson, Bethany L. (2004). The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18.
Gaudet, Jeb, Muttumu, Srikanth, Horner, Michael, & PLoS Biology, 2(11), e352. https://doi.org/10.1371/journal.pbio.0020352
(2004). Whole-genome analysis of temporal gene expression during foregut development.
Gaudet, Jeb, Muttumu, Srikanth, Horner, Michael, & PLoS Biology, 2(11), e352. https://doi.org/10.1371/journal.pbio.0020352
(2004). Whole-genome analysis of temporal gene expression during foregut development.
Li, Siming, Armstrong, Christopher M., Bertin, Nicolas, Ge, Hui, Milstein, Stuart, Boxem, Mike, Vidalain, Pierre-Olivier, Han, Jing-Dong J., Chesneau, Alban, Hao, Tong, Goldberg, Debra S., Li, Ning, Martinez, Monica, Rual, Jean-François, Lamesch, Philippe, Xu, Lai, Tewari, Muneesh, Wong, Sharyl L., Zhang, Lan V., et al. (2004). A map of the interactome network of the metazoan C. elegans. Science, 303(5657), 540–543. https://doi.org/10.1126/science.1091403
Li, Siming, Armstrong, Christopher M., Bertin, Nicolas, Ge, Hui, Milstein, Stuart, Boxem, Mike, Vidalain, Pierre-Olivier, Han, Jing-Dong J., Chesneau, Alban, Hao, Tong, Goldberg, Debra S., Li, Ning, Martinez, Monica, Rual, Jean-François, Lamesch, Philippe, Xu, Lai, Tewari, Muneesh, Wong, Sharyl L., Zhang, Lan V., et al. (2004). A map of the interactome network of the metazoan C. elegans. Science, 303(5657), 540–543. https://doi.org/10.1126/science.1091403
Portereiko, Michael F., Saam, Jennifer, & Current Biology, 14(11), 932–941. https://doi.org/10.1016/j.cub.2004.05.052
(2004). ZEN-4/MKLP1 is required to polarize the foregut epithelium.
Portereiko, Michael F., Saam, Jennifer, & Current Biology, 14(11), 932–941. https://doi.org/10.1016/j.cub.2004.05.052
(2004). ZEN-4/MKLP1 is required to polarize the foregut epithelium.
Alder, Matthew N., Dames, Shale, Gaudet, Jeffrey, & Rna, 9(1), 25–32. https://doi.org/10.1261/rna.2650903
(2003). Gene silencing in Caenorhabditis elegans by transitive RNA interference.
Alder, Matthew N., Dames, Shale, Gaudet, Jeffrey, & Rna, 9(1), 25–32. https://doi.org/10.1261/rna.2650903
(2003). Gene silencing in Caenorhabditis elegans by transitive RNA interference.
Han, Zhenbo, Saam, Jennifer R., Adams, Henry P., Current Biology, 13(22), 1921–1929. https://doi.org/10.1016/j.cub.2003.10.035
, & Schumacher, Jill M. (2003). The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription.
Han, Zhenbo, Saam, Jennifer R., Adams, Henry P., Current Biology, 13(22), 1921–1929. https://doi.org/10.1016/j.cub.2003.10.035
, & Schumacher, Jill M. (2003). The C. elegans Tousled-like kinase (TLK-1) has an essential role in transcription.
Gaudet, J., & Science, 295(5556), 821–825. https://doi.org/10.1126/science.1065175
(2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4.
Gaudet, J., & Science, 295(5556), 821–825. https://doi.org/10.1126/science.1065175
(2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4.
Jorgensen, Erik M., & Nature Reviews. Genetics, 3(5), 356–369. https://doi.org/10.1038/nrg794
(2002). The art and design of genetic screens: caenorhabditis elegans.
Jorgensen, Erik M., & Nature Reviews. Genetics, 3(5), 356–369. https://doi.org/10.1038/nrg794
(2002). The art and design of genetic screens: caenorhabditis elegans.
Trends in Genetics : TIG, 17(11), 646–653. https://doi.org/10.1016/s0168-9525(01)02479-9
(2001). Stop making nonSense: the C. elegans smg genes.
Trends in Genetics : TIG, 17(11), 646–653. https://doi.org/10.1016/s0168-9525(01)02479-9
(2001). Stop making nonSense: the C. elegans smg genes.
Portereiko, Michael F., & Developmental Biology, 233(2), 482–494. https://doi.org/10.1006/dbio.2001.0235
(2001). Early morphogenesis of the Caenorhabditis elegans pharynx.
Portereiko, Michael F., & Developmental Biology, 233(2), 482–494. https://doi.org/10.1006/dbio.2001.0235
(2001). Early morphogenesis of the Caenorhabditis elegans pharynx.
Domeier, Mary Ellen, Morse, Daniel P., Knight, Scott W., Portereiko, Michael, Bass, Brenda L., & Science, 289(5486), 1928–1930. https://doi.org/10.1126/science.289.5486.1928
(2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans.
Domeier, Mary Ellen, Morse, Daniel P., Knight, Scott W., Portereiko, Michael, Bass, Brenda L., & Science, 289(5486), 1928–1930. https://doi.org/10.1126/science.289.5486.1928
(2000). A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans.
Kaltenbach, Linda, Horner, Michael A., Rothman, Joel H., & Molecular Cell, 6(3), 705–713. https://doi.org/10.1016/s1097-2765(00)00068-x
(2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis.
Kaltenbach, Linda, Horner, Michael A., Rothman, Joel H., & Molecular Cell, 6(3), 705–713. https://doi.org/10.1016/s1097-2765(00)00068-x
(2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis.
Labouesse, Michel, & Trends in Genetics, 15(8), 307–313. https://doi.org/10.1016/s0168-9525(99)01750-3
(1999). Patterning the C. elegans embryo: moving beyond the cell lineage.
Labouesse, Michel, & Trends in Genetics, 15(8), 307–313. https://doi.org/10.1016/s0168-9525(99)01750-3
(1999). Patterning the C. elegans embryo: moving beyond the cell lineage.
Horner, Michael A., Quintin, Sophie, Domeier, Mary Ellen, Kimble, Judith, Labouesse, Michel, & Genes and Development, 12(13), 1947–1952. https://doi.org/10.1101/gad.12.13.1947
(1998). pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans.
Horner, Michael A., Quintin, Sophie, Domeier, Mary Ellen, Kimble, Judith, Labouesse, Michel, & Genes and Development, 12(13), 1947–1952. https://doi.org/10.1101/gad.12.13.1947
(1998). pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans.
Goodwin, E. B., Hofstra, K., Hurney, C. A., Development, 124(3), 749–758.
, & Kimble, J. (1997). A genetic pathway for regulation of tra-2 translation.
Goodwin, E. B., Hofstra, K., Hurney, C. A., Development, 124(3), 749–758.
, & Kimble, J. (1997). A genetic pathway for regulation of tra-2 translation.
Development, 120(10), 3019–3031.
, Lambie, E. J., & Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans.
Development, 120(10), 3019–3031.
, Lambie, E. J., & Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans.
Development, 120(8), 2305–2315.
, Thorpe, C. J., Martin, P. R., Chamberlain, S. H., & Bowerman, B. (1994). Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo.
Development, 120(8), 2305–2315.
, Thorpe, C. J., Martin, P. R., Chamberlain, S. H., & Bowerman, B. (1994). Two maternal genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early Caenorhabditis elegans embryo.
Kimble, J., Crittenden, S., Lambie, E., Kodoyianni, V., Cold Spring Harbor Symposia on Quantitative Biology, 57, 401–407. https://doi.org/10.1101/sqb.1992.057.01.045
, & Troemel, E. (1992). Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans.
Kimble, J., Crittenden, S., Lambie, E., Kodoyianni, V., Cold Spring Harbor Symposia on Quantitative Biology, 57, 401–407. https://doi.org/10.1101/sqb.1992.057.01.045
, & Troemel, E. (1992). Regulation of induction by GLP1, and localized cell surface receptor in Caenorhabditis elegans.
Nature, 352(6338), 811–815. https://doi.org/10.1038/352811a0
, Maine, Eleanor M., & Kimble, Judith. (1991). Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans.
Nature, 352(6338), 811–815. https://doi.org/10.1038/352811a0
, Maine, Eleanor M., & Kimble, Judith. (1991). Carboxy-terminal truncation activates glp-1 protein to specify vulval fates in Caenorhabditis elegans.
Cole, M. D., & Enzyme, 44(1-4), 167–180. https://doi.org/10.1159/000468755
(1990). cis-acting determinants of c-myc mRNA stability.
Cole, M. D., & Enzyme, 44(1-4), 167–180. https://doi.org/10.1159/000468755
(1990). cis-acting determinants of c-myc mRNA stability.
Molecular and Cellular Biology, 9(8), 3482–3490. https://doi.org/10.1128/mcb.9.8.3482
, Schuler, G. D., Steele, M. E., & Cole, M. D. (1989). Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors.
Molecular and Cellular Biology, 9(8), 3482–3490. https://doi.org/10.1128/mcb.9.8.3482
, Schuler, G. D., Steele, M. E., & Cole, M. D. (1989). Germ line c-myc is not down-regulated by loss or exclusion of activating factors in myc-induced macrophage tumors.
Postel, E. H., Molecular and Cellular Biology, 9(11), 5123–5133. https://doi.org/10.1128/mcb.9.11.5123
, & Flint, S. J. (1989). A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor.
Postel, E. H., Molecular and Cellular Biology, 9(11), 5123–5133. https://doi.org/10.1128/mcb.9.11.5123
, & Flint, S. J. (1989). A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor.
Ueno-Nishio, Shizue, Journal of Bacteriology, 160(1), 379–384. https://doi.org/10.1128/jb.160.1.379-384.1984
, Reitzer, Lawrence J., & Magasanik, Boris. (1984). Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli.
Ueno-Nishio, Shizue, Journal of Bacteriology, 160(1), 379–384. https://doi.org/10.1128/jb.160.1.379-384.1984
, Reitzer, Lawrence J., & Magasanik, Boris. (1984). Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli.