Publications
44 found
Show per page
Hamidi, A., Bayhaqi, Y. A., Drusová, S., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Cover Image: Volume 55 Issue 10 [Journal-article]. Lasers in Surgery and Medicine, 55(10). https://doi.org/10.1002/lsm.23751
Hamidi, A., Bayhaqi, Y. A., Drusová, S., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Cover Image: Volume 55 Issue 10 [Journal-article]. Lasers in Surgery and Medicine, 55(10). https://doi.org/10.1002/lsm.23751
Bayhaqi, Y. A., Hamidi, A., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography. Biomedical Optics Express, 14, 2986–3002. https://doi.org/10.1364/boe.486660
Bayhaqi, Y. A., Hamidi, A., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Real-time closed-loop tissue-specific laser osteotomy using deep-learning-assisted optical coherence tomography. Biomedical Optics Express, 14, 2986–3002. https://doi.org/10.1364/boe.486660
Spectroscopic investigation of Tm<sup>3+</sup>-Dy<sup>3+</sup> co-doped KY3F10 crystals for 3 µm laser applications. null. https://doi.org/10.1109/cleo/europe-eqec57999.2023.10232805
, & Butkus, Arminas. (2023).
Spectroscopic investigation of Tm<sup>3+</sup>-Dy<sup>3+</sup> co-doped KY3F10 crystals for 3 µm laser applications. null. https://doi.org/10.1109/cleo/europe-eqec57999.2023.10232805
, & Butkus, Arminas. (2023).
Cetin, Cigdem, Drusová, Sandra, Hamidi, Arsham, Bayhaqi, Yakub, Rauter, Georg, Cattin, Philippe, Zam, Azhar, & Bone ablation performance of a Tm-Cr-Ho:YAG Laser. 12377. https://doi.org/10.1117/12.2647703
. (2023).
Cetin, Cigdem, Drusová, Sandra, Hamidi, Arsham, Bayhaqi, Yakub, Rauter, Georg, Cattin, Philippe, Zam, Azhar, & Bone ablation performance of a Tm-Cr-Ho:YAG Laser. 12377. https://doi.org/10.1117/12.2647703
. (2023).
Hamidi, A., Bayhaqi, Y. A., Canbaz, F., Navarini, A. A., Cattin, P. C., & Zam, A. (2023). Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback. Lasers in Medical Science, 38. https://doi.org/10.1007/s10103-023-03886-z
Hamidi, A., Bayhaqi, Y. A., Canbaz, F., Navarini, A. A., Cattin, P. C., & Zam, A. (2023). Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback. Lasers in Medical Science, 38. https://doi.org/10.1007/s10103-023-03886-z
Hamidi, A., Bayhaqi, Y. A., Drusová, S., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation. Lasers in Surgery and Medicine, 55, 900–911. https://doi.org/10.1002/lsm.23732
Hamidi, A., Bayhaqi, Y. A., Drusová, S., Navarini, A. A., Cattin, P. C., Canbaz, F., & Zam, A. (2023). Multimodal feedback systems for smart laser osteotomy: Depth control and tissue differentiation. Lasers in Surgery and Medicine, 55, 900–911. https://doi.org/10.1002/lsm.23732
Hamidi, A., Bayhaqi, Y. A., Navarini, A. A., Cattin, P. C., Zam, A., & Canbaz, F. (2023). Towards miniaturized OCT-guided laser osteotomy: integration of fiber-coupled Er:YAG laser with OCT. OSA Continuum, 2, 2106–2115. https://doi.org/10.1364/optcon.497483
Hamidi, A., Bayhaqi, Y. A., Navarini, A. A., Cattin, P. C., Zam, A., & Canbaz, F. (2023). Towards miniaturized OCT-guided laser osteotomy: integration of fiber-coupled Er:YAG laser with OCT. OSA Continuum, 2, 2106–2115. https://doi.org/10.1364/optcon.497483
Bayhaqi Y.A., Hamidi A., IEEE Transactions on Medical Imaging, 41(10), 2615–2628. https://doi.org/10.1109/tmi.2022.3168793
, Navarini AA, Cattin PC, & Zam A. (2022). Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy.
Bayhaqi Y.A., Hamidi A., IEEE Transactions on Medical Imaging, 41(10), 2615–2628. https://doi.org/10.1109/tmi.2022.3168793
, Navarini AA, Cattin PC, & Zam A. (2022). Deep-Learning-Based Fast Optical Coherence Tomography (OCT) Image Denoising for Smart Laser Osteotomy.
Cetin C., Drusova S., Hamidi A., Rauter G., Cattin P., Zam A., & Bone ablation using a Ho:YAG laser. 8, 580–583. https://doi.org/10.1515/cdbme-2022-1148
(2022).
Cetin C., Drusova S., Hamidi A., Rauter G., Cattin P., Zam A., & Bone ablation using a Ho:YAG laser. 8, 580–583. https://doi.org/10.1515/cdbme-2022-1148
(2022).
Nguendon Kenhagho H., Lasers in Surgery and Medicine, 54(2), 289–304. https://doi.org/10.1002/lsm.23473
, Hopf A., Guzman R, Cattin P, & Zam A. (2022). Toward optoacoustic sciatic nerve detection using an all-fiber interferometric-based sensor for endoscopic smart laser surgery.
Nguendon Kenhagho H., Lasers in Surgery and Medicine, 54(2), 289–304. https://doi.org/10.1002/lsm.23473
, Hopf A., Guzman R, Cattin P, & Zam A. (2022). Toward optoacoustic sciatic nerve detection using an all-fiber interferometric-based sensor for endoscopic smart laser surgery.
Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network for Pre-carbonization Detection in Laserosteotomy. 106 MMS, 89–96. https://doi.org/10.1007/978-3-030-76147-9_10
, Abbasi H., Bayhaqi Y.A., Cattin P.C., & Zam A. (2022).
Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Network for Pre-carbonization Detection in Laserosteotomy. 106 MMS, 89–96. https://doi.org/10.1007/978-3-030-76147-9_10
, Abbasi H., Bayhaqi Y.A., Cattin P.C., & Zam A. (2022).
Bayhaqi Y.A., Hamidi A., OSA Continuum, 4(9), 2510–2526. https://doi.org/10.1364/osac.435184
, Navarini A.A., Cattin P.C., & Zam A. (2021). Deep learning models comparison for tissue classification using optical coherence tomography images: Toward smart laser osteotomy.
Bayhaqi Y.A., Hamidi A., OSA Continuum, 4(9), 2510–2526. https://doi.org/10.1364/osac.435184
, Navarini A.A., Cattin P.C., & Zam A. (2021). Deep learning models comparison for tissue classification using optical coherence tomography images: Toward smart laser osteotomy.
Beltran Bernal L.M., Journal of Biomedical Optics, 26(9). https://doi.org/10.1117/1.jbo.26.9.095002
, Darwiche S.E., Nuss K.M.R., Friederich N.F., Cattin P.C., & Zam A. (2021). Optical fibers for endoscopic high-power Er:YAG laserosteotomy.
Beltran Bernal L.M., Journal of Biomedical Optics, 26(9). https://doi.org/10.1117/1.jbo.26.9.095002
, Darwiche S.E., Nuss K.M.R., Friederich N.F., Cattin P.C., & Zam A. (2021). Optical fibers for endoscopic high-power Er:YAG laserosteotomy.
Kenhagho H.N., Sensors and Actuators, A: Physical, 320. https://doi.org/10.1016/j.sna.2021.112570
, Guzman R., Cattin P., & Zam A. (2021). Corrigendum to “Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor” [Sens. Actuators A: Phys. 317 (January) (2021) 112394] (Sensors and Actuators: A. Physical (2021) 317, (S0924424720317106), (10.1016/j.sna.2020.112394)).
Kenhagho H.N., Sensors and Actuators, A: Physical, 320. https://doi.org/10.1016/j.sna.2021.112570
, Guzman R., Cattin P., & Zam A. (2021). Corrigendum to “Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor” [Sens. Actuators A: Phys. 317 (January) (2021) 112394] (Sensors and Actuators: A. Physical (2021) 317, (S0924424720317106), (10.1016/j.sna.2020.112394)).
Nguendon Kenhagho H., Lasers in Surgery and Medicine, 53(3), 377–389. https://doi.org/10.1002/lsm.23290
, Gomez Alvarez-Arenas T.E., Guzman R., Cattin P, & Zam A. (2021). Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer.
Nguendon Kenhagho H., Lasers in Surgery and Medicine, 53(3), 377–389. https://doi.org/10.1002/lsm.23290
, Gomez Alvarez-Arenas T.E., Guzman R., Cattin P, & Zam A. (2021). Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer.
Abbasi, Hamed, Biomedical Optics Express, 12(1), 444–461. https://doi.org/10.1364/boe.405825
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2021). Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications.
Abbasi, Hamed, Biomedical Optics Express, 12(1), 444–461. https://doi.org/10.1364/boe.405825
, Guzman, Raphael, Cattin, Philippe C., & Zam, Azhar. (2021). Highly flexible fiber delivery of a high peak power nanosecond Nd:YAG laser beam for flexiscopic applications.
Abbasi, Hamed, Sahraei, Negin, Mechanisms and Machine Science. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-58104-6_24
, Cattin, Philippe C., & Zam, Azhar. (2021). Simulation of Echellogram Using Zemax OpticStudio and Matlab for LIBS. In Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (Ed.),
Abbasi, Hamed, Sahraei, Negin, Mechanisms and Machine Science. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-58104-6_24
, Cattin, Philippe C., & Zam, Azhar. (2021). Simulation of Echellogram Using Zemax OpticStudio and Matlab for LIBS. In Rauter, Georg; Cattin, Philippe C.; Zam, Azhar; Riener, Robert; Carbone, Giuseppe; Pisla, Doina (Ed.),
Hamidi A., Bayhaqi Y.A., Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography. 11924. https://doi.org/10.1117/12.2616133
, Navarini A.A., Cattin P.C., & Zam A. (2021).
Hamidi A., Bayhaqi Y.A., Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography. 11924. https://doi.org/10.1117/12.2616133
, Navarini A.A., Cattin P.C., & Zam A. (2021).
Hamidi A., Bayhaqi Y.A., Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography.
, Navarini A.A., Cattin P.C., & Zam A. (2021, January 1).
Hamidi A., Bayhaqi Y.A., Observation of controlled temperature changes of bone by phase-sensitive optical coherence tomography.
, Navarini A.A., Cattin P.C., & Zam A. (2021, January 1).
Hamidi, Arsham, Bayhaqi, Yakub A., Biomedical Optics Express, 12(4), 2118–2133. https://doi.org/10.1364/boe.414300
, Navarini, Alexander A., Cattin, Philippe C., & Zam, Azhar. (2021). Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for smart laser osteotomy.
Hamidi, Arsham, Bayhaqi, Yakub A., Biomedical Optics Express, 12(4), 2118–2133. https://doi.org/10.1364/boe.414300
, Navarini, Alexander A., Cattin, Philippe C., & Zam, Azhar. (2021). Long-range optical coherence tomography with extended depth-of-focus: a visual feedback system for smart laser osteotomy.
Nguendon Kenhagho H., Bayhaqi Y.A., Optoacoustic tissue classification for laser osteotomes using mahalanobis distance-based method. 93, 202–210. https://doi.org/10.1007/978-3-030-58104-6_23
, Guzman R., Gomez Alvarez-Arenas T.E., Cattin P.C., & Zam A. (2021).
Nguendon Kenhagho H., Bayhaqi Y.A., Optoacoustic tissue classification for laser osteotomes using mahalanobis distance-based method. 93, 202–210. https://doi.org/10.1007/978-3-030-58104-6_23
, Guzman R., Gomez Alvarez-Arenas T.E., Cattin P.C., & Zam A. (2021).
Nguendon Kenhagho H., Sensors and Actuators, A: Physical, 317. https://doi.org/10.1016/j.sna.2020.112394
, Guzman R., Cattin P., & Zam A. (2021). Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor.
Nguendon Kenhagho H., Sensors and Actuators, A: Physical, 317. https://doi.org/10.1016/j.sna.2020.112394
, Guzman R., Cattin P., & Zam A. (2021). Miniaturized optoacoustic feedback sensor for smart laser osteotome: Fiber-coupled Fabry-Pérot etalon sensor.
Laser safety (pp. 255–262). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_20
, & Zam A. (2020).
Laser safety (pp. 255–262). Springer International Publishing. https://doi.org/10.1007/978-3-030-29604-9_20
, & Zam A. (2020).
Muti, A., Canbaz, F., Tonelli, M., Bae, J. E., Rotermund, F., Petrov, V., & Sennaroglu, A. (2020). Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3 µm. Optics Letters, 45(3), 656–659. https://doi.org/10.1364/ol.385629
Muti, A., Canbaz, F., Tonelli, M., Bae, J. E., Rotermund, F., Petrov, V., & Sennaroglu, A. (2020). Graphene mode-locked operation of Tm3+:YLiF4 and Tm3+:KY3F10 lasers near 2.3 µm. Optics Letters, 45(3), 656–659. https://doi.org/10.1364/ol.385629
Abbasi, Hamed, Beltrán Bernal, Lina M., Hamidi, Arsham, Droneau, Antoine, Biomedical Optics Express, 11(4), 1790–1807. https://doi.org/10.1364/boe.385862
, Guzman, Raphael, Jacques, Steven L., Cattin, Philippe C., & Zam, Azhar. (2020). Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy.
Abbasi, Hamed, Beltrán Bernal, Lina M., Hamidi, Arsham, Droneau, Antoine, Biomedical Optics Express, 11(4), 1790–1807. https://doi.org/10.1364/boe.385862
, Guzman, Raphael, Jacques, Steven L., Cattin, Philippe C., & Zam, Azhar. (2020). Combined Nd:YAG and Er:YAG lasers for real-time closed-loop tissue-specific laser osteotomy.
Beltran Bernal, Lina Marcela, Biomedical Optics Express, 11(12), 7253–7272. https://doi.org/10.1364/boe.408914
, Droneau, Antoine, Friederich, Niklaus F., Cattin, Philippe C., & Zam, Azhar. (2020). Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system.
Beltran Bernal, Lina Marcela, Biomedical Optics Express, 11(12), 7253–7272. https://doi.org/10.1364/boe.408914
, Droneau, Antoine, Friederich, Niklaus F., Cattin, Philippe C., & Zam, Azhar. (2020). Optimizing deep bone ablation by means of a microsecond Er:YAG laser and a novel water microjet irrigation system.
Beltran Bernal L.M., Measurements of coupling efficiency of high power Er:YAG laser in different types of optical fibers. 11233. https://doi.org/10.1117/12.2546048
, Friederich N.F., Cattin P.C., & Zam A. (2020).
Beltran Bernal L.M., Measurements of coupling efficiency of high power Er:YAG laser in different types of optical fibers. 11233. https://doi.org/10.1117/12.2546048
, Friederich N.F., Cattin P.C., & Zam A. (2020).
Hamidi A., Bayhaqi Y.A., Imaging photothermal-induced expansion of bone during laser osteotomy by phase-sensitive OCT: Preliminary results. 11359. https://doi.org/10.1117/12.2555675
, Navarini A., Cattin P.C., & Zam A. (2020).
Hamidi A., Bayhaqi Y.A., Imaging photothermal-induced expansion of bone during laser osteotomy by phase-sensitive OCT: Preliminary results. 11359. https://doi.org/10.1117/12.2555675
, Navarini A., Cattin P.C., & Zam A. (2020).
Kenhagho H.N., A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956743
, Rauter G., Guzman R., Cattin P., & Zam A. (2019).
Kenhagho H.N., A First Approach to Miniaturized Optoacoustic Feedback Sensor for Smart Laser Osteotome : Fiber-Coupled Fabry-Pérot Etalon Sensor. 2019-October. https://doi.org/10.1109/sensors43011.2019.8956743
, Rauter G., Guzman R., Cattin P., & Zam A. (2019).
Tanisali, G., Baylam, I., Canbaz, F., Bae, J. E., Rotermund, F., Demirbas, U., & Sennaroglu, A. (2019, January 1). Generation of 23-fs Pulses at 850 nm from a Carbon Nanotube Mode-Locked Solid-State Laser [Proceedings-article]. https://doi.org/10.1364/assl.2019.am4a.5
Tanisali, G., Baylam, I., Canbaz, F., Bae, J. E., Rotermund, F., Demirbas, U., & Sennaroglu, A. (2019, January 1). Generation of 23-fs Pulses at 850 nm from a Carbon Nanotube Mode-Locked Solid-State Laser [Proceedings-article]. https://doi.org/10.1364/assl.2019.am4a.5
Baylam, I., Canbaz, F., & Sennaroglu, A. (2018). Dual-Wavelength Temporal Dynamics of a Gain-Switched 2-μm Tm3+:Lu2O3 Ceramic Laser. IEEE Journal of Selected Topics in Quantum Electronics, 24(5). https://doi.org/10.1109/JSTQE.2018.2805825
Baylam, I., Canbaz, F., & Sennaroglu, A. (2018). Dual-Wavelength Temporal Dynamics of a Gain-Switched 2-μm Tm3+:Lu2O3 Ceramic Laser. IEEE Journal of Selected Topics in Quantum Electronics, 24(5). https://doi.org/10.1109/JSTQE.2018.2805825
Kerr-lens mode-locked and graphene mode-locked operations of a 2.3-μm Tm3+:YLF laser. Part F121-ASSL 2018. https://doi.org/10.1364/ASSL.2018.AM5A.4
, Yorulmaz, I., Bae, J.E., Choi, S.Y., Rotermund, F., & Sennaroglu, A. (2018).
Kerr-lens mode-locked and graphene mode-locked operations of a 2.3-μm Tm3+:YLF laser. Part F121-ASSL 2018. https://doi.org/10.1364/ASSL.2018.AM5A.4
, Yorulmaz, I., Bae, J.E., Choi, S.Y., Rotermund, F., & Sennaroglu, A. (2018).
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Optics Letters, 42(19), 3964–3967. https://doi.org/10.1364/OL.42.003964
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. Optics Letters, 42(19), 3964–3967. https://doi.org/10.1364/OL.42.003964
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). 2.3-μm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. Optics Letters, 42(9), 1656–1659. https://doi.org/10.1364/OL.42.001656
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). 2.3-μm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. Optics Letters, 42(9), 1656–1659. https://doi.org/10.1364/OL.42.001656
Canbaz, F., Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2017). Generation of sub-20-fs pulses from a graphene mode-locked laser. Optics Express, 25(3), 2834–2839. https://doi.org/10.1364/OE.25.002834
Canbaz, F., Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2017). Generation of sub-20-fs pulses from a graphene mode-locked laser. Optics Express, 25(3), 2834–2839. https://doi.org/10.1364/OE.25.002834
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). Passive Q-switching of a Tm3+: YLF laser at 2.3 μm with a Cr2+: ZnSe saturable absorber. Part F75-ASSL 2017. https://doi.org/10.1364/ASSL.2017.JM5A.18
Canbaz, F., Yorulmaz, I., & Sennaroglu, A. (2017). Passive Q-switching of a Tm3+: YLF laser at 2.3 μm with a Cr2+: ZnSe saturable absorber. Part F75-ASSL 2017. https://doi.org/10.1364/ASSL.2017.JM5A.18
Sub-20 Femtosecond Pulse Generation with a Graphene Mode-locked Solid-State Laser [Proceedings-article]. https://doi.org/10.1364/assl.2016.atu1a.2
, Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2016, January 1).
Sub-20 Femtosecond Pulse Generation with a Graphene Mode-locked Solid-State Laser [Proceedings-article]. https://doi.org/10.1364/assl.2016.atu1a.2
, Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2016, January 1).
Canbaz, F., Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2015). Graphene mode-locked Cr:LiSAF laser at 850 nm. Optics Letters, 40(17), 4110–4113. https://doi.org/10.1364/OL.40.004110
Canbaz, F., Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2015). Graphene mode-locked Cr:LiSAF laser at 850 nm. Optics Letters, 40(17), 4110–4113. https://doi.org/10.1364/OL.40.004110
Graphene mode-locked femtosecond Cr:LiSAF laser. https://doi.org/10.1364/ASSL.2015.AM5A.24
, Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2015, January 1).
Graphene mode-locked femtosecond Cr:LiSAF laser. https://doi.org/10.1364/ASSL.2015.AM5A.24
, Kakenov, N., Kocabas, C., Demirbas, U., & Sennaroglu, A. (2015, January 1).
Cihan, C., Beyatli, E., Canbaz, F., Chen, L.-J., Sumpf, B., Erbert, G., Leitenstorfer, A., Kärtner, F. X., Sennaroglu, A., & Demirbas, U. (2015). Gain-Matched Output Couplers for Efficient Kerr-Lens Mode-Locking of Low-Cost and High-Peak Power Cr:LiSAF Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 21(1), 94–105. https://doi.org/10.1109/JSTQE.2014.2359540
Cihan, C., Beyatli, E., Canbaz, F., Chen, L.-J., Sumpf, B., Erbert, G., Leitenstorfer, A., Kärtner, F. X., Sennaroglu, A., & Demirbas, U. (2015). Gain-Matched Output Couplers for Efficient Kerr-Lens Mode-Locking of Low-Cost and High-Peak Power Cr:LiSAF Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 21(1), 94–105. https://doi.org/10.1109/JSTQE.2014.2359540
Canbaz, F., Beyatli, E., Chen, L.-J., Sennaroglu, A., Kärtner, F. X., & Demirbas, U. (2014). Highly efficient and robust operation of Kerr-lens mode-locked Cr:LiSAF lasers using gain-matched output couplers. Optics Letters, 39(2), 327–330. https://doi.org/10.1364/OL.39.000327
Canbaz, F., Beyatli, E., Chen, L.-J., Sennaroglu, A., Kärtner, F. X., & Demirbas, U. (2014). Highly efficient and robust operation of Kerr-lens mode-locked Cr:LiSAF lasers using gain-matched output couplers. Optics Letters, 39(2), 327–330. https://doi.org/10.1364/OL.39.000327
Cihan, C., Beyatli, E., Canbaz, F., Chen, L.-J., Sumpf, B., Erbert, G., Leitenstorfer, A., Kärtner, F. X., Sennaroglu, A., & Demirbas, U. (2014, January 1). Gain-matched output couplers (GMOCs) for efficient and robust kerr-lens mode-locking of Cr: LiSAF lasers. https://doi.org/10.1364/cleo_si.2014.stu2e.8
Cihan, C., Beyatli, E., Canbaz, F., Chen, L.-J., Sumpf, B., Erbert, G., Leitenstorfer, A., Kärtner, F. X., Sennaroglu, A., & Demirbas, U. (2014, January 1). Gain-matched output couplers (GMOCs) for efficient and robust kerr-lens mode-locking of Cr: LiSAF lasers. https://doi.org/10.1364/cleo_si.2014.stu2e.8
Canbaz, F., Beyatli, E., Chen, L.-J., Sennaroglu, A., Kärtner, F. X., & Demirbas, U. (2013, January 1). Efficient and Robust Kerr-Lens mode-locking of Cr: LiSAF lasers using gain-matched output couplers. https://doi.org/10.1364/assl.2013.ath3a.4
Canbaz, F., Beyatli, E., Chen, L.-J., Sennaroglu, A., Kärtner, F. X., & Demirbas, U. (2013, January 1). Efficient and Robust Kerr-Lens mode-locking of Cr: LiSAF lasers using gain-matched output couplers. https://doi.org/10.1364/assl.2013.ath3a.4
Türkoǧlu, A.K., Ersoy, T., Applied Physics A: Materials Science and Processing, 108(4), 935–941. https://doi.org/10.1007/s00339-012-7001-8
, & Akturk, S. (2012). Effects of waveguide behavior during femtosecond-laser drilling of metals.
Türkoǧlu, A.K., Ersoy, T., Applied Physics A: Materials Science and Processing, 108(4), 935–941. https://doi.org/10.1007/s00339-012-7001-8
, & Akturk, S. (2012). Effects of waveguide behavior during femtosecond-laser drilling of metals.