Publications
31 found
Show per page
Henderson, Alyssa, Del Panta, Alessia, Schubert, Olga T., Mitri, Sara, & Npj Biofilms and Microbiomes, 11(1). https://doi.org/10.1038/s41522-025-00666-1
. (2025). Disentangling the feedback loops driving spatial patterning in microbial communities [Journal-article].
Henderson, Alyssa, Del Panta, Alessia, Schubert, Olga T., Mitri, Sara, & Npj Biofilms and Microbiomes, 11(1). https://doi.org/10.1038/s41522-025-00666-1
. (2025). Disentangling the feedback loops driving spatial patterning in microbial communities [Journal-article].
Kaczmarczyk, Andreas, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Kaczmarczyk, Andreas, Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48295-0
, Jakob, Roman Peter, Dias Teixeira, Raphael, Scheidat, Inga, Reinders, Alberto, Klotz, Alexander, Maier, Timm, & Jenal, Urs. (2024). A genetically encoded biosensor to monitor dynamic changes of c-di-GMP with high temporal resolution.
Pignon, Estelle, Holló, Gábor, Steiner, Théodora, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.07.19.604250
, & Schaerli, Yolanda. (2024). Engineering microbial consortia: uptake and leakage rate differentially shape community arrangement and composition [Posted-content]. In
Pignon, Estelle, Holló, Gábor, Steiner, Théodora, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.07.19.604250
, & Schaerli, Yolanda. (2024). Engineering microbial consortia: uptake and leakage rate differentially shape community arrangement and composition [Posted-content]. In
Alexander, Ashley M., Luu, Justin M., Raghuram, Vishnu, Bottacin, Giulia, Microbiology (United Kingdom), 170(3). https://doi.org/10.1099/mic.0.001445
, Read, Timothy D., & Goldberg, Joanna B. (2024). Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT.
Alexander, Ashley M., Luu, Justin M., Raghuram, Vishnu, Bottacin, Giulia, Microbiology (United Kingdom), 170(3). https://doi.org/10.1099/mic.0.001445
, Read, Timothy D., & Goldberg, Joanna B. (2024). Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT.
Beuzon, C., Lopez-Pagan, N., Rufian, J., Luneau, J., Sanchez-Romero, M.-A., Aussel, L., Vliet, S. v., & Ruiz-Albert, J. (2024). Cooperative colonization of the host and pathogen dissemination involves stochastic and spatially structured expression of virulence traits [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-4131469/v1
Beuzon, C., Lopez-Pagan, N., Rufian, J., Luneau, J., Sanchez-Romero, M.-A., Aussel, L., Vliet, S. v., & Ruiz-Albert, J. (2024). Cooperative colonization of the host and pathogen dissemination involves stochastic and spatially structured expression of virulence traits [Posted-content]. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-4131469/v1
Alexander, Ashley M., Luu, Justin M., Raghuram, Vishnu, Bottacin, Giulia, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.07.24.550428
, Read, Timothy D., & Goldberg, Joanna B. (2023). Experimentally Evolved Staphylococcus aureus Survives in the Presence of Pseudomonas aeruginosa by Acquiring Mutations in the Amino Acid Transporter, GltT [Posted-content]. In
Alexander, Ashley M., Luu, Justin M., Raghuram, Vishnu, Bottacin, Giulia, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.07.24.550428
, Read, Timothy D., & Goldberg, Joanna B. (2023). Experimentally Evolved Staphylococcus aureus Survives in the Presence of Pseudomonas aeruginosa by Acquiring Mutations in the Amino Acid Transporter, GltT [Posted-content]. In
Daniels, M., van Vliet, S., & Ackermann, M. (2023). Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community. ISME Journal, 17(3), 406–416. https://doi.org/10.1038/s41396-022-01312-w
Daniels, M., van Vliet, S., & Ackermann, M. (2023). Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community. ISME Journal, 17(3), 406–416. https://doi.org/10.1038/s41396-022-01312-w
van Vliet, S., & Ackermann, M. (2023). Alma Dal Co (1989-2022). Nature Ecology & Evolution, 7(3), 310–311. https://doi.org/10.1038/s41559-022-01978-7
van Vliet, S., & Ackermann, M. (2023). Alma Dal Co (1989-2022). Nature Ecology & Evolution, 7(3), 310–311. https://doi.org/10.1038/s41559-022-01978-7
Dal Co, A., Ackermann, M., & van Vliet, S. (2023). Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals. Cell Systems, 14(2), 98–108. https://doi.org/10.1016/j.cels.2022.12.009
Dal Co, A., Ackermann, M., & van Vliet, S. (2023). Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals. Cell Systems, 14(2), 98–108. https://doi.org/10.1016/j.cels.2022.12.009
Bettenworth, V., van Vliet, S., Turkowyd, B., Bamberger, A., Wendt, H., McIntosh, M., Steinchen, W., Endesfelder, U., & Becker, A. (2022). Frequency modulation of a bacterial quorum sensing response. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30307-6
Bettenworth, V., van Vliet, S., Turkowyd, B., Bamberger, A., Wendt, H., McIntosh, M., Steinchen, W., Endesfelder, U., & Becker, A. (2022). Frequency modulation of a bacterial quorum sensing response. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30307-6
Daniels, Michael, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.02.08.479118
, & Ackermann, Martin. (2022). Changes in interactions over ecological time scales influence single cell growth dynamics in a metabolically coupled marine microbial community [Posted-content]. In
Daniels, Michael, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.02.08.479118
, & Ackermann, Martin. (2022). Changes in interactions over ecological time scales influence single cell growth dynamics in a metabolically coupled marine microbial community [Posted-content]. In
PLoS Computational Biology, 18(3), e1009877. https://doi.org/10.1371/journal.pcbi.1009877
, Hauert, Christoph, Fridberg, Kyle, Ackermann, Martin, & Dal Co, Alma. (2022). Global dynamics of microbial communities emerge from local interaction rules.
PLoS Computational Biology, 18(3), e1009877. https://doi.org/10.1371/journal.pcbi.1009877
, Hauert, Christoph, Fridberg, Kyle, Ackermann, Martin, & Dal Co, Alma. (2022). Global dynamics of microbial communities emerge from local interaction rules.
Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S., & Ackermann, M. (2021). Author Correction: Short-range interactions govern the dynamics and functions of microbial communities (Nature Ecology & Evolution, (2020), 4, 3, (366-375), 10.1038/s41559-019-1080-2). Nature Ecology and Evolution, 5(5). https://doi.org/10.1038/s41559-021-01430-2
Dal Co, A., van Vliet, S., Kiviet, D. J., Schlegel, S., & Ackermann, M. (2021). Author Correction: Short-range interactions govern the dynamics and functions of microbial communities (Nature Ecology & Evolution, (2020), 4, 3, (366-375), 10.1038/s41559-019-1080-2). Nature Ecology and Evolution, 5(5). https://doi.org/10.1038/s41559-021-01430-2
Henriques, Gil J. B., PLoS Computational Biology, 17(9), e1008896. https://doi.org/10.1371/journal.pcbi.1008896
, & Doebeli, Michael. (2021). Multilevel selection favors fragmentation modes that maintain cooperative interactions in multispecies communities.
Henriques, Gil J. B., PLoS Computational Biology, 17(9), e1008896. https://doi.org/10.1371/journal.pcbi.1008896
, & Doebeli, Michael. (2021). Multilevel selection favors fragmentation modes that maintain cooperative interactions in multispecies communities.
Moreno-Gámez, Stefany, Dal Co, Alma, Bacterial Persistence: Methods and Protocols (pp. 107–124). Springer US. https://doi.org/10.1007/978-1-0716-1621-5_8
, & Ackermann, Martin. (2021). Microfluidics for Single-Cell Study of Antibiotic Tolerance and Persistence Induced by Nutrient Limitation. In Verstraeten, Natalie; Michiels, Jan (Ed.),
Moreno-Gámez, Stefany, Dal Co, Alma, Bacterial Persistence: Methods and Protocols (pp. 107–124). Springer US. https://doi.org/10.1007/978-1-0716-1621-5_8
, & Ackermann, Martin. (2021). Microfluidics for Single-Cell Study of Antibiotic Tolerance and Persistence Induced by Nutrient Limitation. In Verstraeten, Natalie; Michiels, Jan (Ed.),
bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.25.220822
, Hauert, Christoph, Ackermann, Martin, & Dal Co, Alma. (2020). Global dynamics of microbial communities emerge from local interaction rules [Posted-content]. In
bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.07.25.220822
, Hauert, Christoph, Ackermann, Martin, & Dal Co, Alma. (2020). Global dynamics of microbial communities emerge from local interaction rules [Posted-content]. In
Dal Co, Alma, Nature ecology & evolution, 4(3), 366–375. https://doi.org/10.1038/s41559-019-1080-2
, Kiviet, Daniel Johannes, Schlegel, Susan, & Ackermann, Martin. (2020). Short-range interactions govern the dynamics and functions of microbial communities.
Dal Co, Alma, Nature ecology & evolution, 4(3), 366–375. https://doi.org/10.1038/s41559-019-1080-2
, Kiviet, Daniel Johannes, Schlegel, Susan, & Ackermann, Martin. (2020). Short-range interactions govern the dynamics and functions of microbial communities.
Proceedings of the National Academy of Sciences of the United States of America, 117(22), 11864. https://doi.org/10.1073/pnas.2005559117
, & Doebeli, Michael. (2020). Reply to Daybog and Kolodny: Necessary requirements for holobiont-level selection are robust to model assumptions.
Proceedings of the National Academy of Sciences of the United States of America, 117(22), 11864. https://doi.org/10.1073/pnas.2005559117
, & Doebeli, Michael. (2020). Reply to Daybog and Kolodny: Necessary requirements for holobiont-level selection are robust to model assumptions.
Dal Co, Alma, Ackermann, Martin, & Journal of the Royal Society, Interface, 16(156), 20190182. https://doi.org/10.1098/rsif.2019.0182
. (2019). Metabolic activity affects the response of single cells to a nutrient switch in structured populations.
Dal Co, Alma, Ackermann, Martin, & Journal of the Royal Society, Interface, 16(156), 20190182. https://doi.org/10.1098/rsif.2019.0182
. (2019). Metabolic activity affects the response of single cells to a nutrient switch in structured populations.
Dal Co, Alma, Philosophical Transactions B: Biological Sciences, 374(1786), 20190080. https://doi.org/10.1098/rstb.2019.0080
, & Ackermann, Martin. (2019). Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations.
Dal Co, Alma, Philosophical Transactions B: Biological Sciences, 374(1786), 20190080. https://doi.org/10.1098/rstb.2019.0080
, & Ackermann, Martin. (2019). Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations.
Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20591–20597. https://doi.org/10.1073/pnas.1909790116
, & Doebeli, Michael. (2019). The role of multilevel selection in host microbiome evolution.
Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20591–20597. https://doi.org/10.1073/pnas.1909790116
, & Doebeli, Michael. (2019). The role of multilevel selection in host microbiome evolution.
Patsch, Deborah, Environmental Microbiology, 20(12), 4356–4368. https://doi.org/10.1111/1462-2920.14352
, Marcantini, Lorenzo Garbani, & Johnson, David R. (2018). Generality of associations between biological richness and the rates of metabolic processes across microbial communities.
Patsch, Deborah, Environmental Microbiology, 20(12), 4356–4368. https://doi.org/10.1111/1462-2920.14352
, Marcantini, Lorenzo Garbani, & Johnson, David R. (2018). Generality of associations between biological richness and the rates of metabolic processes across microbial communities.
Cell Systems, 6(4), 496–507. https://doi.org/10.1016/j.cels.2018.03.009
, Dal Co, Alma, Winkler, Annina R., Spriewald, Stefanie, Stecher, Bärbel, & Ackermann, Martin. (2018). Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.
Cell Systems, 6(4), 496–507. https://doi.org/10.1016/j.cels.2018.03.009
, Dal Co, Alma, Winkler, Annina R., Spriewald, Stefanie, Stecher, Bärbel, & Ackermann, Martin. (2018). Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.
Vliet, S. v., Co, A. D., R. Winkler, A., Spriewald, S., Stecher, B., & Ackermann, M. (2017). Local interactions lead to spatially correlated gene expression levels in bacterial groups [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/109991
Vliet, S. v., Co, A. D., R. Winkler, A., Spriewald, S., Stecher, B., & Ackermann, M. (2017). Local interactions lead to spatially correlated gene expression levels in bacterial groups [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/109991
Bayramoglu, Bihter, Toubiana, David, Scientific Reports, 7, 42068. https://doi.org/10.1038/srep42068
, Inglis, R. Fredrik, Shnerb, Nadav, & Gillor, Osnat. (2017). Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective.
Bayramoglu, Bihter, Toubiana, David, Scientific Reports, 7, 42068. https://doi.org/10.1038/srep42068
, Inglis, R. Fredrik, Shnerb, Nadav, & Gillor, Osnat. (2017). Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective.
Molecular Systems Biology, 13(1), 909. https://doi.org/10.15252/msb.20167458
, & Ackermann, Martin. (2017). Stochastic gene expression: bacterial elites in chemotaxis.
Molecular Systems Biology, 13(1), 909. https://doi.org/10.15252/msb.20167458
, & Ackermann, Martin. (2017). Stochastic gene expression: bacterial elites in chemotaxis.
Current Biology, 25(17), R753–5. https://doi.org/10.1016/j.cub.2015.07.039
. (2015). Bacterial Dormancy: How to Decide When to Wake Up.
Current Biology, 25(17), R753–5. https://doi.org/10.1016/j.cub.2015.07.039
. (2015). Bacterial Dormancy: How to Decide When to Wake Up.
PLoS Biology, 13(6), e1002162. https://doi.org/10.1371/journal.pbio.1002162
, & Ackermann, Martin. (2015). Bacterial Ventures into Multicellularity: Collectivism through Individuality.
PLoS Biology, 13(6), e1002162. https://doi.org/10.1371/journal.pbio.1002162
, & Ackermann, Martin. (2015). Bacterial Ventures into Multicellularity: Collectivism through Individuality.
BMC Microbiology, 14, 116. https://doi.org/10.1186/1471-2180-14-116
, Hol, Felix J. H., Weenink, Tim, Galajda, Peter, & Keymer, Juan E. (2014). The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations.
BMC Microbiology, 14, 116. https://doi.org/10.1186/1471-2180-14-116
, Hol, Felix J. H., Weenink, Tim, Galajda, Peter, & Keymer, Juan E. (2014). The effects of chemical interactions and culture history on the colonization of structured habitats by competing bacterial populations.
Barends, R., Physical Review B - Condensed Matter and Materials Physics, 79(2). https://doi.org/10.1103/PhysRevB.79.020509
, Baselmans, J.J.A., Yates, S.J.C., Gao, J.R., & Klapwijk, T.M. (2009). Enhancement of quasiparticle recombination in Ta and Al superconductors by implantation of magnetic and nonmagnetic atoms.
Barends, R., Physical Review B - Condensed Matter and Materials Physics, 79(2). https://doi.org/10.1103/PhysRevB.79.020509
, Baselmans, J.J.A., Yates, S.J.C., Gao, J.R., & Klapwijk, T.M. (2009). Enhancement of quasiparticle recombination in Ta and Al superconductors by implantation of magnetic and nonmagnetic atoms.
Barends, R., Quasiparticle relaxation in high Q superconducting resonators. 150. https://doi.org/10.1088/1742-6596/150/5/052016
, Baselmans, J.J.A., Yates, S.J.C., Gao, J.R., & Klapwijk, T.M. (2009).
Barends, R., Quasiparticle relaxation in high Q superconducting resonators. 150. https://doi.org/10.1088/1742-6596/150/5/052016
, Baselmans, J.J.A., Yates, S.J.C., Gao, J.R., & Klapwijk, T.M. (2009).