Publications
188 found
Show per page
Mittal, Nitish, Ataman, Meric, Tintignac, Lionel, Ham, Daniel J., Jörin, Lena, Schmidt, Alexander, Sinnreich, Michael, Npj Regenerative Medicine, 9(1). https://doi.org/10.1038/s41536-024-00369-9
, & Zavolan, Mihaela. (2024). Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice [Journal-article].
Mittal, Nitish, Ataman, Meric, Tintignac, Lionel, Ham, Daniel J., Jörin, Lena, Schmidt, Alexander, Sinnreich, Michael, Npj Regenerative Medicine, 9(1). https://doi.org/10.1038/s41536-024-00369-9
, & Zavolan, Mihaela. (2024). Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice [Journal-article].
Ataman, Meric, Mittal, Nitish, Tintignac, Lionel, Schmidt, Alexander, Ham, Daniel J., González, Asier, Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-06679-4
, & Zavolan, Mihaela. (2024). Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles [Journal-article].
Ataman, Meric, Mittal, Nitish, Tintignac, Lionel, Schmidt, Alexander, Ham, Daniel J., González, Asier, Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-06679-4
, & Zavolan, Mihaela. (2024). Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles [Journal-article].
Ham, Alexander S, Lin, Shuo, Tse, Alice, Thürkauf, Marco, Oliveri, Filippo, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.15.594276
. (2024). Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. In
Ham, Alexander S, Lin, Shuo, Tse, Alice, Thürkauf, Marco, Oliveri, Filippo, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.15.594276
. (2024). Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. In
Ham, Daniel J, Semeraro, Michelangelo, Berger, Bianca Manuela, Lin, Shuo, Maino, Eleonora, Oliveri, Filippo, & Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis. bioRxiv. https://doi.org/10.1101/2024.03.13.584777
. (2024).
Ham, Daniel J, Semeraro, Michelangelo, Berger, Bianca Manuela, Lin, Shuo, Maino, Eleonora, Oliveri, Filippo, & Muscle fiber Myc is dispensable for muscle growth and forced expression severely perturbs homeostasis. bioRxiv. https://doi.org/10.1101/2024.03.13.584777
. (2024).
Reinhard, Judith R., Porrello, Emanuela, Lin, Shuo, Pelczar, Pawel, Previtali, Stefano C., & PNAS Nexus, 2(4), pgad083. https://doi.org/10.1093/pnasnexus/pgad083
(2023). Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy.
Reinhard, Judith R., Porrello, Emanuela, Lin, Shuo, Pelczar, Pawel, Previtali, Stefano C., & PNAS Nexus, 2(4), pgad083. https://doi.org/10.1093/pnasnexus/pgad083
(2023). Nerve pathology is prevented by linker proteins in mouse models for LAMA2-related muscular dystrophy.
Thürkauf, Marco, Lin, Shuo, Oliveri, Filippo, Grimm, Dirk, Platt, Randall J., & Nature communications, 14(1), 6116. https://doi.org/10.1038/s41467-023-41769-7
(2023). Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9.
Thürkauf, Marco, Lin, Shuo, Oliveri, Filippo, Grimm, Dirk, Platt, Randall J., & Nature communications, 14(1), 6116. https://doi.org/10.1038/s41467-023-41769-7
(2023). Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9.
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Handschin C, Tintignac LA, Zavolan M, Mittal N, & Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
. (2022).
Ham DJ, Börsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thürkauf M, Delezie J, Furrer R, Burri D, Sinnreich M, Handschin C, Tintignac LA, Zavolan M, Mittal N, & Author Correction: Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. (Patent No. 1). 13(1), Article 1. https://doi.org/10.1038/s41467-022-30189-8
. (2022).
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
, Hall, Michael N., & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling.
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
, Hall, Michael N., & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
(2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Ham, Daniel J., Börsch, Anastasiya, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Nature Communications, 13(1), 2025. https://doi.org/10.1038/s41467-022-29714-6
(2022). Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle.
Kaiser, Marco S., Milan, Giulia, Ham, Daniel J., Lin, Shuo, Oliveri, Filippo, Chojnowska, Kathrin, Tintignac, Lionel A., Mittal, Nitish, Zimmerli, Christian E., Glass, David J., Zavolan, Mihaela, & Communications Biology, 5(1), 1141. https://doi.org/10.1038/s42003-022-04097-y
(2022). Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis.
Kaiser, Marco S., Milan, Giulia, Ham, Daniel J., Lin, Shuo, Oliveri, Filippo, Chojnowska, Kathrin, Tintignac, Lionel A., Mittal, Nitish, Zimmerli, Christian E., Glass, David J., Zavolan, Mihaela, & Communications Biology, 5(1), 1141. https://doi.org/10.1038/s42003-022-04097-y
(2022). Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis.
Smeets, H. J. M., Verbrugge, B., Springuel, P., Voermans, N. C., Cossu, G., de Coo, R., Diamantidis, C., Dragendorf, E., Durbeej-Hjalt, M., Dziewczapolski, G., Erasmus, C., Foley, R., Girgenrath, S., Herrero, L. Z., Kemaladewi, D., Klein, A., Lemmens, M.-J., van de Loo, L., Previtali, S., et al. (2021). Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands. 31, 673–680. https://doi.org/10.1016/j.nmd.2021.04.003
Smeets, H. J. M., Verbrugge, B., Springuel, P., Voermans, N. C., Cossu, G., de Coo, R., Diamantidis, C., Dragendorf, E., Durbeej-Hjalt, M., Dziewczapolski, G., Erasmus, C., Foley, R., Girgenrath, S., Herrero, L. Z., Kemaladewi, D., Klein, A., Lemmens, M.-J., van de Loo, L., Previtali, S., et al. (2021). Merosin deficient congenital muscular dystrophy type 1A: An international workshop on the road to therapy 15-17 November 2019, Maastricht, the Netherlands. 31, 673–680. https://doi.org/10.1016/j.nmd.2021.04.003
Börsch, Anastasiya, Ham, Daniel J., Mittal, Nitish, Tintignac, Lionel A., Migliavacca, Eugenia, Feige, Jérôme N., Communications Biology, 4(1), 194. https://doi.org/10.1038/s42003-021-01723-z
, & Zavolan, Mihaela. (2021). Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia.
Börsch, Anastasiya, Ham, Daniel J., Mittal, Nitish, Tintignac, Lionel A., Migliavacca, Eugenia, Feige, Jérôme N., Communications Biology, 4(1), 194. https://doi.org/10.1038/s42003-021-01723-z
, & Zavolan, Mihaela. (2021). Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia.
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
(2021).
Ham, Daniel J., Börsch, Anastasyia, Chojnowska, Kathrin, Lin, Shuo, Leuchtmann, Aurel B., Ham, Alexander S., Thürkauf, Marco, Delezie, Julien, Furrer, Regula, Burri, Dominik, Sinnreich, Michael, Handschin, Christoph, Tintignac, Lionel A., Zavolan, Mihaela, Mittal, Nitish, & Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. bioRxiv. https://doi.org/10.1101/2021.05.28.446097
(2021).
Previtali, Stefano C., Cohn, Ronald D., & Frontiers in Molecular Neuroscience, 14, 780635. https://doi.org/10.3389/fnmol.2021.780635
(2021). Editorial: Current Insights Into LAMA2 Disease.
Previtali, Stefano C., Cohn, Ronald D., & Frontiers in Molecular Neuroscience, 14, 780635. https://doi.org/10.3389/fnmol.2021.780635
(2021). Editorial: Current Insights Into LAMA2 Disease.
Castets, Perrine, Ham, Daniel J., & Frontiers in Molecular Neuroscience, 13, 162. https://doi.org/10.3389/fnmol.2020.00162
(2020). The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?
Castets, Perrine, Ham, Daniel J., & Frontiers in Molecular Neuroscience, 13, 162. https://doi.org/10.3389/fnmol.2020.00162
(2020). The TOR Pathway at the Neuromuscular Junction: More Than a Metabolic Player?
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., Hall, Michael N., Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
, & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation.
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., Hall, Michael N., Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
, & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation.
Ham, Alexander S., Chojnowska, Kathrin, Tintignac, Lionel A., Lin, Shuo, Schmidt, Alexander, Ham, Daniel J., Sinnreich, Michael, & Journal of Cachexia, Sarcopenia and Muscle, 11(1), 259–273. https://doi.org/10.1002/jcsm.12505
(2020). mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice.
Ham, Alexander S., Chojnowska, Kathrin, Tintignac, Lionel A., Lin, Shuo, Schmidt, Alexander, Ham, Daniel J., Sinnreich, Michael, & Journal of Cachexia, Sarcopenia and Muscle, 11(1), 259–273. https://doi.org/10.1002/jcsm.12505
(2020). mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Handschin, Christoph, Zavolan, Mihaela, & Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
(2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Ham, Daniel J., Börsch, Anastasiya, Lin, Shuo, Thürkauf, Marco, Weihrauch, Martin, Reinhard, Judith R., Delezie, Julien, Battilana, Fabienne, Wang, Xueyong, Kaiser, Marco S., Guridi, Maitea, Sinnreich, Michael, Rich, Mark M., Mittal, Nitish, Tintignac, Lionel A., Handschin, Christoph, Zavolan, Mihaela, & Nature Communications, 11(1), 4510. https://doi.org/10.1038/s41467-020-18140-1
(2020). The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia.
Pereira, Jorge A., Gerber, Joanne, Ghidinelli, Monica, Gerber, Daniel, Tortola, Luigi, Ommer, Andrea, Bachofner, Sven, Santarella, Francesco, Tinelli, Elisa, Lin, Shuo, Human Molecular Genetics, 29(8), 1253–1273. https://doi.org/10.1093/hmg/ddaa034
, Kopf, Manfred, Toyka, Klaus V., & Suter, Ueli. (2020). Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy.
Pereira, Jorge A., Gerber, Joanne, Ghidinelli, Monica, Gerber, Daniel, Tortola, Luigi, Ommer, Andrea, Bachofner, Sven, Santarella, Francesco, Tinelli, Elisa, Lin, Shuo, Human Molecular Genetics, 29(8), 1253–1273. https://doi.org/10.1093/hmg/ddaa034
, Kopf, Manfred, Toyka, Klaus V., & Suter, Ueli. (2020). Mice carrying an analogous heterozygous Dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy.
Morgan, J., Butler-Browne, G., Muntoni, F., Patel, K., Amthor, H., Birchmeier, C., Bonaldo, P., Bönnemann, C., Browne, G. B., Chaturvedi, D., Davenport, R., Ferreiro, A., Furling, D., Giordani, L., Grounds, M., Jungbluth, H., Canoves, P. M., Mishra, P., Padberg, G., et al. (2019). 240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands. 29, 704–715. https://doi.org/10.1016/j.nmd.2019.07.003
Morgan, J., Butler-Browne, G., Muntoni, F., Patel, K., Amthor, H., Birchmeier, C., Bonaldo, P., Bönnemann, C., Browne, G. B., Chaturvedi, D., Davenport, R., Ferreiro, A., Furling, D., Giordani, L., Grounds, M., Jungbluth, H., Canoves, P. M., Mishra, P., Padberg, G., et al. (2019). 240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands. 29, 704–715. https://doi.org/10.1016/j.nmd.2019.07.003
Ham, Alexander S., Chojnowska, Kathrin, Tintignac, Lionel A., Lin, Shuo, Schmidt, Alexander, Ham, Daniel J., Sinnreich, Michael, & mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice [Posted-content]. bioRxiv. https://doi.org/10.1101/738294
(2019).
Ham, Alexander S., Chojnowska, Kathrin, Tintignac, Lionel A., Lin, Shuo, Schmidt, Alexander, Ham, Daniel J., Sinnreich, Michael, & mTORC1 signaling is not essential for the maintenance of muscle mass and function in adult sedentary mice [Posted-content]. bioRxiv. https://doi.org/10.1101/738294
(2019).
Castets, Perrine, Rion, Nathalie, Théodore, Marine, Falcetta, Denis, Lin, Shuo, Reischl, Markus, Wild, Franziska, Guérard, Laurent, Eickhorst, Christopher, Brockhoff, Marielle, Guridi, Maitea, Ibebunjo, Chikwendu, Cruz, Joseph, Sinnreich, Michael, Rudolf, Rüdiger, Glass, David J., & Nature Communications, 10(1), 3187. https://doi.org/10.1038/s41467-019-11227-4
(2019). mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4.
Castets, Perrine, Rion, Nathalie, Théodore, Marine, Falcetta, Denis, Lin, Shuo, Reischl, Markus, Wild, Franziska, Guérard, Laurent, Eickhorst, Christopher, Brockhoff, Marielle, Guridi, Maitea, Ibebunjo, Chikwendu, Cruz, Joseph, Sinnreich, Michael, Rudolf, Rüdiger, Glass, David J., & Nature Communications, 10(1), 3187. https://doi.org/10.1038/s41467-019-11227-4
(2019). mTORC1 and PKB/Akt control the muscle response to denervation by regulating autophagy and HDAC4.
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
, Tabares, Lucía, & Handschin, Christoph. (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle.
Delezie, Julien, Weihrauch, Martin, Maier, Geraldine, Tejero, Rocío, Ham, Daniel J., Gill, Jonathan F., Karrer-Cardel, Bettina, Proceedings of the National Academy of Sciences (PNAS), 116(32), 16111–16120. https://doi.org/10.1073/pnas.1900544116
, Tabares, Lucía, & Handschin, Christoph. (2019). BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle.
Donadon, Irving, Bussani, Erica, Riccardi, Federico, Licastro, Danilo, Romano, Giulia, Pianigiani, Giulia, Pinotti, Mirko, Kostantinova, Pavlina, Evers, Melvin, Lin, Shuo, Nucleic Acids Research, 47(14), 7618–7632. https://doi.org/10.1093/nar/gkz469
, & Pagani, Franco. (2019). Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA.
Donadon, Irving, Bussani, Erica, Riccardi, Federico, Licastro, Danilo, Romano, Giulia, Pianigiani, Giulia, Pinotti, Mirko, Kostantinova, Pavlina, Evers, Melvin, Lin, Shuo, Nucleic Acids Research, 47(14), 7618–7632. https://doi.org/10.1093/nar/gkz469
, & Pagani, Franco. (2019). Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA.
Rion, Nathalie, Castets, Perrine, Lin, Shuo, Enderle, Leonie, Reinhard, Judith R., Eickhorst, Christopher, & Development, 146(7), 1–15. https://doi.org/10.1242/dev.172460
(2019). mTOR controls embryonic and adult myogenesis via mTORC1.
Rion, Nathalie, Castets, Perrine, Lin, Shuo, Enderle, Leonie, Reinhard, Judith R., Eickhorst, Christopher, & Development, 146(7), 1–15. https://doi.org/10.1242/dev.172460
(2019). mTOR controls embryonic and adult myogenesis via mTORC1.
Rion, Nathalie, Castets, Perrine, Lin, Shuo, Enderle, Leonie, Reinhard, Judith R., & Skeletal Muscle, 9(1), 30. https://doi.org/10.1186/s13395-019-0217-y
(2019). mTORC2 affects the maintenance of the muscle stem cell pool.
Rion, Nathalie, Castets, Perrine, Lin, Shuo, Enderle, Leonie, Reinhard, Judith R., & Skeletal Muscle, 9(1), 30. https://doi.org/10.1186/s13395-019-0217-y
(2019). mTORC2 affects the maintenance of the muscle stem cell pool.
Ham, D. J., & Rüegg, M. A. (2018). Causes and consequences of age-related changes at the neuromuscular junction. Current Opinion in Physiology, 4, 32–39. https://doi.org/10.1016/j.cophys.2018.04.007
Ham, D. J., & Rüegg, M. A. (2018). Causes and consequences of age-related changes at the neuromuscular junction. Current Opinion in Physiology, 4, 32–39. https://doi.org/10.1016/j.cophys.2018.04.007
Boido, Marina, De Amicis, Elena, Valsecchi, Valeria, Trevisan, Marco, Ala, Ugo, Frontiers in Cellular Neuroscience, 12, 17. https://doi.org/10.3389/fncel.2018.00017
, Hettwer, Stefan, & Vercelli, Alessandro. (2018). Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy.
Boido, Marina, De Amicis, Elena, Valsecchi, Valeria, Trevisan, Marco, Ala, Ugo, Frontiers in Cellular Neuroscience, 12, 17. https://doi.org/10.3389/fncel.2018.00017
, Hettwer, Stefan, & Vercelli, Alessandro. (2018). Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy.
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
, Hall, Michael N., Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis.
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
, Hall, Michael N., Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis.
van Putten, Maaike, Aartsma-Rus, Annemieke, Grounds, Miranda D., Kornegay, Joe N., Mayhew, Anna, Gillingwater, Thomas H., Takeda, Shin’ichi, Journal of Neuromuscular Diseases, 5(1), 29–34. https://doi.org/10.3233/jnd-170288
, De Luca, Annamaria, Nagaraju, Kanneboyina, & Willmann, Raffaella. (2018). Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands.
van Putten, Maaike, Aartsma-Rus, Annemieke, Grounds, Miranda D., Kornegay, Joe N., Mayhew, Anna, Gillingwater, Thomas H., Takeda, Shin’ichi, Journal of Neuromuscular Diseases, 5(1), 29–34. https://doi.org/10.3233/jnd-170288
, De Luca, Annamaria, Nagaraju, Kanneboyina, & Willmann, Raffaella. (2018). Update on Standard Operating Procedures in Preclinical Research for DMD and SMA Report of TREAT-NMD Alliance Workshop, Schiphol Airport, 26 April 2015, The Netherlands.
Yurchenco, Peter D., McKee, Karen K., Reinhard, Judith R., & Matrix biology : journal of the International Society for Matrix Biology, 71-72, 174–187. https://doi.org/10.1016/j.matbio.2017.11.009
(2018). Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies.
Yurchenco, Peter D., McKee, Karen K., Reinhard, Judith R., & Matrix biology : journal of the International Society for Matrix Biology, 71-72, 174–187. https://doi.org/10.1016/j.matbio.2017.11.009
(2018). Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies.
Zainul, Zarin, Heikkinen, Anne, Koivisto, Hennariikka, Rautalahti, Iina, Kallio, Mika, Lin, Shuo, Härönen, Heli, Norman, Oula, The Journal of neuroscience, 38(17), 4243–4258. https://doi.org/10.1523/jneurosci.3119-17.2018
, Tanila, Heikki, & Pihlajaniemi, Taina. (2018). Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury.
Zainul, Zarin, Heikkinen, Anne, Koivisto, Hennariikka, Rautalahti, Iina, Kallio, Mika, Lin, Shuo, Härönen, Heli, Norman, Oula, The Journal of neuroscience, 38(17), 4243–4258. https://doi.org/10.1523/jneurosci.3119-17.2018
, Tanila, Heikki, & Pihlajaniemi, Taina. (2018). Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury.
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
, Hall, M. N., & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing.
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
, Hall, M. N., & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing.
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
, Hall, Michael N., MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion.
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
, Hall, Michael N., MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion.
Brockhoff, Marielle, Rion, Nathalie, Chojnowska, Kathrin, Wiktorowicz, Tatiana, Eickhorst, Christopher, Erne, Beat, Frank, Stephan, Angelini, Corrado, Furling, Denis, Journal of Clinical Investigation, 127(2), 549–563. https://doi.org/10.1172/jci89616
, Sinnreich, Michael, & Castets, Perrine. (2017). Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.
Brockhoff, Marielle, Rion, Nathalie, Chojnowska, Kathrin, Wiktorowicz, Tatiana, Eickhorst, Christopher, Erne, Beat, Frank, Stephan, Angelini, Corrado, Furling, Denis, Journal of Clinical Investigation, 127(2), 549–563. https://doi.org/10.1172/jci89616
, Sinnreich, Michael, & Castets, Perrine. (2017). Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I.
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
, Hall, Michael N., Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
, Hall, Michael N., Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.
Hodson, Nathan, McGlory, Chris, Oikawa, Sara Y., Jeromson, Stewart, Song, Zhe, American Journal of Physiology - Cell Physiology, 313(6), C604–C611. https://doi.org/10.1152/ajpcell.00176.2017
, Hamilton, D. Lee, Phillips, Stuart M., & Philp, Andrew. (2017). Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise.
Hodson, Nathan, McGlory, Chris, Oikawa, Sara Y., Jeromson, Stewart, Song, Zhe, American Journal of Physiology - Cell Physiology, 313(6), C604–C611. https://doi.org/10.1152/ajpcell.00176.2017
, Hamilton, D. Lee, Phillips, Stuart M., & Philp, Andrew. (2017). Differential localisation and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise.
Karakatsani, Andromachi, Marichal, Nicolás, Urban, Severino, Kalamakis, Georgios, Ghanem, Alexander, Schick, Anna, Zhang, Yina, Conzelmann, Karl-Klaus, Development, 144(24), 4604–4615. https://doi.org/10.1242/dev.150110
, Berninger, Benedikt, Ruiz de Almodovar, Carmen, Gascón, Sergio, & Kröger, Stephan. (2017). Neuronal LRP4 regulates synapse formation in the developing CNS.
Karakatsani, Andromachi, Marichal, Nicolás, Urban, Severino, Kalamakis, Georgios, Ghanem, Alexander, Schick, Anna, Zhang, Yina, Conzelmann, Karl-Klaus, Development, 144(24), 4604–4615. https://doi.org/10.1242/dev.150110
, Berninger, Benedikt, Ruiz de Almodovar, Carmen, Gascón, Sergio, & Kröger, Stephan. (2017). Neuronal LRP4 regulates synapse formation in the developing CNS.
Kleinert, Maximilian, Parker, Benjamin L., Fritzen, Andreas M., Knudsen, Jonas R., Jensen, Thomas E., Kjøbsted, Rasmus, Sylow, Lykke, Journal of Physiology, 595(14), 4845–4855. https://doi.org/10.1113/jp274203
, James, David E., & Richter, Erik A. (2017). Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice.
Kleinert, Maximilian, Parker, Benjamin L., Fritzen, Andreas M., Knudsen, Jonas R., Jensen, Thomas E., Kjøbsted, Rasmus, Sylow, Lykke, Journal of Physiology, 595(14), 4845–4855. https://doi.org/10.1113/jp274203
, James, David E., & Richter, Erik A. (2017). Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice.
McKee, Karen K., Crosson, Stephanie C., Meinen, Sarina, Reinhard, Judith R., Journal of Clinical Investigation, 127(3), 1075–1089. https://doi.org/10.1172/jci90854
, & Yurchenco, Peter D. (2017). Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype.
McKee, Karen K., Crosson, Stephanie C., Meinen, Sarina, Reinhard, Judith R., Journal of Clinical Investigation, 127(3), 1075–1089. https://doi.org/10.1172/jci90854
, & Yurchenco, Peter D. (2017). Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype.
Reinhard, Judith R., Lin, Shuo, McKee, Karen K., Meinen, Sarina, Crosson, Stephanie C., Sury, Maurizio, Hobbs, Samantha, Maier, Geraldine, Yurchenco, Peter D., & Science Translational Medicine, 9(396), eaal4649. https://doi.org/10.1126/scitranslmed.aal4649
(2017). Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice.
Reinhard, Judith R., Lin, Shuo, McKee, Karen K., Meinen, Sarina, Crosson, Stephanie C., Sury, Maurizio, Hobbs, Samantha, Maier, Geraldine, Yurchenco, Peter D., & Science Translational Medicine, 9(396), eaal4649. https://doi.org/10.1126/scitranslmed.aal4649
(2017). Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice.
Rion, Nathalie, & Cell Research, 27(5), 604–605. https://doi.org/10.1038/cr.2017.35
(2017). LncRNA-encoded peptides: More than translational noise?
Rion, Nathalie, & Cell Research, 27(5), 604–605. https://doi.org/10.1038/cr.2017.35
(2017). LncRNA-encoded peptides: More than translational noise?
Willmann, Raffaella, Gordish-Dressman, Heather, Meinen, Sarina, Journal of Neuromuscular Diseases, 4(2), 115–126. https://doi.org/10.3233/jnd-170217
, Yu, Qing, Nagaraju, Kanneboyina, Kumar, Ayar, Girgenrath, Mahasweta, Coffey, Caroline B. M., Cruz, Vivian, Van Ry, Pam M., Bogdanik, Laurent, Lutz, Cathleen, Rutkowski, Anne, & Burkin, Dean J. (2017). Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy.
Willmann, Raffaella, Gordish-Dressman, Heather, Meinen, Sarina, Journal of Neuromuscular Diseases, 4(2), 115–126. https://doi.org/10.3233/jnd-170217
, Yu, Qing, Nagaraju, Kanneboyina, Kumar, Ayar, Girgenrath, Mahasweta, Coffey, Caroline B. M., Cruz, Vivian, Van Ry, Pam M., Bogdanik, Laurent, Lutz, Cathleen, Rutkowski, Anne, & Burkin, Dean J. (2017). Improving Reproducibility of Phenotypic Assessments in the DyW Mouse Model of Laminin-α2 Related Congenital Muscular Dystrophy.
Castets, Perrine, Frank, Stephan, Sinnreich, Michael, & Journal of Neuromuscular Diseases, 3(2), 127–155. https://doi.org/10.3233/jnd-160153
(2016). “Get the Balance Right”: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders.
Castets, Perrine, Frank, Stephan, Sinnreich, Michael, & Journal of Neuromuscular Diseases, 3(2), 127–155. https://doi.org/10.3233/jnd-160153
(2016). “Get the Balance Right”: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders.
Ding, X., Bloch, W., Iden, S., Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
, Hall, M. N., Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation.
Ding, X., Bloch, W., Iden, S., Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
, Hall, M. N., Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation.
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
, Hall, M. N., Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling.
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
, Hall, M. N., Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling.
Guridi, Maitea, Kupr, Barbara, Romanino, Klaas, Lin, Shuo, Falcetta, Denis, Tintignac, Lionel, & Skeletal Muscle, 6(13), 13. https://doi.org/10.1186/s13395-016-0084-8
(2016). Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism.
Guridi, Maitea, Kupr, Barbara, Romanino, Klaas, Lin, Shuo, Falcetta, Denis, Tintignac, Lionel, & Skeletal Muscle, 6(13), 13. https://doi.org/10.1186/s13395-016-0084-8
(2016). Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism.
Kleinert, Maximilian, Parker, Benjamin L., Chaudhuri, Rima, Fazakerley, Daniel J., Serup, Annette, Thomas, Kristen C., Krycer, James R., Sylow, Lykke, Fritzen, Andreas M., Hoffman, Nolan J., Jeppesen, Jacob, Schjerling, Peter, Molecular Metabolism, 5(8), 646–655. https://doi.org/10.1016/j.molmet.2016.06.007
, Kiens, Bente, James, David E., & Richter, Erik A. (2016). mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3.
Kleinert, Maximilian, Parker, Benjamin L., Chaudhuri, Rima, Fazakerley, Daniel J., Serup, Annette, Thomas, Kristen C., Krycer, James R., Sylow, Lykke, Fritzen, Andreas M., Hoffman, Nolan J., Jeppesen, Jacob, Schjerling, Peter, Molecular Metabolism, 5(8), 646–655. https://doi.org/10.1016/j.molmet.2016.06.007
, Kiens, Bente, James, David E., & Richter, Erik A. (2016). mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3.
Reinhard, Judith R., Kriz, Alexander, Galic, Milos, Angliker, Nico, Rajalu, Mathieu, Vogt, Kaspar E., & Nature Communications, 7, 11613. https://doi.org/10.1038/ncomms11613
(2016). The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory.
Reinhard, Judith R., Kriz, Alexander, Galic, Milos, Angliker, Nico, Rajalu, Mathieu, Vogt, Kaspar E., & Nature Communications, 7, 11613. https://doi.org/10.1038/ncomms11613
(2016). The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory.
Ruegsegger, Céline, Stucki, David M., Steiner, Silvio, Angliker, Nico, Radecke, Julika, Keller, Eva, Zuber, Benoît, Neuron, 89(1), 129–146. https://doi.org/10.1016/j.neuron.2015.11.033
, & Saxena, Smita. (2016). Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology.
Ruegsegger, Céline, Stucki, David M., Steiner, Silvio, Angliker, Nico, Radecke, Julika, Keller, Eva, Zuber, Benoît, Neuron, 89(1), 129–146. https://doi.org/10.1016/j.neuron.2015.11.033
, & Saxena, Smita. (2016). Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology.
Schell, Christoph, Kretz, Oliver, Liang, Wei, Kiefer, Betina, Schneider, Simon, Sellung, Dominik, Bork, Tillmann, Leiber, Christian, American Journal of Pathology, 186(2), 324–336. https://doi.org/10.1016/j.ajpath.2015.10.012
, Mallidis, Con, Schlatt, Stefan, Mayerhofer, Artur, Huber, Tobias B., & Grahammer, Florian. (2016). The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility.
Schell, Christoph, Kretz, Oliver, Liang, Wei, Kiefer, Betina, Schneider, Simon, Sellung, Dominik, Bork, Tillmann, Leiber, Christian, American Journal of Pathology, 186(2), 324–336. https://doi.org/10.1016/j.ajpath.2015.10.012
, Mallidis, Con, Schlatt, Stefan, Mayerhofer, Artur, Huber, Tobias B., & Grahammer, Florian. (2016). The Rapamycin-Sensitive Complex of Mammalian Target of Rapamycin Is Essential to Maintain Male Fertility.
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., Hall, M. N., Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
, & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy.
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., Hall, M. N., Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
, & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy.
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
, Hall, M. N., Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
, Hall, M. N., Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.
Grahammer, F., Haenisch, N., Steinhardt, F., Sandner, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., Hall, M. N., Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2015). Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111). Proceedings of the National Academy of Sciences of the United States of America, 112(49). https://doi.org/10.1073/pnas.1522405112
Grahammer, F., Haenisch, N., Steinhardt, F., Sandner, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., Hall, M. N., Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2015). Erratum: mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress (Proceedings of the National Academy of Sciences of the United States of America (2014)111 (E2817-E2826) DOI: 10.1073/pnas.1402352111). Proceedings of the National Academy of Sciences of the United States of America, 112(49). https://doi.org/10.1073/pnas.1522405112
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
, Hall, M. N., Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult.
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
, Hall, M. N., Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult.
Angliker, Nico, Burri, Michael, Zaichuk, Mariana, Fritschy, Jean-Marc, & European Journal of Neuroscience, 42(8), 2595–2612. https://doi.org/10.1111/ejn.13051
(2015). mTORC1 and mTORC2 have largely distinct functions in Purkinje cells.
Angliker, Nico, Burri, Michael, Zaichuk, Mariana, Fritschy, Jean-Marc, & European Journal of Neuroscience, 42(8), 2595–2612. https://doi.org/10.1111/ejn.13051
(2015). mTORC1 and mTORC2 have largely distinct functions in Purkinje cells.
Carr, T. D., Feehan, R. P., Hall, M. N., Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
, & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors.
Carr, T. D., Feehan, R. P., Hall, M. N., Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
, & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors.
Domi, Teuta, Porrello, Emanuela, Velardo, Daniele, Capotondo, Alessia, Biffi, Alessandra, Tonlorenzi, Rossana, Amadio, Stefano, Ambrosi, Alessandro, Miyagoe-Suzuki, Yuko, Takeda, Shin’ichi, Skeletal Muscle, 5(30), 30. https://doi.org/10.1186/s13395-015-0055-5
, & Previtali, Stefano Carlo. (2015). Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A.
Domi, Teuta, Porrello, Emanuela, Velardo, Daniele, Capotondo, Alessia, Biffi, Alessandra, Tonlorenzi, Rossana, Amadio, Stefano, Ambrosi, Alessandro, Miyagoe-Suzuki, Yuko, Takeda, Shin’ichi, Skeletal Muscle, 5(30), 30. https://doi.org/10.1186/s13395-015-0055-5
, & Previtali, Stefano Carlo. (2015). Mesoangioblast delivery of miniagrin ameliorates murine model of merosin-deficient congenital muscular dystrophy type 1A.
Guridi, Maitea, Tintignac, Lionel A., Lin, Shuo, Kupr, Barbara, Castets, Perrine, & Science Signaling, 8(402), ra113. https://doi.org/10.1126/scisignal.aab3715
(2015). Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21.
Guridi, Maitea, Tintignac, Lionel A., Lin, Shuo, Kupr, Barbara, Castets, Perrine, & Science Signaling, 8(402), ra113. https://doi.org/10.1126/scisignal.aab3715
(2015). Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21.
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., Hall, M. N., Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
, Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., Hall, M. N., Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
, Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., Hall, Michael N., Stem Cells, 33(4), 1359–1365. https://doi.org/10.1002/stem.1931
, Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation.
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., Hall, Michael N., Stem Cells, 33(4), 1359–1365. https://doi.org/10.1002/stem.1931
, Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation.
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., Hall, M. N., Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
, & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., Hall, M. N., Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
, & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
Tintignac, Lionel A., Brenner, Hans-Rudolf, & Physiological Reviews, 95(3), 809–852. https://doi.org/10.1152/physrev.00033.2014
(2015). Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.
Tintignac, Lionel A., Brenner, Hans-Rudolf, & Physiological Reviews, 95(3), 809–852. https://doi.org/10.1152/physrev.00033.2014
(2015). Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.
Venkatesh, A., Ma, S., Le, Y. Z., Hall, M. N., Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
, & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice.
Venkatesh, A., Ma, S., Le, Y. Z., Hall, M. N., Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
, & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice.
Willmann, Raffaella, De Luca, Annamaria, Nagaraju, Kanneboyina, & Journal of Neuromuscular Diseases, 2(2), 113–117. https://doi.org/10.3233/jnd-140067
(2015). Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders.
Willmann, Raffaella, De Luca, Annamaria, Nagaraju, Kanneboyina, & Journal of Neuromuscular Diseases, 2(2), 113–117. https://doi.org/10.3233/jnd-140067
(2015). Best Practices and Standard Protocols as a Tool to Enhance Translation for Neuromuscular Disorders.
Zhang, Yina, Lin, Shuo, Karakatsani, Andromachi, European Journal of Neuroscience, 41(1), 69–78. https://doi.org/10.1111/ejn.12768
, & Kröger, Stephan. (2015). Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles.
Zhang, Yina, Lin, Shuo, Karakatsani, Andromachi, European Journal of Neuroscience, 41(1), 69–78. https://doi.org/10.1111/ejn.12768
, & Kröger, Stephan. (2015). Differential regulation of AChR clustering in the polar and equatorial region of murine muscle spindles.
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
, Hall, M. N., Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1.
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
, Hall, M. N., Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1.
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Journal of Immunology, 193(3), 1162–1170. https://doi.org/10.4049/jimmunol.1303162
, Hall, Michael N., Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development.
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Journal of Immunology, 193(3), 1162–1170. https://doi.org/10.4049/jimmunol.1303162
, Hall, Michael N., Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development.
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
, Hall, M. N., Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
, Hall, M. N., Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.
Hettwer, Stefan, Lin, Shuo, Kucsera, Stefan, Haubitz, Monika, Oliveri, Filippo, Fariello, Ruggero G., PLoS ONE, 9(2), e88739. https://doi.org/10.1371/journal.pone.0088739
, & Vrijbloed, Jan W. (2014). Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction.
Hettwer, Stefan, Lin, Shuo, Kucsera, Stefan, Haubitz, Monika, Oliveri, Filippo, Fariello, Ruggero G., PLoS ONE, 9(2), e88739. https://doi.org/10.1371/journal.pone.0088739
, & Vrijbloed, Jan W. (2014). Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction.
Kleinert, Maximilian, Sylow, Lykke, Fazakerley, Daniel J., Krycer, James R., Thomas, Kristen C., Oxbøll, Anne-Julie, Jordy, Andreas B., Jensen, Thomas E., Yang, Guang, Schjerling, Peter, Kiens, Bente, James, David E., Molecular Metabolism, 3(6), 630–641. https://doi.org/10.1016/j.molmet.2014.06.004
, & Richter, Erik A. (2014). Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo.
Kleinert, Maximilian, Sylow, Lykke, Fazakerley, Daniel J., Krycer, James R., Thomas, Kristen C., Oxbøll, Anne-Julie, Jordy, Andreas B., Jensen, Thomas E., Yang, Guang, Schjerling, Peter, Kiens, Bente, James, David E., Molecular Metabolism, 3(6), 630–641. https://doi.org/10.1016/j.molmet.2014.06.004
, & Richter, Erik A. (2014). Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo.
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
, Hall, M. N., & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination.
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
, Hall, M. N., & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination.
Miloslavski, Rachel, Cohen, Elad, Avraham, Adam, Iluz, Yifat, Hayouka, Zvi, Kasir, Judith, Mudhasani, Rajini, Jones, Stephen N., Cybulski, Nadine, Journal of Molecular Cell Biology, 6(3), 255–266. https://doi.org/10.1093/jmcb/mju008
, Larsson, Ola, Gandin, Valentina, Rajakumar, Arjuna, Topisirovic, Ivan, & Meyuhas, Oded. (2014). Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner.
Miloslavski, Rachel, Cohen, Elad, Avraham, Adam, Iluz, Yifat, Hayouka, Zvi, Kasir, Judith, Mudhasani, Rajini, Jones, Stephen N., Cybulski, Nadine, Journal of Molecular Cell Biology, 6(3), 255–266. https://doi.org/10.1093/jmcb/mju008
, Larsson, Ola, Gandin, Valentina, Rajakumar, Arjuna, Topisirovic, Ivan, & Meyuhas, Oded. (2014). Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner.
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
, Hall, M. N., & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells.
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
, Hall, M. N., & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells.
Steiner, Esther, Enzmann, Gaby U., Lyck, Ruth, Lin, Shuo, Cell and Tissue Research, 358(2), 465–479. https://doi.org/10.1007/s00441-014-1969-7
, Kröger, Stephan, & Engelhardt, Britta. (2014). The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions.
Steiner, Esther, Enzmann, Gaby U., Lyck, Ruth, Lin, Shuo, Cell and Tissue Research, 358(2), 465–479. https://doi.org/10.1007/s00441-014-1969-7
, Kröger, Stephan, & Engelhardt, Britta. (2014). The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions.
Zhang, L., Tschumi, B. O., Corgnac, S., Journal of Immunology, 193(4), 1759–1765. https://doi.org/10.4049/jimmunol.1400769
, Hall, M. N., Mach, J.-P., Romero, P., & Donda, A. (2014). Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function.
Zhang, L., Tschumi, B. O., Corgnac, S., Journal of Immunology, 193(4), 1759–1765. https://doi.org/10.4049/jimmunol.1400769
, Hall, M. N., Mach, J.-P., Romero, P., & Donda, A. (2014). Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function.
Angliker, Nico, & Bioarchitecture, 3(4), 113–118. https://doi.org/10.4161/bioa.26497
(2013). In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons.
Angliker, Nico, & Bioarchitecture, 3(4), 113–118. https://doi.org/10.4161/bioa.26497
(2013). In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons.
Bentzinger, C. Florian, Lin, Shuo, Romanino, Klaas, Castets, Perrine, Guridi, Maitea, Summermatter, Serge, Handschin, Christoph, Tintignac, Lionel A., Hall, Michael N., & Skeletal Muscle, 3(1), 6. https://doi.org/10.1186/2044-5040-3-6
(2013). Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy.
Bentzinger, C. Florian, Lin, Shuo, Romanino, Klaas, Castets, Perrine, Guridi, Maitea, Summermatter, Serge, Handschin, Christoph, Tintignac, Lionel A., Hall, Michael N., & Skeletal Muscle, 3(1), 6. https://doi.org/10.1186/2044-5040-3-6
(2013). Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy.
Castets, Perrine, Lin, Shuo, Rion, Nathalie, Di Fulvio, Sabrina, Romanino, Klaas, Guridi, Maitea, Frank, Stephan, Tintignac, Lionel A., Sinnreich, Michael, & Cell metabolism, 17(5), 731–744. https://doi.org/10.1016/j.cmet.2013.03.015
(2013). Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy.
Castets, Perrine, Lin, Shuo, Rion, Nathalie, Di Fulvio, Sabrina, Romanino, Klaas, Guridi, Maitea, Frank, Stephan, Tintignac, Lionel A., Sinnreich, Michael, & Cell metabolism, 17(5), 731–744. https://doi.org/10.1016/j.cmet.2013.03.015
(2013). Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy.
Castets, Perrine, & Autophagy, 9(9), 1435–1437. https://doi.org/10.4161/auto.25722
(2013). MTORC1 determines autophagy through ULK1 regulation in skeletal muscle.
Castets, Perrine, & Autophagy, 9(9), 1435–1437. https://doi.org/10.4161/auto.25722
(2013). MTORC1 determines autophagy through ULK1 regulation in skeletal muscle.
Cloëtta, Dimitri, Thomanetz, Venus, Baranek, Constanze, Lustenberger, Regula M., Lin, Shuo, Oliveri, Filippo, Atanasoski, Suzana, & Journal of neuroscience, 33(18), 7799–7810. https://doi.org/10.1523/jneurosci.3294-12.2013
(2013). Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis.
Cloëtta, Dimitri, Thomanetz, Venus, Baranek, Constanze, Lustenberger, Regula M., Lin, Shuo, Oliveri, Filippo, Atanasoski, Suzana, & Journal of neuroscience, 33(18), 7799–7810. https://doi.org/10.1523/jneurosci.3294-12.2013
(2013). Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis.
Rutkowski, A., Bönnemann, C., Brown, S., Thorsteinsdóttir, S., Dominov, J., Ruegg, M. A., Matter, M. L., Guttridge, D., Crosbie-Watson, R. H., Kardon, G., Nagaraju, K., Girgenrath, M., & Burkin, D. J. (2013). Report on the Myomatrix Conference April 22-24, 2012, University of Nevada, Reno, Nevada, USA. Neuromuscular Disorders, 23(2), 188–191. https://doi.org/10.1016/j.nmd.2012.06.353
Rutkowski, A., Bönnemann, C., Brown, S., Thorsteinsdóttir, S., Dominov, J., Ruegg, M. A., Matter, M. L., Guttridge, D., Crosbie-Watson, R. H., Kardon, G., Nagaraju, K., Girgenrath, M., & Burkin, D. J. (2013). Report on the Myomatrix Conference April 22-24, 2012, University of Nevada, Reno, Nevada, USA. Neuromuscular Disorders, 23(2), 188–191. https://doi.org/10.1016/j.nmd.2012.06.353
Song, Jian, Lokmic, Zerina, Lämmermann, Tim, Rolf, Julia, Wu, Chuan, Zhang, Xueli, Hallmann, Rupert, Hannocks, Melanie-Jane, Horn, Nathalie, Proceedings of the National Academy of Sciences of the United States of America, 110(31), E2915–24. https://doi.org/10.1073/pnas.1218131110
, Sonnenberg, Arnoud, Georges-Labouesse, Elisabeth, Winkler, Thomas H., Kearney, John F., Cardell, Susanna, & Sorokin, Lydia. (2013). Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival.
Song, Jian, Lokmic, Zerina, Lämmermann, Tim, Rolf, Julia, Wu, Chuan, Zhang, Xueli, Hallmann, Rupert, Hannocks, Melanie-Jane, Horn, Nathalie, Proceedings of the National Academy of Sciences of the United States of America, 110(31), E2915–24. https://doi.org/10.1073/pnas.1218131110
, Sonnenberg, Arnoud, Georges-Labouesse, Elisabeth, Winkler, Thomas H., Kearney, John F., Cardell, Susanna, & Sorokin, Lydia. (2013). Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival.
Thomanetz, Venus, Angliker, Nico, Cloëtta, Dimitri, Lustenberger, Regula M, Schweighauser, Manuel, Oliveri, Filippo, Suzuki, Noboru, & The journal of cell biology, 201(2), 293–308. https://doi.org/10.1083/jcb.201205030
. (2013). Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.
Thomanetz, Venus, Angliker, Nico, Cloëtta, Dimitri, Lustenberger, Regula M, Schweighauser, Manuel, Oliveri, Filippo, Suzuki, Noboru, & The journal of cell biology, 201(2), 293–308. https://doi.org/10.1083/jcb.201205030
. (2013). Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.
Blättler, Sharon M., Cunningham, John T., Verdeguer, Francisco, Chim, Helen, Haas, Wilhelm, Liu, Huifei, Romanino, Klaas, Cell Metabolism, 15(4), 505–517. https://doi.org/10.1016/j.cmet.2012.03.008
, Gygi, Steven P., Shi, Yang, & Puigserver, Pere. (2012). Yin yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling.
Blättler, Sharon M., Cunningham, John T., Verdeguer, Francisco, Chim, Helen, Haas, Wilhelm, Liu, Huifei, Romanino, Klaas, Cell Metabolism, 15(4), 505–517. https://doi.org/10.1016/j.cmet.2012.03.008
, Gygi, Steven P., Shi, Yang, & Puigserver, Pere. (2012). Yin yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling.
Blättler, Sharon M., Verdeguer, Francisco, Liesa, Marc, Cunningham, John T., Vogel, Rutger O., Chim, Helen, Liu, Huifei, Romanino, Klaas, Shirihai, Orian S., Vazquez, Francisca, Molecular and cellular biology, 32(16), 3333–3346. https://doi.org/10.1128/mcb.00337-12
, Shi, Yang, & Puigserver, Pere. (2012). Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.
Blättler, Sharon M., Verdeguer, Francisco, Liesa, Marc, Cunningham, John T., Vogel, Rutger O., Chim, Helen, Liu, Huifei, Romanino, Klaas, Shirihai, Orian S., Vazquez, Francisca, Molecular and cellular biology, 32(16), 3333–3346. https://doi.org/10.1128/mcb.00337-12
, Shi, Yang, & Puigserver, Pere. (2012). Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.
Hagiwara, Asami, Cornu, Marion, Cybulski, Nadine, Polak, Pazit, Betz, Charles, Trapani, Francesca, Terracciano, Luigi, Heim, Markus H., Cell Metabolism, 15(5), 725–738. https://doi.org/10.1016/j.cmet.2012.03.015
, & Hall, Michael N. (2012). Hepatic mTORC2 activates glycolysis and lipogenesis through akt, glucokinase, and SREBP1c.
Hagiwara, Asami, Cornu, Marion, Cybulski, Nadine, Polak, Pazit, Betz, Charles, Trapani, Francesca, Terracciano, Luigi, Heim, Markus H., Cell Metabolism, 15(5), 725–738. https://doi.org/10.1016/j.cmet.2012.03.015
, & Hall, Michael N. (2012). Hepatic mTORC2 activates glycolysis and lipogenesis through akt, glucokinase, and SREBP1c.
Meinen, Sarina, Lin, Shuo, & Skeletal Muscle, 2(1), 18. https://doi.org/10.1186/2044-5040-2-18
. (2012). Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular dystrophy (MDC1A).
Meinen, Sarina, Lin, Shuo, & Skeletal Muscle, 2(1), 18. https://doi.org/10.1186/2044-5040-2-18
. (2012). Angiotensin II type 1 receptor antagonists alleviate muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular dystrophy (MDC1A).
Meinen, Sarina, Lin, Shuo, PLoS ONE, 7(8), e44148. https://doi.org/10.1371/journal.pone.0044148
, & Punga, Anna Rostedt. (2012). Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS.
Meinen, Sarina, Lin, Shuo, PLoS ONE, 7(8), e44148. https://doi.org/10.1371/journal.pone.0044148
, & Punga, Anna Rostedt. (2012). Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS.
Punga, Anna Rostedt, & Current Opinion in Pharmacology, 12(3), 340–346. https://doi.org/10.1016/j.coph.2012.02.002
(2012). Signaling and aging at the neuromuscular synapse : lessons learnt from neuromuscular diseases.
Punga, Anna Rostedt, & Current Opinion in Pharmacology, 12(3), 340–346. https://doi.org/10.1016/j.coph.2012.02.002
(2012). Signaling and aging at the neuromuscular synapse : lessons learnt from neuromuscular diseases.
Steiner, Esther, Enzmann, Gaby U., Lin, Shuo, Ghavampour, Sharang, Hannocks, Melanie-Jane, Zuber, Benoît, Glia, 60(11), 1646–1659. https://doi.org/10.1002/glia.22383
, Sorokin, Lydia, & Engelhardt, Britta. (2012). Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation.
Steiner, Esther, Enzmann, Gaby U., Lin, Shuo, Ghavampour, Sharang, Hannocks, Melanie-Jane, Zuber, Benoît, Glia, 60(11), 1646–1659. https://doi.org/10.1002/glia.22383
, Sorokin, Lydia, & Engelhardt, Britta. (2012). Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation.
Gödel, M., Hartleben, B., Herbach, N., Liu, S., Zschiedrich, S., Lu, S., Debreczeni-Mor, A., Lindenmeyer, M. T., Rastaldi, M. -P., Hartleben, G., Wiech, T., Fornoni, A., Nelson, R. G., Kretzler, M., Wanke, R., Pavenstadt, H., Kerjaschki, D., Cohen, C. D., Hall, M. N., et al. (2011). Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. Journal of Clinical Investigation, 121(6), 2197–2209. https://doi.org/10.1172/jci44774
Gödel, M., Hartleben, B., Herbach, N., Liu, S., Zschiedrich, S., Lu, S., Debreczeni-Mor, A., Lindenmeyer, M. T., Rastaldi, M. -P., Hartleben, G., Wiech, T., Fornoni, A., Nelson, R. G., Kretzler, M., Wanke, R., Pavenstadt, H., Kerjaschki, D., Cohen, C. D., Hall, M. N., et al. (2011). Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. Journal of Clinical Investigation, 121(6), 2197–2209. https://doi.org/10.1172/jci44774
Inoki, K., Mori, H., Wang, J., Suzuki, T., Hong, S., Yoshida, S., Blattner, S. M., Ikenoue, T., Journal of Clinical Investigation, 121(6), 2181–2196. https://doi.org/10.1172/jci44771
, Hall, M. N., Kwiatkowski, D. J., Rastaldi, M. P., Huber, T. B., Kretzler, M., Holzman, L. B., Wiggins, R. C., & Guan, K. -L. (2011). mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.
Inoki, K., Mori, H., Wang, J., Suzuki, T., Hong, S., Yoshida, S., Blattner, S. M., Ikenoue, T., Journal of Clinical Investigation, 121(6), 2181–2196. https://doi.org/10.1172/jci44771
, Hall, M. N., Kwiatkowski, D. J., Rastaldi, M. P., Huber, T. B., Kretzler, M., Holzman, L. B., Wiggins, R. C., & Guan, K. -L. (2011). mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice.
Meinen, Sarina, Lin, Shuo, Thurnherr, Raphael, Erb, Michael, Meier, Thomas, & EMBO Molecular Medicine, 3(8), 465–479. https://doi.org/10.1002/emmm.201100151
(2011). Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice.
Meinen, Sarina, Lin, Shuo, Thurnherr, Raphael, Erb, Michael, Meier, Thomas, & EMBO Molecular Medicine, 3(8), 465–479. https://doi.org/10.1002/emmm.201100151
(2011). Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice.
Punga, A. R., Lin, S., Oliveri, F., Meinen, S., & Experimental Neurology, 230(2), 207–217. https://doi.org/10.1016/j.expneurol.2011.04.018
(2011). Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice.
Punga, A. R., Lin, S., Oliveri, F., Meinen, S., & Experimental Neurology, 230(2), 207–217. https://doi.org/10.1016/j.expneurol.2011.04.018
(2011). Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice.
Punga, A. R., Maj, M., Lin, S., Meinen, S., & The European journal of neuroscience, 33(5), 890–898. https://doi.org/10.1111/j.1460-9568.2010.07569.x
(2011). MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity.
Punga, A. R., Maj, M., Lin, S., Meinen, S., & The European journal of neuroscience, 33(5), 890–898. https://doi.org/10.1111/j.1460-9568.2010.07569.x
(2011). MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity.
Rieker, Claus, Dev, Kumlesh K., Lehnhoff, Katja, Barbieri, Samuel, Ksiazek, Iwona, Kauffmann, Sabine, Danner, Simone, Schell, Heinrich, Boden, Cindy, PLoS ONE, 6(9), e24834. https://doi.org/10.1371/journal.pone.0024834
, Kahle, Philipp J., van der Putten, Herman, & Shimshek, Derya R. (2011). Neuropathology in mice expressing mouse alpha-synuclein.
Rieker, Claus, Dev, Kumlesh K., Lehnhoff, Katja, Barbieri, Samuel, Ksiazek, Iwona, Kauffmann, Sabine, Danner, Simone, Schell, Heinrich, Boden, Cindy, PLoS ONE, 6(9), e24834. https://doi.org/10.1371/journal.pone.0024834
, Kahle, Philipp J., van der Putten, Herman, & Shimshek, Derya R. (2011). Neuropathology in mice expressing mouse alpha-synuclein.
Romanino, Klaas, Mazelin, Laetitia, Albert, Verena, Conjard-Duplany, Agnès, Lin, Shuo, Bentzinger, C Florian, Handschin, Christoph, Puigserver, Pere, Zorzato, Francesco, Schaeffer, Laurent, Gangloff, Yann-Gaël, & Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20808–20813. https://doi.org/10.1073/pnas.1111448109
. (2011). Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function.
Romanino, Klaas, Mazelin, Laetitia, Albert, Verena, Conjard-Duplany, Agnès, Lin, Shuo, Bentzinger, C Florian, Handschin, Christoph, Puigserver, Pere, Zorzato, Francesco, Schaeffer, Laurent, Gangloff, Yann-Gaël, & Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20808–20813. https://doi.org/10.1073/pnas.1111448109
. (2011). Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function.
Shende, P., Plaisance, I., Morandi, C., Pellieux, C., Berthonneche, C., Zorzato, F., Krishnan, J., Lerch, R., Hall, M. N., Circulation, 123(10), 1073–1082. https://doi.org/10.1161/circulationaha.110.977066
, Pedrazzini, T., & Brink, M. (2011). Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice.
Shende, P., Plaisance, I., Morandi, C., Pellieux, C., Berthonneche, C., Zorzato, F., Krishnan, J., Lerch, R., Hall, M. N., Circulation, 123(10), 1073–1082. https://doi.org/10.1161/circulationaha.110.977066
, Pedrazzini, T., & Brink, M. (2011). Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice.
Ludolph, A. C., Bendotti, C., Blaugrund, E., Chio, A., Greensmith, L., Loeffler, J.-P., Mead, R., Niessen, H. G., Petri, S., Pradat, P.-F., Robberecht, W., Ruegg, M., Schwalenstcker, B., Stiller, D., Van Den Berg, L., Vieira, F., & Von Horsten, S. (2010). Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotrophic Lateral Sclerosis, 11(1-2), 38–45. https://doi.org/10.3109/17482960903545334
Ludolph, A. C., Bendotti, C., Blaugrund, E., Chio, A., Greensmith, L., Loeffler, J.-P., Mead, R., Niessen, H. G., Petri, S., Pradat, P.-F., Robberecht, W., Ruegg, M., Schwalenstcker, B., Stiller, D., Van Den Berg, L., Vieira, F., & Von Horsten, S. (2010). Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotrophic Lateral Sclerosis, 11(1-2), 38–45. https://doi.org/10.3109/17482960903545334