Publications
52 found
Show per page
Nalivaiko, Egor Y., & (2024). A Rhodanese‐Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid. ChemBioChem, 25(9). https://doi.org/10.1002/cbic.202400131
Nalivaiko, Egor Y., & (2024). A Rhodanese‐Like Enzyme that Catalyzes Desulfination of Ergothioneine Sulfinic Acid. ChemBioChem, 25(9). https://doi.org/10.1002/cbic.202400131
Vasseur, Camille M., Karunasegaram, Dishani, & (2024). Structure and Substrate Specificity of S -Methyl Thiourocanate Hydratase. ACS Chemical Biology, 19(3), 718–724. https://doi.org/10.1021/acschembio.3c00745
Vasseur, Camille M., Karunasegaram, Dishani, & (2024). Structure and Substrate Specificity of S -Methyl Thiourocanate Hydratase. ACS Chemical Biology, 19(3), 718–724. https://doi.org/10.1021/acschembio.3c00745
Nalivaiko, Egor Y., Vasseur, Camille M., & (2024). Enzyme‐Catalyzed Oxidative Degradation of Ergothioneine. Angewandte Chemie International Edition, 63(8). https://doi.org/10.1002/anie.202318445
Nalivaiko, Egor Y., Vasseur, Camille M., & (2024). Enzyme‐Catalyzed Oxidative Degradation of Ergothioneine. Angewandte Chemie International Edition, 63(8). https://doi.org/10.1002/anie.202318445
Peng, Jiaming, Hughes, Gregory R., Müller, Manuel M., & (2024). Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation. Angewandte Chemie, 136(1). https://doi.org/10.1002/ange.202312104
Peng, Jiaming, Hughes, Gregory R., Müller, Manuel M., & (2024). Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation. Angewandte Chemie, 136(1). https://doi.org/10.1002/ange.202312104
Wen, Xiaojin, Leopold, Viviane, & (2024). Enzymatic synthesis of S -adenosyl- l -homocysteine and its nucleoside analogs from racemic homocysteine thiolactone. Chemical Science, 15(38), 15900–15906. https://doi.org/10.1039/d4sc03801k
Wen, Xiaojin, Leopold, Viviane, & (2024). Enzymatic synthesis of S -adenosyl- l -homocysteine and its nucleoside analogs from racemic homocysteine thiolactone. Chemical Science, 15(38), 15900–15906. https://doi.org/10.1039/d4sc03801k
Peng, Jiaming, Hughes, Gregory R., Müller, Manuel M., & (2023). Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation [Journal-article]. Angewandte Chemie International Edition, 63(1). https://doi.org/10.1002/anie.202312104
Peng, Jiaming, Hughes, Gregory R., Müller, Manuel M., & (2023). Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation [Journal-article]. Angewandte Chemie International Edition, 63(1). https://doi.org/10.1002/anie.202312104
Reed, John H., & (2023). Reagent Engineering for Group Transfer Biocatalysis [Journal-article]. Angewandte Chemie International Edition, 63(7). https://doi.org/10.1002/anie.202311159
Reed, John H., & (2023). Reagent Engineering for Group Transfer Biocatalysis [Journal-article]. Angewandte Chemie International Edition, 63(7). https://doi.org/10.1002/anie.202311159
Gericke, Lukas, Mhaindarkar, Dipali, Karst, Lukas C., Jahn, Sören, Kuge, Marco, Mohr, Michael K. F., Gagsteiger, Jana, Cornelissen, Nicolas V., Wen, Xiaojin, Mordhorst, Silja, Jessen, Henning J., Rentmeister, Andrea, , Layer, Gunhild, Loenarz, Christoph, & Andexer, Jennifer N. (2023). Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes [Journal-article]. ChemBioChem, 24(9). https://doi.org/10.1002/cbic.202300133
Gericke, Lukas, Mhaindarkar, Dipali, Karst, Lukas C., Jahn, Sören, Kuge, Marco, Mohr, Michael K. F., Gagsteiger, Jana, Cornelissen, Nicolas V., Wen, Xiaojin, Mordhorst, Silja, Jessen, Henning J., Rentmeister, Andrea, , Layer, Gunhild, Loenarz, Christoph, & Andexer, Jennifer N. (2023). Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes [Journal-article]. ChemBioChem, 24(9). https://doi.org/10.1002/cbic.202300133
Hartmann, Lea, , Schmalz, Hans-Günther, & Gründemann, Dirk. (2023). Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen [Journal-article]. Free Radical Biology and Medicine, 198, 12–26. https://doi.org/10.1016/j.freeradbiomed.2023.01.023
Hartmann, Lea, , Schmalz, Hans-Günther, & Gründemann, Dirk. (2023). Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen [Journal-article]. Free Radical Biology and Medicine, 198, 12–26. https://doi.org/10.1016/j.freeradbiomed.2023.01.023
Beliaeva, Mariia A., Atac, Reyhan, & (2022). Bacterial Degradation of Nτ-Methylhistidine. ACS Chemical Biology, 17(7), 1989–1995. https://doi.org/10.1021/acschembio.2c00437
Beliaeva, Mariia A., Atac, Reyhan, & (2022). Bacterial Degradation of Nτ-Methylhistidine. ACS Chemical Biology, 17(7), 1989–1995. https://doi.org/10.1021/acschembio.2c00437
Beliaeva, Mariia A., & (2022). Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS Au, 2(9), 2098–2107. https://doi.org/10.1021/jacsau.2c00365
Beliaeva, Mariia A., & (2022). Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS Au, 2(9), 2098–2107. https://doi.org/10.1021/jacsau.2c00365
Wen, Xiaojin, Leisinger, Florian, Leopold, Viviane, & (2022). Synthetic Reagents for Enzyme-Catalyzed Methylation. Angewandte Chemie International Edition, 61(41), e202208746. https://doi.org/10.1002/anie.202208746
Wen, Xiaojin, Leisinger, Florian, Leopold, Viviane, & (2022). Synthetic Reagents for Enzyme-Catalyzed Methylation. Angewandte Chemie International Edition, 61(41), e202208746. https://doi.org/10.1002/anie.202208746
Beliaeva, Mariia A., Burn, Reto, Lim, David, & (2021). In Vitro Production of Ergothioneine Isotopologues. Angewandte Chemie International Edition, 60(10), 5209–5212. https://doi.org/10.1002/anie.202011096
Beliaeva, Mariia A., Burn, Reto, Lim, David, & (2021). In Vitro Production of Ergothioneine Isotopologues. Angewandte Chemie International Edition, 60(10), 5209–5212. https://doi.org/10.1002/anie.202011096
Beliaeva, Mariia A., Leisinger, Florian, & (2021). In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chemical Biology, 16(2), 397–403. https://doi.org/10.1021/acschembio.0c00968
Beliaeva, Mariia A., Leisinger, Florian, & (2021). In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. ACS Chemical Biology, 16(2), 397–403. https://doi.org/10.1021/acschembio.0c00968
Duncombe, Todd, Ponti, Aron, , & Dittrich, Petra. (2021). UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Drople. Analytical Chemistry, 93(38), 13008–13013. https://doi.org/10.1021/acs.analchem.1c02822
Duncombe, Todd, Ponti, Aron, , & Dittrich, Petra. (2021). UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Drople. Analytical Chemistry, 93(38), 13008–13013. https://doi.org/10.1021/acs.analchem.1c02822
Leisinger, Florian, Miarzlou , Dzmitry A., & (2021). Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme. Angewandte Chemie International Edition, 60(11), 6154–6159. https://doi.org/10.1002/anie.202014981
Leisinger, Florian, Miarzlou , Dzmitry A., & (2021). Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme. Angewandte Chemie International Edition, 60(11), 6154–6159. https://doi.org/10.1002/anie.202014981
Peng, Jiaming, Liao, Cangsong, Bauer, Carste, & . (2021). Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation. Angewandte Chemie International Edition, 60(52), 27178–27183. https://doi.org/10.1002/anie.202108802
Peng, Jiaming, Liao, Cangsong, Bauer, Carste, & . (2021). Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation. Angewandte Chemie International Edition, 60(52), 27178–27183. https://doi.org/10.1002/anie.202108802
Schneider, Peter, Henßen, Birgit, Paschold, Beatrix, Chapple, Benjamin P., Schatton, Marcel, , Classen , Thomas, & Pietruszka, Jörg. (2021). Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles. Angewandte Chemie International Edition, 60(43), 23412–23418. https://doi.org/10.1002/anie.202107619
Schneider, Peter, Henßen, Birgit, Paschold, Beatrix, Chapple, Benjamin P., Schatton, Marcel, , Classen , Thomas, & Pietruszka, Jörg. (2021). Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles. Angewandte Chemie International Edition, 60(43), 23412–23418. https://doi.org/10.1002/anie.202107619
Flückger, Sebastian, Igareta, Nico V., & (2020). Convergent Evolution of Fungal Cysteine Dioxygenases. ChemBioChem, 21(21), 3082–3086. https://doi.org/10.1002/cbic.202000317
Flückger, Sebastian, Igareta, Nico V., & (2020). Convergent Evolution of Fungal Cysteine Dioxygenases. ChemBioChem, 21(21), 3082–3086. https://doi.org/10.1002/cbic.202000317
Goncharenko, Kristina V., Flückiger, Sebastian, Liao, Cangsong, Lim, David, Stampfli, Anja R., & (2020). Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Chemistry - A European Journal, 26(6), 1328–1334. https://doi.org/10.1002/chem.201903898
Goncharenko, Kristina V., Flückiger, Sebastian, Liao, Cangsong, Lim, David, Stampfli, Anja R., & (2020). Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Chemistry - A European Journal, 26(6), 1328–1334. https://doi.org/10.1002/chem.201903898
Liao, Cangsong, & (2020). Asymmetric β-Methylation of l- and d-α-Amino Acids by a Self-Contained Enzyme Cascade. Angewandte Chemie International Edition, 59(18), 7184–7187. https://doi.org/10.1002/anie.201916025
Liao, Cangsong, & (2020). Asymmetric β-Methylation of l- and d-α-Amino Acids by a Self-Contained Enzyme Cascade. Angewandte Chemie International Edition, 59(18), 7184–7187. https://doi.org/10.1002/anie.201916025
Lim, David, Wen, Xiaojin, & (2020). Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation. Chembiochem : A European Journal of Chemical Biology, 21(24), 3515–3520. https://doi.org/10.1002/cbic.202000557
Lim, David, Wen, Xiaojin, & (2020). Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation. Chembiochem : A European Journal of Chemical Biology, 21(24), 3515–3520. https://doi.org/10.1002/cbic.202000557
Maurer, Alice, & (2020). Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate. ChemBioChem, 21(20), 2908–2911. https://doi.org/10.1002/cbic.202000232
Maurer, Alice, & (2020). Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate. ChemBioChem, 21(20), 2908–2911. https://doi.org/10.1002/cbic.202000232
Milito, Alfonsina, Castellano, Immacolata, Burn, Reto, , Brunet, Christophe, & Palumbo, Anna. (2020). First evidence of ovothiol biosynthesis in marine diatoms. Free Radical Biology and Medicine, 152, 680–688. https://doi.org/10.1016/j.freeradbiomed.2020.01.010
Milito, Alfonsina, Castellano, Immacolata, Burn, Reto, , Brunet, Christophe, & Palumbo, Anna. (2020). First evidence of ovothiol biosynthesis in marine diatoms. Free Radical Biology and Medicine, 152, 680–688. https://doi.org/10.1016/j.freeradbiomed.2020.01.010
Stampfli, Anja R., Blankenfeldt, Wulf, & (2020). Structural basis of ergothioneine biosynthesis. Current Opinion in Structural Biology, 65, 1–8. https://doi.org/10.1016/j.sbi.2020.04.002
Stampfli, Anja R., Blankenfeldt, Wulf, & (2020). Structural basis of ergothioneine biosynthesis. Current Opinion in Structural Biology, 65, 1–8. https://doi.org/10.1016/j.sbi.2020.04.002
Stampfli, Anja R., & (2020). The catalytic mechanism of sulfoxide synthases. Current Opinion in Chemical Biology, 59, 111–118. https://doi.org/10.1016/j.cbpa.2020.06.007
Stampfli, Anja R., & (2020). The catalytic mechanism of sulfoxide synthases. Current Opinion in Chemical Biology, 59, 111–118. https://doi.org/10.1016/j.cbpa.2020.06.007
Leisinger, Florian, Burn, Reto, Meury, Marcel, Lukat, Peer, & (2019). Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. Journal of the American Chemical Society, 141(17), 6906–6914. https://doi.org/10.1021/jacs.8b12596
Leisinger, Florian, Burn, Reto, Meury, Marcel, Lukat, Peer, & (2019). Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. Journal of the American Chemical Society, 141(17), 6906–6914. https://doi.org/10.1021/jacs.8b12596
Liao, Cangsong, & (2019). S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nature Catalysis, 2(8), 696–701. https://doi.org/10.1038/s41929-019-0300-0
Liao, Cangsong, & (2019). S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nature Catalysis, 2(8), 696–701. https://doi.org/10.1038/s41929-019-0300-0
Liao, Cangsong, & . (2019). In vitro reconstitution of bacterial DMSP biosynthesis. Angew. Chemie Int. Ed, 58(11), 3553–3556. https://doi.org/10.1002/anie.201814662
Liao, Cangsong, & . (2019). In vitro reconstitution of bacterial DMSP biosynthesis. Angew. Chemie Int. Ed, 58(11), 3553–3556. https://doi.org/10.1002/anie.201814662
Lim, David, Gründemann, Dirk, & (2019). Total Synthesis and Functional Characterization of Selenoneine. Angewandte Chemie International Edition, 58(42), 15026–15030. https://doi.org/10.1002/anie.201908967
Lim, David, Gründemann, Dirk, & (2019). Total Synthesis and Functional Characterization of Selenoneine. Angewandte Chemie International Edition, 58(42), 15026–15030. https://doi.org/10.1002/anie.201908967
Maurer, Alice, Leisinger, Florian, Lim, David, & (2019). Structure and Mechanism of Ergothionase from Treponema denticola. Chemistry - A European Journal, 25(44), 10298–10303. https://doi.org/10.1002/chem.201901866
Maurer, Alice, Leisinger, Florian, Lim, David, & (2019). Structure and Mechanism of Ergothionase from Treponema denticola. Chemistry - A European Journal, 25(44), 10298–10303. https://doi.org/10.1002/chem.201901866
Miarzlou, Dzmitry A., Leisinger, Florian, Joss, Daniel, Häussinger, Daniel, & (2019). Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen. Chemical Science, 10(29), 7049–7058. https://doi.org/10.1039/c9sc01723b
Miarzlou, Dzmitry A., Leisinger, Florian, Joss, Daniel, Häussinger, Daniel, & (2019). Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen. Chemical Science, 10(29), 7049–7058. https://doi.org/10.1039/c9sc01723b
Stampfli, Anja R., Goncharenko, Kristina V., Meury, Marcel, Dubey, Badri N., Schirmer, Tilman, & (2019). An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. Journal of American Chemical Society, 141(13), 5275–5285. https://doi.org/10.1021/jacs.8b13023
Stampfli, Anja R., Goncharenko, Kristina V., Meury, Marcel, Dubey, Badri N., Schirmer, Tilman, & (2019). An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. Journal of American Chemical Society, 141(13), 5275–5285. https://doi.org/10.1021/jacs.8b13023
Castellano, Immacolata, & (2018). On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Natural Product Reports, 35(12), 1241–1250. https://doi.org/10.1039/c8np00045j
Castellano, Immacolata, & (2018). On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Natural Product Reports, 35(12), 1241–1250. https://doi.org/10.1039/c8np00045j
Gamage, Akshamal M., Liao, Cangsong, Cheah, Irwin K., Chen, Yahua, Lim, Daniel R. X., Ku, Joanne W. K., Chee, Rhonda Sin Ling, Gengenbacher, Martin, , Halliwell, Barry, & Gan, Yunn-Hwen. (2018). The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection. FASEB Journal, 32(12), 6395–6409. https://doi.org/10.1096/fj.201800716
Gamage, Akshamal M., Liao, Cangsong, Cheah, Irwin K., Chen, Yahua, Lim, Daniel R. X., Ku, Joanne W. K., Chee, Rhonda Sin Ling, Gengenbacher, Martin, , Halliwell, Barry, & Gan, Yunn-Hwen. (2018). The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection. FASEB Journal, 32(12), 6395–6409. https://doi.org/10.1096/fj.201800716
Misson, Laëtitia, Burn, Reto, Vit, Allegra, Hildesheim, Julia, Beliaeva, Mariia A., Blankenfeldt, Wulf, & (2018). Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. ACS Chemical Biology, 13(5), 1333–1342. https://doi.org/10.1021/acschembio.8b00127
Misson, Laëtitia, Burn, Reto, Vit, Allegra, Hildesheim, Julia, Beliaeva, Mariia A., Blankenfeldt, Wulf, & (2018). Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. ACS Chemical Biology, 13(5), 1333–1342. https://doi.org/10.1021/acschembio.8b00127
Burn, Reto, Misson, Laëtitia, Meury, Marcel, & (2017). Anaerobic Origin of Ergothioneine. Angewandte Chemie International Edition, 56(41), 12508–12511. https://doi.org/10.1002/anie.201705932
Burn, Reto, Misson, Laëtitia, Meury, Marcel, & (2017). Anaerobic Origin of Ergothioneine. Angewandte Chemie International Edition, 56(41), 12508–12511. https://doi.org/10.1002/anie.201705932
Faponle, Abayomi S., , & de Visser, Sam P. (2017). Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. Journal of the American Chemical Society, 139(27), 9259–9270. https://doi.org/10.1021/jacs.7b04251
Faponle, Abayomi S., , & de Visser, Sam P. (2017). Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. Journal of the American Chemical Society, 139(27), 9259–9270. https://doi.org/10.1021/jacs.7b04251
Knop, Matthias, Dang, Thanh Quy, Jeschke, Gunnar, & (2017). Copper is a Cofactor of the Formylglycine-Generating Enzyme. ChemBioChem, 18(2), 161–165. https://doi.org/10.1002/cbic.201600359
Knop, Matthias, Dang, Thanh Quy, Jeschke, Gunnar, & (2017). Copper is a Cofactor of the Formylglycine-Generating Enzyme. ChemBioChem, 18(2), 161–165. https://doi.org/10.1002/cbic.201600359
Knop, Matthias, Lemnaru, Roxana, & (2017). Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme. ChemBioChem, 18(17), 1755–1761. https://doi.org/10.1002/cbic.201700174
Knop, Matthias, Lemnaru, Roxana, & (2017). Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme. ChemBioChem, 18(17), 1755–1761. https://doi.org/10.1002/cbic.201700174
Liao, Cangsong, & (2017). Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. ChemBioChem, 18(21), 2115–2118. https://doi.org/10.1002/cbic.201700354
Liao, Cangsong, & (2017). Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. ChemBioChem, 18(21), 2115–2118. https://doi.org/10.1002/cbic.201700354
Meury, Marcel, Knop, Matthias, & (2017). Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. Angewandte Chemie International Edition, 56(28), 8115–8119. https://doi.org/10.1002/anie.201702901
Meury, Marcel, Knop, Matthias, & (2017). Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. Angewandte Chemie International Edition, 56(28), 8115–8119. https://doi.org/10.1002/anie.201702901
Goncharenko, Kristina V, & . (2016). Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chemical Communications, 52(9), 8–1945. https://doi.org/10.1039/c5cc07772a
Goncharenko, Kristina V, & . (2016). Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chemical Communications, 52(9), 8–1945. https://doi.org/10.1039/c5cc07772a
Goncharenko, Kristina V., Vit, Allegra, Blankenfeldt, Wulf, & (2015). Structure of the Sulfoxide Synthase EgtB from the Ergothioneine Biosynthetic Pathway. Angewandte Chemie International Edition, 54(9), 4–2821. https://doi.org/10.1002/anie.201410045
Goncharenko, Kristina V., Vit, Allegra, Blankenfeldt, Wulf, & (2015). Structure of the Sulfoxide Synthase EgtB from the Ergothioneine Biosynthetic Pathway. Angewandte Chemie International Edition, 54(9), 4–2821. https://doi.org/10.1002/anie.201410045
Knop, Matthias, Engi, Pascal, Lemnaru, Roxana, & (2015). In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). ChemBioChem, 16(15), 2147–2150. https://doi.org/10.1002/cbic.201500322
Knop, Matthias, Engi, Pascal, Lemnaru, Roxana, & (2015). In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). ChemBioChem, 16(15), 2147–2150. https://doi.org/10.1002/cbic.201500322
Vit, Allegra, Mashabela, Gabriel, Blankenfeldt, Wulf, & (2015). Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. ChemBioChem, 16(10), 6–1490. https://doi.org/10.1002/cbic.201500168
Vit, Allegra, Mashabela, Gabriel, Blankenfeldt, Wulf, & (2015). Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. ChemBioChem, 16(10), 6–1490. https://doi.org/10.1002/cbic.201500168
Vit, Allegra, Misson, L., Blankenfeldt, W., & (2015). Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis. ChemBioChem, 16(1), 25–119. https://doi.org/10.1002/cbic.201402522
Vit, Allegra, Misson, L., Blankenfeldt, W., & (2015). Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis. ChemBioChem, 16(1), 25–119. https://doi.org/10.1002/cbic.201402522
Vit, Allegra, Misson, Laetitia, Blankenfeldt, W., & . (2014). Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 70(Pt 5), 80–676. https://doi.org/10.1107/s2053230x1400805x
Vit, Allegra, Misson, Laetitia, Blankenfeldt, W., & . (2014). Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 70(Pt 5), 80–676. https://doi.org/10.1107/s2053230x1400805x
Mashabela, Gabriel T M, & . (2013). Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis. Chemical Communications, 49(70), 6–7714. https://doi.org/10.1039/c3cc42594k
Mashabela, Gabriel T M, & . (2013). Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis. Chemical Communications, 49(70), 6–7714. https://doi.org/10.1039/c3cc42594k
. (2013). Thiohistidine biosynthesis. Chimia, 67(5), 333–336. https://doi.org/10.2533/chimia.2013.333
. (2013). Thiohistidine biosynthesis. Chimia, 67(5), 333–336. https://doi.org/10.2533/chimia.2013.333
Amrein, Beat, Schmid, Maurus, Collet, Guillaume, Cuniasse, Philippe, Gilardoni, Francois, , & Ward, Thomas R. (2012). Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Metallomics, 4(4), 88–379. https://doi.org/10.1039/c2mt20010d
Amrein, Beat, Schmid, Maurus, Collet, Guillaume, Cuniasse, Philippe, Gilardoni, Francois, , & Ward, Thomas R. (2012). Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Metallomics, 4(4), 88–379. https://doi.org/10.1039/c2mt20010d
Hofmann, Frank T., Szostak, Jack W., & (2012). In vitro selection of functional lantipeptides. Journal of the American Chemical Society, 134(19), 8038–8041. https://doi.org/10.1021/ja302082d
Hofmann, Frank T., Szostak, Jack W., & (2012). In vitro selection of functional lantipeptides. Journal of the American Chemical Society, 134(19), 8038–8041. https://doi.org/10.1021/ja302082d