Publications
108 found
Show per page
Eberhardt, J., Lill, M., Schwede, T., ChemRxiv. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2023-b7l81-v2
, & . (2024). Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein [Posted-content]. In
Eberhardt, J., Lill, M., Schwede, T., ChemRxiv. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2023-b7l81-v2
, & . (2024). Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein [Posted-content]. In
Diamond, Justin, & Neural SHAKE: Geometric Constraints in Graph Generative Models. 15025 LNCS, 43–57. https://doi.org/10.1007/978-3-031-72359-9_4
(2024).
Diamond, Justin, & Neural SHAKE: Geometric Constraints in Graph Generative Models. 15025 LNCS, 43–57. https://doi.org/10.1007/978-3-031-72359-9_4
(2024).
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, Maier, Timm, Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
, & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article].
Höing, Lars, Sowa, Sven T., Toplak, Marina, Reinhardt, Jakob K., Jakob, Roman, Maier, Timm, Chemical Science, 15(20), 7749–7756. https://doi.org/10.1039/d4sc01715c
, & Teufel, Robin. (2024). Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products [Journal-article].
Eberhardt, Jérôme, ChemRxiv. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2023-b7l81
, , Lill, Markus, & Schwede, Torsten. (2023). Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein [Posted-content]. In
Eberhardt, Jérôme, ChemRxiv. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2023-b7l81
, , Lill, Markus, & Schwede, Torsten. (2023). Combining Bayesian optimization with sequence- or structure-based strategies for optimization of peptide-binding protein [Posted-content]. In
Damilakis, Emmanouil, Meier, Christoph R., Huber, Carola A., Clinical Microbiology and Infection, null. https://doi.org/10.1016/j.cmi.2023.10.003
, & Schneider, Cornelia. (2023). Assessing prescription of antibiotics after vaccination against pneumococcal pneumonia; using prescription sequence symmetry analysis.
Damilakis, Emmanouil, Meier, Christoph R., Huber, Carola A., Clinical Microbiology and Infection, null. https://doi.org/10.1016/j.cmi.2023.10.003
, & Schneider, Cornelia. (2023). Assessing prescription of antibiotics after vaccination against pneumococcal pneumonia; using prescription sequence symmetry analysis.
Hinz, Florian B, Mahmoud, Amr H, & Machine Learning: Science and Technology, 4. https://doi.org/10.1088/2632-2153/ace67b
. (2023). Prediction of molecular field points using SE(3)-transformer model.
Hinz, Florian B, Mahmoud, Amr H, & Machine Learning: Science and Technology, 4. https://doi.org/10.1088/2632-2153/ace67b
. (2023). Prediction of molecular field points using SE(3)-transformer model.
Masters, Matthew R, Mahmoud, Amr H, Wei, Yao, & Journal of Chemical Information and Modeling, 63(6), 1695–1707. https://doi.org/10.1021/acs.jcim.2c01436
. (2023). Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
Masters, Matthew R, Mahmoud, Amr H, Wei, Yao, & Journal of Chemical Information and Modeling, 63(6), 1695–1707. https://doi.org/10.1021/acs.jcim.2c01436
. (2023). Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.
Sellner, Manuel S., Mahmoud, Amr H., & Journal of Cheminformatics, 15. https://doi.org/10.1186/s13321-023-00686-z
(2023). Efficient virtual high-content screening using a distance-aware transformer model.
Sellner, Manuel S., Mahmoud, Amr H., & Journal of Cheminformatics, 15. https://doi.org/10.1186/s13321-023-00686-z
(2023). Efficient virtual high-content screening using a distance-aware transformer model.
Fischer, André, Bardakci, Ferhat, Sellner, Manuel, Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2027818
, & Smieko, Martin. (2022). Ligand pathways in estrogen-related receptors.
Fischer, André, Bardakci, Ferhat, Sellner, Manuel, Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2027818
, & Smieko, Martin. (2022). Ligand pathways in estrogen-related receptors.
Hinz, Florian B., Mahmoud, Amr H., & Prediction of Molecular Field Points using SE (3)-Transformer Model.
(2022, January 1).
Hinz, Florian B., Mahmoud, Amr H., & Prediction of Molecular Field Points using SE (3)-Transformer Model.
(2022, January 1).
Mahmoud, Amr H, Masters, Matthew, Lee, Soo Jung, & Journal of Chemical Information and Modeling, 62(7), 1602–1617. https://doi.org/10.1021/acs.jcim.1c01438
. (2022). Accurate Sampling of Macromolecular Conformations Using Adaptive Deep Learning and Coarse-Grained Representation.
Mahmoud, Amr H, Masters, Matthew, Lee, Soo Jung, & Journal of Chemical Information and Modeling, 62(7), 1602–1617. https://doi.org/10.1021/acs.jcim.1c01438
. (2022). Accurate Sampling of Macromolecular Conformations Using Adaptive Deep Learning and Coarse-Grained Representation.
Masters, Matthew R., Mahmoud, Amr H., Wei, Yao, & Deep learning model for flexible and efficient protein-ligand docking.
(2022, January 1).
Masters, Matthew R., Mahmoud, Amr H., Wei, Yao, & Deep learning model for flexible and efficient protein-ligand docking.
(2022, January 1).
Papaj, Katarzyna, Spychalska, Patrycja, Kapica, Patryk, Fischer, André, Nowak, Jakub, Bzówka, Maria, Sellner, Manuel, PloS One, 17(1), e0262482. https://doi.org/10.1371/journal.pone.0262482
, Smieko, Martin, & Góra, Artur. (2022). Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease.
Papaj, Katarzyna, Spychalska, Patrycja, Kapica, Patryk, Fischer, André, Nowak, Jakub, Bzówka, Maria, Sellner, Manuel, PloS One, 17(1), e0262482. https://doi.org/10.1371/journal.pone.0262482
, Smieko, Martin, & Góra, Artur. (2022). Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease.
Sellner, Manuel S., Mahmoud, Amr H., & High-Content Similarity-Based Virtual Screening Using a Distance Aware Transformer Model.
(2022, January 1).
Sellner, Manuel S., Mahmoud, Amr H., & High-Content Similarity-Based Virtual Screening Using a Distance Aware Transformer Model.
(2022, January 1).
Fischer, André, Frehner, Gabriela, Journal of Chemical Information and Modeling, 61(2), 1010–1019. https://doi.org/10.1021/acs.jcim.0c01403
, & Smieko, Martin. (2021). Conformational Changes of Thyroid Receptors in Response to Antagonists.
Fischer, André, Frehner, Gabriela, Journal of Chemical Information and Modeling, 61(2), 1010–1019. https://doi.org/10.1021/acs.jcim.0c01403
, & Smieko, Martin. (2021). Conformational Changes of Thyroid Receptors in Response to Antagonists.
Fischer, André, Häuptli, Florian, Journal of Chemical Information and Modeling, 61(2), 1001–1009. https://doi.org/10.1021/acs.jcim.0c01194
, & Smieko, Martin. (2021). Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds.
Fischer, André, Häuptli, Florian, Journal of Chemical Information and Modeling, 61(2), 1001–1009. https://doi.org/10.1021/acs.jcim.0c01194
, & Smieko, Martin. (2021). Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds.
Fischer, André, Sellner, Manuel, Mitusińska, Karolina, Bzówka, Maria, International Journal of Molecular Sciences, 22(4), 2065. https://doi.org/10.3390/ijms22042065
, Góra, Artur, & Smieko, Martin. (2021). Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2.
Fischer, André, Sellner, Manuel, Mitusińska, Karolina, Bzówka, Maria, International Journal of Molecular Sciences, 22(4), 2065. https://doi.org/10.3390/ijms22042065
, Góra, Artur, & Smieko, Martin. (2021). Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2.
Fischer, André, Smieko, Martin, Sellner, Manuel, & Journal of Medicinal Chemistry, 64(5), 2489–2500. https://doi.org/10.1021/acs.jmedchem.0c02227
. (2021). Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results.
Fischer, André, Smieko, Martin, Sellner, Manuel, & Journal of Medicinal Chemistry, 64(5), 2489–2500. https://doi.org/10.1021/acs.jmedchem.0c02227
. (2021). Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results.
Papaj, Katarzyna, Spychalska, Patrycja, Hopko, Katarzyna, Kapica, Patryk, Fisher, Andre, Pharmaceuticals (Basel, Switzerland), 14(11), 1153. https://doi.org/10.3390/ph14111153
, Bagrowska, Weronika, Nowak, Jakub, Szleper, Katarzyna, Smieško, Martin, Kasprzycka, Anna, & Góra, Artur. (2021). Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro.
Papaj, Katarzyna, Spychalska, Patrycja, Hopko, Katarzyna, Kapica, Patryk, Fisher, Andre, Pharmaceuticals (Basel, Switzerland), 14(11), 1153. https://doi.org/10.3390/ph14111153
, Bagrowska, Weronika, Nowak, Jakub, Szleper, Katarzyna, Smieško, Martin, Kasprzycka, Anna, & Góra, Artur. (2021). Investigation of Thiocarbamates as Potential Inhibitors of the SARS-CoV-2 Mpro.
Fischer, A., Sellner, M., Neranjan, S., Lill, M. A., & Smieško, M. (2020, April 20). Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds [Posted-content]. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv.11923239.v2
Fischer, A., Sellner, M., Neranjan, S., Lill, M. A., & Smieško, M. (2020, April 20). Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds [Posted-content]. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv.11923239.v2
Fischer, André, Sellner, Manuel, Neranjan, Santhosh, Smiesko, Martin, & International Journal of Molecular Sciences, 21(10), 3626. https://doi.org/10.3390/ijms21103626
(2020). Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds.
Fischer, André, Sellner, Manuel, Neranjan, Santhosh, Smiesko, Martin, & International Journal of Molecular Sciences, 21(10), 3626. https://doi.org/10.3390/ijms21103626
(2020). Potential Inhibitors for Novel Coronavirus Protease Identified by Virtual Screening of 606 Million Compounds.
Ghanbarpour, Ahmadreza, & Seq2Mol: Automatic design of de novo molecules conditioned by the target protein sequences through deep neural networks (Vol. 2008). arXiv. https://arxiv.org/abs/2010.15900
(2020).
Ghanbarpour, Ahmadreza, & Seq2Mol: Automatic design of de novo molecules conditioned by the target protein sequences through deep neural networks (Vol. 2008). arXiv. https://arxiv.org/abs/2010.15900
(2020).
Ghanbarpour, Ahmadreza, Mahmoud, Amr H., & Communications Chemistry, 3, 188. https://doi.org/10.1038/s42004-020-00435-5
(2020). Instantaneous generation of protein hydration properties from static structures.
Ghanbarpour, Ahmadreza, Mahmoud, Amr H., & Communications Chemistry, 3, 188. https://doi.org/10.1038/s42004-020-00435-5
(2020). Instantaneous generation of protein hydration properties from static structures.
Mahmoud, Amr H., Lill, Jonas F., & Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix (Vol. 2008). arXiv. https://arxiv.org/abs/2008.12027
(2020).
Mahmoud, Amr H., Lill, Jonas F., & Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix (Vol. 2008). arXiv. https://arxiv.org/abs/2008.12027
(2020).
Mahmoud, Amr H., Masters, Matthew R., Yang, Ying, & Communications Chemistry, 3, 19. https://doi.org/10.1038/s42004-020-0261-x
(2020). Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning.
Mahmoud, Amr H., Masters, Matthew R., Yang, Ying, & Communications Chemistry, 3, 19. https://doi.org/10.1038/s42004-020-0261-x
(2020). Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning.
Mahmoud, Amr H, Masters, Matthew R, Yang, Ying, & Communications Chemistry (Vol. 3). Nature Publishing Group. https://doi.org/10.1038/s42004-020-0261-x
. (2020). Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. In
Mahmoud, Amr H, Masters, Matthew R, Yang, Ying, & Communications Chemistry (Vol. 3). Nature Publishing Group. https://doi.org/10.1038/s42004-020-0261-x
. (2020). Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. In
Mahmoud, Amr, Lill, Jonas F., & Quantitative Biology, Biomolecules. arXiv. https://doi.org/arxiv:2008.12027
(2020). Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix. In
Mahmoud, Amr, Lill, Jonas F., & Quantitative Biology, Biomolecules. arXiv. https://doi.org/arxiv:2008.12027
(2020). Graph-convolution neural network-based flexible docking utilizing coarse-grained distance matrix. In
Mahmoud, A., Yang, Y., & Lill, M. (2019, January 9). Improving Atom Type Diversity and Sampling in Co-Solvent Simulations Using λ-Dynamics [Posted-content]. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv.7557224.v1
Mahmoud, A., Yang, Y., & Lill, M. (2019, January 9). Improving Atom Type Diversity and Sampling in Co-Solvent Simulations Using λ-Dynamics [Posted-content]. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv.7557224.v1
Bartolowits, Matthew D., Gast, Jonathon M., Hasler, Ashlee J., Cirrincione, Anthony M., O’Connor, Rachel J., Mahmoud, Amr H., ACS Omega, 4(12), 15181–15196. https://doi.org/10.1021/acsomega.9b02079
, & Davisson, Vincent Jo. (2019). Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen.
Bartolowits, Matthew D., Gast, Jonathon M., Hasler, Ashlee J., Cirrincione, Anthony M., O’Connor, Rachel J., Mahmoud, Amr H., ACS Omega, 4(12), 15181–15196. https://doi.org/10.1021/acsomega.9b02079
, & Davisson, Vincent Jo. (2019). Discovery of Inhibitors for Proliferating Cell Nuclear Antigen Using a Computational-Based Linked-Multiple-Fragment Screen.
Cassell, Robert J., Mores, Kendall L., Zerfas, Breanna L., Mahmoud, Amr H., European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology, 29(3), 450–456. https://doi.org/10.1016/j.euroneuro.2018.12.013
, Trader, Darci J., & van Rijn, Richard M. (2019). Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides.
Cassell, Robert J., Mores, Kendall L., Zerfas, Breanna L., Mahmoud, Amr H., European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology, 29(3), 450–456. https://doi.org/10.1016/j.euroneuro.2018.12.013
, Trader, Darci J., & van Rijn, Richard M. (2019). Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides.
Kaur, Jatinder, Soto-Velasquez, Monica, Ding, Zhong, Ghanbarpour, Ahmadreza, European Journal of Medicinal Chemistry, 162, 568–585. https://doi.org/10.1016/j.ejmech.2018.11.036
, van Rijn, Richard M., Watts, Val J., & Flaherty, Daniel P. (2019). Optimization of a 1,3,4-oxadiazole series for inhibition of Ca; 2+; /calmodulin-stimulated activity of adenylyl cyclases 1 and 8 for the treatment of chronic pain.
Kaur, Jatinder, Soto-Velasquez, Monica, Ding, Zhong, Ghanbarpour, Ahmadreza, European Journal of Medicinal Chemistry, 162, 568–585. https://doi.org/10.1016/j.ejmech.2018.11.036
, van Rijn, Richard M., Watts, Val J., & Flaherty, Daniel P. (2019). Optimization of a 1,3,4-oxadiazole series for inhibition of Ca; 2+; /calmodulin-stimulated activity of adenylyl cyclases 1 and 8 for the treatment of chronic pain.
Mahmoud, Amr H., Yang, Ying, & Journal of Chemical Theory and Computation, 15(5), 3272–3287. https://doi.org/10.1021/acs.jctc.8b00940
(2019). Improving Atom-Type Diversity and Sampling in Cosolvent Simulations Using λ-Dynamics.
Mahmoud, Amr H., Yang, Ying, & Journal of Chemical Theory and Computation, 15(5), 3272–3287. https://doi.org/10.1021/acs.jctc.8b00940
(2019). Improving Atom-Type Diversity and Sampling in Cosolvent Simulations Using λ-Dynamics.
Mahmoud, Amr, Masters, Matthew, Yang, Ying, & Biological and Medicinal Chemistry. ChemRxiv. https://doi.org/10.26434/chemrxiv.7723223.v1
(2019). Elucidating the Multiple Roles of Hydration in Protein-Ligand Binding via Layerwise Relevance Propagation and Big Data Analytics. In
Mahmoud, Amr, Masters, Matthew, Yang, Ying, & Biological and Medicinal Chemistry. ChemRxiv. https://doi.org/10.26434/chemrxiv.7723223.v1
(2019). Elucidating the Multiple Roles of Hydration in Protein-Ligand Binding via Layerwise Relevance Propagation and Big Data Analytics. In
Yang, Ying, Mahmoud, Amr H., & Journal of Chemical Information and Modeling, 59(1), 38–42. https://doi.org/10.1021/acs.jcim.8b00806
(2019). Modeling of Halogen-Protein Interactions in Co-Solvent Molecular Dynamics Simulations.
Yang, Ying, Mahmoud, Amr H., & Journal of Chemical Information and Modeling, 59(1), 38–42. https://doi.org/10.1021/acs.jcim.8b00806
(2019). Modeling of Halogen-Protein Interactions in Co-Solvent Molecular Dynamics Simulations.
Masters, M. R., Mahmoud, A. H., Yang, Y., & Lill, M. A. (2018). Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites. Journal of Chemical Information and Modeling, 58(11), 2183–2188. https://doi.org/10.1021/acs.jcim.8b00544
Masters, M. R., Mahmoud, A. H., Yang, Y., & Lill, M. A. (2018). Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites. Journal of Chemical Information and Modeling, 58(11), 2183–2188. https://doi.org/10.1021/acs.jcim.8b00544
Cassell, R. J., Mores, K. L., Zerfas, B. L., H. Mahmoud, A., Lill, M. A., Trader, D. J., & van Rijn, R. M. (2018, October 2). Rubsicolins are naturally occurring G-protein-biased delta opioid receptor peptides [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/433805
Cassell, R. J., Mores, K. L., Zerfas, B. L., H. Mahmoud, A., Lill, M. A., Trader, D. J., & van Rijn, R. M. (2018, October 2). Rubsicolins are naturally occurring G-protein-biased delta opioid receptor peptides [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/433805
Wang, Y., Tang, S., Harvey, K. E., Salyer, A. E., Li, T. A., Rantz, E. K., Lill, M. A., & Hockerman, G. H. (2018). Molecular determinants of the differential modulation of Ca v 1.2 and Ca v 1.3 by nifedipine and FPL 64176 . Molecular Pharmacology, 94(3), 973–983. https://doi.org/10.1124/mol.118.112441
Wang, Y., Tang, S., Harvey, K. E., Salyer, A. E., Li, T. A., Rantz, E. K., Lill, M. A., & Hockerman, G. H. (2018). Molecular determinants of the differential modulation of Ca v 1.2 and Ca v 1.3 by nifedipine and FPL 64176 . Molecular Pharmacology, 94(3), 973–983. https://doi.org/10.1124/mol.118.112441
Yang, Y., Abdallah, A. H. A., & Lill, M. A. (2018). Calculation of thermodynamic properties of bound water molecules (Vol. 1762, pp. 389–402). Humana Press Inc.humana@humanapr.com. https://doi.org/10.1007/978-1-4939-7756-7_19
Yang, Y., Abdallah, A. H. A., & Lill, M. A. (2018). Calculation of thermodynamic properties of bound water molecules (Vol. 1762, pp. 389–402). Humana Press Inc.humana@humanapr.com. https://doi.org/10.1007/978-1-4939-7756-7_19
Rana, N., Conley, J. M., Soto-Velasquez, M., León, F., Cutler, S. J., Watts, V. J., & Lill, M. A. (2017). Molecular Modeling Evaluation of the Enantiomers of a Novel Adenylyl Cyclase 2 Inhibitor. Journal of Chemical Information and Modeling, 57(2), 322–334. https://doi.org/10.1021/acs.jcim.6b00454
Rana, N., Conley, J. M., Soto-Velasquez, M., León, F., Cutler, S. J., Watts, V. J., & Lill, M. A. (2017). Molecular Modeling Evaluation of the Enantiomers of a Novel Adenylyl Cyclase 2 Inhibitor. Journal of Chemical Information and Modeling, 57(2), 322–334. https://doi.org/10.1021/acs.jcim.6b00454
Yang, Y., Hu, B., & Lill, M. A. (2017). WATsite2.0 with PyMOL plugin: Hydration site prediction and visualization (Vol. 1611, pp. 123–134). Humana Press Inc.humana@humanapr.com. https://doi.org/10.1007/978-1-4939-7015-5_10
Yang, Y., Hu, B., & Lill, M. A. (2017). WATsite2.0 with PyMOL plugin: Hydration site prediction and visualization (Vol. 1611, pp. 123–134). Humana Press Inc.humana@humanapr.com. https://doi.org/10.1007/978-1-4939-7015-5_10
Yang, Y., & Lill, M. A. (2016). Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding. Journal of Chemical Theory and Computation, 12(9), 4578–4592. https://doi.org/10.1021/acs.jctc.6b00411
Yang, Y., & Lill, M. A. (2016). Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding. Journal of Chemical Theory and Computation, 12(9), 4578–4592. https://doi.org/10.1021/acs.jctc.6b00411
Tabatabaei Ghomi, H., Topp, E. M., & Lill, M. A. (2016). Fibpredictor: a computational method for rapid prediction of amyloid fibril structures. Journal of Molecular Modeling, 22(9). https://doi.org/10.1007/s00894-016-3066-1
Tabatabaei Ghomi, H., Topp, E. M., & Lill, M. A. (2016). Fibpredictor: a computational method for rapid prediction of amyloid fibril structures. Journal of Molecular Modeling, 22(9). https://doi.org/10.1007/s00894-016-3066-1
Kingsley, L. J., Esquivel-Rodríguez, J., Yang, Y., Kihara, D., & Lill, M. A. (2016). Ranking protein-protein docking results using steered molecular dynamics and potential of mean force calculations. Journal of Computational Chemistry, 37(20), 1861–1865. https://doi.org/10.1002/jcc.24412
Kingsley, L. J., Esquivel-Rodríguez, J., Yang, Y., Kihara, D., & Lill, M. A. (2016). Ranking protein-protein docking results using steered molecular dynamics and potential of mean force calculations. Journal of Computational Chemistry, 37(20), 1861–1865. https://doi.org/10.1002/jcc.24412
Lill Y, Jordan LD, Smallwood CR, Newton SM, PloS One, 11(12), e0160862. https://doi.org/10.1371/journal.pone.0160862
, Klebba PE, & Ritchie K. (2016). Confined Mobility of TonB and FepA in Escherichia coli Membranes.
Lill Y, Jordan LD, Smallwood CR, Newton SM, PloS One, 11(12), e0160862. https://doi.org/10.1371/journal.pone.0160862
, Klebba PE, & Ritchie K. (2016). Confined Mobility of TonB and FepA in Escherichia coli Membranes.
Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins: Structure, Function and Bioinformatics, 83(4), 599–611. https://doi.org/10.1002/prot.24772
Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins: Structure, Function and Bioinformatics, 83(4), 599–611. https://doi.org/10.1002/prot.24772
Moorthy, B. S., Ghomi, H. T., Lill, M. A., & Topp, E. M. (2015). Structural transitions and interactions in the early stages of human glucagon amyloid fibrillation. Biophysical Journal, 108(4), 937–948. https://doi.org/10.1016/j.bpj.2015.01.004
Moorthy, B. S., Ghomi, H. T., Lill, M. A., & Topp, E. M. (2015). Structural transitions and interactions in the early stages of human glucagon amyloid fibrillation. Biophysical Journal, 108(4), 937–948. https://doi.org/10.1016/j.bpj.2015.01.004
Kingsley, L. J., Wilson, G. L., Essex, M. E., & Lill, M. A. (2015). Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharmaceutical Research, 32(3), 986–1001. https://doi.org/10.1007/s11095-014-1511-3
Kingsley, L. J., Wilson, G. L., Essex, M. E., & Lill, M. A. (2015). Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharmaceutical Research, 32(3), 986–1001. https://doi.org/10.1007/s11095-014-1511-3
Thompson, J. J., Ghomi, H. T., & Lill, M. A. (2014). Application of information theory to a three-body coarse-grained representation of proteins in the PDB: Insights into the structural and evolutionary roles of residues in protein structure. Proteins: Structure, Function and Bioinformatics, 82(12), 3450–3465. https://doi.org/10.1002/prot.24698
Thompson, J. J., Ghomi, H. T., & Lill, M. A. (2014). Application of information theory to a three-body coarse-grained representation of proteins in the PDB: Insights into the structural and evolutionary roles of residues in protein structure. Proteins: Structure, Function and Bioinformatics, 82(12), 3450–3465. https://doi.org/10.1002/prot.24698
Ghomi, H. T., Thompson, J. J., & Lill, M. A. (2014). Are distance-dependent statistical potentials considering three interacting bodies superior to two-body statistical potentials for protein structure prediction? Journal of Bioinformatics and Computational Biology, 12(5). https://doi.org/10.1142/s021972001450022x
Ghomi, H. T., Thompson, J. J., & Lill, M. A. (2014). Are distance-dependent statistical potentials considering three interacting bodies superior to two-body statistical potentials for protein structure prediction? Journal of Bioinformatics and Computational Biology, 12(5). https://doi.org/10.1142/s021972001450022x
Yang, Y., Hu, B., & Lill, M. A. (2014). Analysis of factors influencing hydration site prediction based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 54(10), 2987–2995. https://doi.org/10.1021/ci500426q
Yang, Y., Hu, B., & Lill, M. A. (2014). Analysis of factors influencing hydration site prediction based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 54(10), 2987–2995. https://doi.org/10.1021/ci500426q
Kingsley, L. J., & Lill, M. A. (2014). Including ligand-induced protein flexibility into protein tunnel prediction. Journal of Computational Chemistry, 35(24), 1748–1756. https://doi.org/10.1002/jcc.23680
Kingsley, L. J., & Lill, M. A. (2014). Including ligand-induced protein flexibility into protein tunnel prediction. Journal of Computational Chemistry, 35(24), 1748–1756. https://doi.org/10.1002/jcc.23680
Pedley, A. M., Lill, M. A., & Davisson, V. J. (2014). Flexibility of PCNA-protein interface accommodates differential binding partners. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102481
Pedley, A. M., Lill, M. A., & Davisson, V. J. (2014). Flexibility of PCNA-protein interface accommodates differential binding partners. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102481
Kingsley, L. J., & Lill, M. A. (2014). Ensemble generation and the influence of protein flexibility on geometric tunnel prediction in cytochrome P450 enzymes. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099408
Kingsley, L. J., & Lill, M. A. (2014). Ensemble generation and the influence of protein flexibility on geometric tunnel prediction in cytochrome P450 enzymes. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099408
Hu, B., & Lill, M. A. (2014). WATsite: Hydration site prediction program with PyMOL interface. Journal of Computational Chemistry, 35(16), 1255–1260. https://doi.org/10.1002/jcc.23616
Hu, B., & Lill, M. A. (2014). WATsite: Hydration site prediction program with PyMOL interface. Journal of Computational Chemistry, 35(16), 1255–1260. https://doi.org/10.1002/jcc.23616
Hu, B., & Lill, M. A. (2014). PharmDock: A pharmacophore-based docking program. Journal of Cheminformatics, 6(1). https://doi.org/10.1186/1758-2946-6-14
Hu, B., & Lill, M. A. (2014). PharmDock: A pharmacophore-based docking program. Journal of Cheminformatics, 6(1). https://doi.org/10.1186/1758-2946-6-14
Lill, M. A. (2013). Foreword. In Silico Drug Discovery and Design, 2–5. https://doi.org/10.4155/ebo.13.272
Lill, M. A. (2013). Foreword. In Silico Drug Discovery and Design, 2–5. https://doi.org/10.4155/ebo.13.272
Lill, M. A. (2013). In silico drug discovery and design. Future Medicine Ltd. https://doi.org/10.4155/9781909453012
Lill, M. A. (2013). In silico drug discovery and design. Future Medicine Ltd. https://doi.org/10.4155/9781909453012
Wilson, G. L., & Lill, M. A. (2013). Integrating structure- and ligand-based approaches for computer-aided drug design (pp. 190–202). Future Medicine Ltd. https://doi.org/10.4155/ebo.13.106
Wilson, G. L., & Lill, M. A. (2013). Integrating structure- and ligand-based approaches for computer-aided drug design (pp. 190–202). Future Medicine Ltd. https://doi.org/10.4155/ebo.13.106
Xu, M., & Lill, M. A. (2013). Induced fit docking, and the use of QM/MM methods in docking. Drug Discovery Today: Technologies, 10(3). https://doi.org/10.1016/j.ddtec.2013.02.003
Xu, M., & Lill, M. A. (2013). Induced fit docking, and the use of QM/MM methods in docking. Drug Discovery Today: Technologies, 10(3). https://doi.org/10.1016/j.ddtec.2013.02.003
Hu, B., & Lill, M. A. (2013). Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. Journal of Chemical Information and Modeling, 53(5), 1179–1190. https://doi.org/10.1021/ci400143r
Hu, B., & Lill, M. A. (2013). Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking. Journal of Chemical Information and Modeling, 53(5), 1179–1190. https://doi.org/10.1021/ci400143r
Morrow, M. E., Kim, M.-I., Ronau, J. A., Sheedlo, M. J., White, R. R., Chaney, J., Paul, L. N., Lill, M. A., Artavanis-Tsakonas, K., & Das, C. (2013). Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry, 52(20), 3564–3578. https://doi.org/10.1021/bi4003106
Morrow, M. E., Kim, M.-I., Ronau, J. A., Sheedlo, M. J., White, R. R., Chaney, J., Paul, L. N., Lill, M. A., Artavanis-Tsakonas, K., & Das, C. (2013). Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Biochemistry, 52(20), 3564–3578. https://doi.org/10.1021/bi4003106
Juncosa, J. I., Hansen, M., Bonner, L. A., Cueva, J. P., Maglathlin, R., McCorvy, J. D., Marona-Lewicka, D., Lill, M. A., & Nichols, D. E. (2013). Extensive rigid analogue design maps the binding conformation of potent N -benzylphenethylamine 5-HT2A serotonin receptor agonist ligands. ACS Chemical Neuroscience, 4(1), 96–109. https://doi.org/10.1021/cn3000668
Juncosa, J. I., Hansen, M., Bonner, L. A., Cueva, J. P., Maglathlin, R., McCorvy, J. D., Marona-Lewicka, D., Lill, M. A., & Nichols, D. E. (2013). Extensive rigid analogue design maps the binding conformation of potent N -benzylphenethylamine 5-HT2A serotonin receptor agonist ligands. ACS Chemical Neuroscience, 4(1), 96–109. https://doi.org/10.1021/cn3000668
Lill, M. (2013). Virtual screening in drug design. Methods in Molecular Biology, 993, 1–12. https://doi.org/10.1007/978-1-62703-342-8_1
Lill, M. (2013). Virtual screening in drug design. Methods in Molecular Biology, 993, 1–12. https://doi.org/10.1007/978-1-62703-342-8_1
Sadeghi, Ali, Ghasemi, S. Alireza, Schaefer, Bastian, Mohr, Stephan, Journal of Chemical Physics, 139(18), 184118. https://doi.org/10.1063/1.4828704
, & Goedecker, Stefan. (2013). Metrics for measuring distances in configuration spaces.
Sadeghi, Ali, Ghasemi, S. Alireza, Schaefer, Bastian, Mohr, Stephan, Journal of Chemical Physics, 139(18), 184118. https://doi.org/10.1063/1.4828704
, & Goedecker, Stefan. (2013). Metrics for measuring distances in configuration spaces.
Lill Y, Kaserer WA, Newton SM, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 86(2 Pt 1), 21907. https://doi.org/10.1103/physreve.86.021907
, Klebba PE, & Ritchie K. (2012). Single-molecule study of molecular mobility in the cytoplasm of Escherichia coli.
Lill Y, Kaserer WA, Newton SM, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 86(2 Pt 1), 21907. https://doi.org/10.1103/physreve.86.021907
, Klebba PE, & Ritchie K. (2012). Single-molecule study of molecular mobility in the cytoplasm of Escherichia coli.
Hu, B., & Lill, M. A. (2012). Protein pharmacophore selection using hydration-site analysis. Journal of Chemical Information and Modeling, 52(4), 1046–1060. https://doi.org/10.1021/ci200620h
Hu, B., & Lill, M. A. (2012). Protein pharmacophore selection using hydration-site analysis. Journal of Chemical Information and Modeling, 52(4), 1046–1060. https://doi.org/10.1021/ci200620h
Cueva, J. P., Chemel, B. R., Juncosa Jr., J. I., Lill, M. A., Watts, V. J., & Nichols, D. E. (2012). Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines. European Journal of Medicinal Chemistry, 48, 97–107. https://doi.org/10.1016/j.ejmech.2011.11.039
Cueva, J. P., Chemel, B. R., Juncosa Jr., J. I., Lill, M. A., Watts, V. J., & Nichols, D. E. (2012). Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines. European Journal of Medicinal Chemistry, 48, 97–107. https://doi.org/10.1016/j.ejmech.2011.11.039
Xu, M., & Lill, M. A. (2012). Utilizing experimental data for reducing ensemble size in flexible-protein docking. Journal of Chemical Information and Modeling, 52(1), 187–198. https://doi.org/10.1021/ci200428t
Xu, M., & Lill, M. A. (2012). Utilizing experimental data for reducing ensemble size in flexible-protein docking. Journal of Chemical Information and Modeling, 52(1), 187–198. https://doi.org/10.1021/ci200428t
Danielson, M. L., & Lill, M. A. (2012). Predicting flexible loop regions that interact with ligands: The challenge of accurate scoring. Proteins: Structure, Function and Bioinformatics, 80(1), 246–260. https://doi.org/10.1002/prot.23199
Danielson, M. L., & Lill, M. A. (2012). Predicting flexible loop regions that interact with ligands: The challenge of accurate scoring. Proteins: Structure, Function and Bioinformatics, 80(1), 246–260. https://doi.org/10.1002/prot.23199
Kortagere, S., Lill, M., & Kerrigan, J. (2012). Role of computational methods in pharmaceutical sciences. Methods in Molecular Biology, 929, 21–48. https://doi.org/10.1007/978-1-62703-50-2_3
Kortagere, S., Lill, M., & Kerrigan, J. (2012). Role of computational methods in pharmaceutical sciences. Methods in Molecular Biology, 929, 21–48. https://doi.org/10.1007/978-1-62703-50-2_3
Wilson, G. L., & Lill, M. A. (2012). Towards a realistic representation in surface-based pseudoreceptor modeling: A PDB-wide analysis of binding pockets. Molecular Informatics, 31(3-4), 259–271. https://doi.org/10.1002/minf.201100166
Wilson, G. L., & Lill, M. A. (2012). Towards a realistic representation in surface-based pseudoreceptor modeling: A PDB-wide analysis of binding pockets. Molecular Informatics, 31(3-4), 259–271. https://doi.org/10.1002/minf.201100166
Lill, M. A., & Thompson, J. J. (2011). Solvent interaction energy calculations on molecular dynamics trajectories: Increasing the efficiency using systematic frame selection. Journal of Chemical Information and Modeling, 51(10), 2680–2689. https://doi.org/10.1021/ci200191m
Lill, M. A., & Thompson, J. J. (2011). Solvent interaction energy calculations on molecular dynamics trajectories: Increasing the efficiency using systematic frame selection. Journal of Chemical Information and Modeling, 51(10), 2680–2689. https://doi.org/10.1021/ci200191m
Danielson, M. L., Desai, P. V., Mohutsky, M. A., Wrighton, S. A., & Lill, M. A. (2011). Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. European Journal of Medicinal Chemistry, 46(9), 3953–3963. https://doi.org/10.1016/j.ejmech.2011.05.067
Danielson, M. L., Desai, P. V., Mohutsky, M. A., Wrighton, S. A., & Lill, M. A. (2011). Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. European Journal of Medicinal Chemistry, 46(9), 3953–3963. https://doi.org/10.1016/j.ejmech.2011.05.067
Cueva, J. P., Gallardo-Godoy, A., Juncosa, J. I., Vidi, P. A., Lill, M. A., Watts, V. J., & Nichols, D. E. (2011). Probing the steric space at the floor of the D1 dopamine receptor orthosteric binding domain: 7α-, 7β-, 8α-, and 8β-methyl substituted dihydrexidine analogues. Journal of Medicinal Chemistry, 54(15), 5508–5521. https://doi.org/10.1021/jm200334c
Cueva, J. P., Gallardo-Godoy, A., Juncosa, J. I., Vidi, P. A., Lill, M. A., Watts, V. J., & Nichols, D. E. (2011). Probing the steric space at the floor of the D1 dopamine receptor orthosteric binding domain: 7α-, 7β-, 8α-, and 8β-methyl substituted dihydrexidine analogues. Journal of Medicinal Chemistry, 54(15), 5508–5521. https://doi.org/10.1021/jm200334c
Lill, M. A. (2011). Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry, 50(28), 6157–6169. https://doi.org/10.1021/bi2004558
Lill, M. A. (2011). Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry, 50(28), 6157–6169. https://doi.org/10.1021/bi2004558
Bonner, L. A., Laban, U., Chemel, B. R., Juncosa, J. I., Lill, M. A., Watts, V. J., & Nichols, D. E. (2011). Mapping the catechol binding site in dopamine D1 receptors: Synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem, 6(6), 1024–1040. https://doi.org/10.1002/cmdc.201100010
Bonner, L. A., Laban, U., Chemel, B. R., Juncosa, J. I., Lill, M. A., Watts, V. J., & Nichols, D. E. (2011). Mapping the catechol binding site in dopamine D1 receptors: Synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem, 6(6), 1024–1040. https://doi.org/10.1002/cmdc.201100010
Wilson, G. L., & Lill, M. A. (2011). Integrating structure-based and ligand-based approaches for computational drug design. Future Medicinal Chemistry, 3(6), 735–750. https://doi.org/10.4155/fmc.11.18
Wilson, G. L., & Lill, M. A. (2011). Integrating structure-based and ligand-based approaches for computational drug design. Future Medicinal Chemistry, 3(6), 735–750. https://doi.org/10.4155/fmc.11.18
Xu, M., & Lill, M. A. (2011). Significant enhancement of docking sensitivity using implicit ligand sampling. Journal of Chemical Information and Modeling, 51(3), 693–706. https://doi.org/10.1021/ci100457t
Xu, M., & Lill, M. A. (2011). Significant enhancement of docking sensitivity using implicit ligand sampling. Journal of Chemical Information and Modeling, 51(3), 693–706. https://doi.org/10.1021/ci100457t
Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
Danielson, M. L., & Lill, M. A. (2010). New computational method for prediction of interacting protein loop regions. Proteins: Structure, Function and Bioinformatics, 78(7), 1748–1759. https://doi.org/10.1002/prot.22690
Danielson, M. L., & Lill, M. A. (2010). New computational method for prediction of interacting protein loop regions. Proteins: Structure, Function and Bioinformatics, 78(7), 1748–1759. https://doi.org/10.1002/prot.22690
Ekins, S., Kortagere, S., Iyer, M., Reschly, E. J., Lill, M. A., Redinbo, M. R., & Krasowski, M. D. (2009). Challenges predicting ligand-receptor interactions of promiscuous proteins: The nuclear receptor PXR. PLoS Computational Biology, 5(12). https://doi.org/10.1371/journal.pcbi.1000594
Ekins, S., Kortagere, S., Iyer, M., Reschly, E. J., Lill, M. A., Redinbo, M. R., & Krasowski, M. D. (2009). Challenges predicting ligand-receptor interactions of promiscuous proteins: The nuclear receptor PXR. PLoS Computational Biology, 5(12). https://doi.org/10.1371/journal.pcbi.1000594
Spreafico, Morena, Ernst, Beat, ChemMedChem, 4(1), 100–109. https://doi.org/10.1002/cmdc.200800274
, Smiesko, Martin, & Vedani, Angelo. (2009). Mixed-Model QSAR at the Glucocorticoid Receptor: Predicting the Binding Mode and Affinity of Psychotropic Drugs.
Spreafico, Morena, Ernst, Beat, ChemMedChem, 4(1), 100–109. https://doi.org/10.1002/cmdc.200800274
, Smiesko, Martin, & Vedani, Angelo. (2009). Mixed-Model QSAR at the Glucocorticoid Receptor: Predicting the Binding Mode and Affinity of Psychotropic Drugs.
Structure-Based computational approaches to drug metabolism (pp. 573–597). World Scientific Publishing Co. https://doi.org/10.1142/9789812778789_0021
(2008).
Structure-Based computational approaches to drug metabolism (pp. 573–597). World Scientific Publishing Co. https://doi.org/10.1142/9789812778789_0021
(2008).
Lill, M. A. (2007). Multi-dimensional QSAR in drug discovery. Drug Discovery Today, 12(23-24), 1013–1017. https://doi.org/10.1016/j.drudis.2007.08.004
Lill, M. A. (2007). Multi-dimensional QSAR in drug discovery. Drug Discovery Today, 12(23-24), 1013–1017. https://doi.org/10.1016/j.drudis.2007.08.004
Sharifi, N., Hame, E., Lill, M. A., Risbood, P., Kane Jr., C. T., Hossain, Md. T., Jones, A., Dalton, J. T., & Farrar, W. L. (2007). A bifunctional colchicinoid that binds to the androgen receptor. Molecular Cancer Therapeutics, 6(8), 2328–2336. https://doi.org/10.1158/1535-7163.mct-07-0163
Sharifi, N., Hame, E., Lill, M. A., Risbood, P., Kane Jr., C. T., Hossain, Md. T., Jones, A., Dalton, J. T., & Farrar, W. L. (2007). A bifunctional colchicinoid that binds to the androgen receptor. Molecular Cancer Therapeutics, 6(8), 2328–2336. https://doi.org/10.1158/1535-7163.mct-07-0163
Vedani, A., Zumstein, M., Lill, M. A., & Ernst, B. (2007). Simulating α/β selectivity at the human thyroid hormone receptor: Consensus scoring using multidimensional QSAR. ChemMedChem, 2, 78–87. https://doi.org/10.1002/cmdc.200600212
Vedani, A., Zumstein, M., Lill, M. A., & Ernst, B. (2007). Simulating α/β selectivity at the human thyroid hormone receptor: Consensus scoring using multidimensional QSAR. ChemMedChem, 2, 78–87. https://doi.org/10.1002/cmdc.200600212
Lill, M. A., & Vedani, A. (2006). Computational Modeling of Receptor-Mediated Toxicity (pp. 315–351). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470145890.ch12
Lill, M. A., & Vedani, A. (2006). Computational Modeling of Receptor-Mediated Toxicity (pp. 315–351). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470145890.ch12
Vedani, A., Dobler, M., & Lill, M. A. (2006). The challenge of predicting drug toxicity in silico. Basic and Clinical Pharmacology and Toxicology, 99(3), 195–208. https://doi.org/10.1111/j.1742-7843.2006.pto_471.x
Vedani, A., Dobler, M., & Lill, M. A. (2006). The challenge of predicting drug toxicity in silico. Basic and Clinical Pharmacology and Toxicology, 99(3), 195–208. https://doi.org/10.1111/j.1742-7843.2006.pto_471.x
Lill, M. A. (2006). Computational pharmaceutical chemistry - Novel technologies for lead optimization and the prediction of ADMET properties. Chimia, 60(1-2), 33–36. https://doi.org/10.2533/000942906777675128
Lill, M. A. (2006). Computational pharmaceutical chemistry - Novel technologies for lead optimization and the prediction of ADMET properties. Chimia, 60(1-2), 33–36. https://doi.org/10.2533/000942906777675128
Lill, M. A., Dobler, M., & Vedani, A. (2006). Prediction of small-molecule binding to cytochrome P450 3A4: Flexible docking combined with multidimensional QSAR. ChemMedChem, 1(1), 73–81. https://doi.org/10.1002/cmdc.200500024
Lill, M. A., Dobler, M., & Vedani, A. (2006). Prediction of small-molecule binding to cytochrome P450 3A4: Flexible docking combined with multidimensional QSAR. ChemMedChem, 1(1), 73–81. https://doi.org/10.1002/cmdc.200500024
Lill, M. A., & Vedani, A. (2006). Combining 4D pharmacophore generation and multidimensional QSAR: Modeling ligand binding to the bradykinin B2 receptor. Journal of Chemical Information and Modeling, 46(5), 2135–2145. https://doi.org/10.1021/ci6001944
Lill, M. A., & Vedani, A. (2006). Combining 4D pharmacophore generation and multidimensional QSAR: Modeling ligand binding to the bradykinin B2 receptor. Journal of Chemical Information and Modeling, 46(5), 2135–2145. https://doi.org/10.1021/ci6001944
Lill, Yoriko, Biophysical Journal, 91(8), 3123–3130. https://doi.org/10.1529/biophysj.106.087650
, Fahrenkrog, Birthe, Schwarz-Herion, Kyrill, Paulillo, Sara, Aebi, Ueli, & Hecht, Bert. (2006). Single Hepatitis-B Virus Core Capsid Binding to Individual Nuclear Pore Complexes in HeLa Cells.
Lill, Yoriko, Biophysical Journal, 91(8), 3123–3130. https://doi.org/10.1529/biophysj.106.087650
, Fahrenkrog, Birthe, Schwarz-Herion, Kyrill, Paulillo, Sara, Aebi, Ueli, & Hecht, Bert. (2006). Single Hepatitis-B Virus Core Capsid Binding to Individual Nuclear Pore Complexes in HeLa Cells.
Vedani, A., Dobler, M., & Lill, M. A. (2005). In silico prediction of harmful effects triggered by drugs and chemicals. 207, 398–407. https://doi.org/10.1016/j.taap.2005.01.055
Vedani, A., Dobler, M., & Lill, M. A. (2005). In silico prediction of harmful effects triggered by drugs and chemicals. 207, 398–407. https://doi.org/10.1016/j.taap.2005.01.055
Lill Y, Martinez KL, Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, 6(8), 1633–1640. https://doi.org/10.1002/cphc.200500111
, Meyer BH, Vogel H, & Hecht B. (2005). Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.
Lill Y, Martinez KL, Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry, 6(8), 1633–1640. https://doi.org/10.1002/cphc.200500111
, Meyer BH, Vogel H, & Hecht B. (2005). Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.
Vedani, A., Dobler, M., & Lill, M. A. (2005). Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry, 48(11), 3700–3703. https://doi.org/10.1021/jm050185q
Vedani, A., Dobler, M., & Lill, M. A. (2005). Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry, 48(11), 3700–3703. https://doi.org/10.1021/jm050185q
Vedani, A., Dobler, M., Dollinger, H., Hasselbach, K.-M., Birke, F., & Lill, M. A. (2005). Novel ligands for the chemokine receptor-3 (CCR3): A receptor-modeling study based on 5D-QSAR. Journal of Medicinal Chemistry, 48(5), 1515–1527. https://doi.org/10.1021/jm040827u
Vedani, A., Dobler, M., Dollinger, H., Hasselbach, K.-M., Birke, F., & Lill, M. A. (2005). Novel ligands for the chemokine receptor-3 (CCR3): A receptor-modeling study based on 5D-QSAR. Journal of Medicinal Chemistry, 48(5), 1515–1527. https://doi.org/10.1021/jm040827u
In silico prediction of receptor-mediated environmental toxic phenomena - Application to endocrine disruption. 16, 149–169. https://doi.org/10.1080/10629360412331319826
, Dobler, M., & Vedani, A. (2005).
In silico prediction of receptor-mediated environmental toxic phenomena - Application to endocrine disruption. 16, 149–169. https://doi.org/10.1080/10629360412331319826
, Dobler, M., & Vedani, A. (2005).
Lill, M. A., Winiger, F., Vedani, A., & Ernst, B. (2005). Impact of induced fit on ligand binding to the androgen receptor: A multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals. Journal of Medicinal Chemistry, 48, 5666–5674. https://doi.org/10.1021/jm050403f
Lill, M. A., Winiger, F., Vedani, A., & Ernst, B. (2005). Impact of induced fit on ligand binding to the androgen receptor: A multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals. Journal of Medicinal Chemistry, 48, 5666–5674. https://doi.org/10.1021/jm050403f
Lill, M. A., Vedani, A., & Dobler, M. (2004). Raptor: Combining dual-shell representation, induced-fit simulation, and hydrophobicity scoring in receptor modeling: Application toward the simulation of structurally diverse ligand sets. Journal of Medicinal Chemistry, 47(25), 6174–6186. https://doi.org/10.1021/jm049687e
Lill, M. A., Vedani, A., & Dobler, M. (2004). Raptor: Combining dual-shell representation, induced-fit simulation, and hydrophobicity scoring in receptor modeling: Application toward the simulation of structurally diverse ligand sets. Journal of Medicinal Chemistry, 47(25), 6174–6186. https://doi.org/10.1021/jm049687e
Olkhova, E., Hutter, M. C., Lill, M. A., Helms, V., & Michel, H. (2004). Dynamic Water Networks in Cytochrome c Oxidase from Paracoccus denitrificans Investigated by Molecular Dynamics Simulations. Biophysical Journal, 86(4), 1873–1889. https://doi.org/10.1016/s0006-3495(04)74254-x
Olkhova, E., Hutter, M. C., Lill, M. A., Helms, V., & Michel, H. (2004). Dynamic Water Networks in Cytochrome c Oxidase from Paracoccus denitrificans Investigated by Molecular Dynamics Simulations. Biophysical Journal, 86(4), 1873–1889. https://doi.org/10.1016/s0006-3495(04)74254-x