Publications
47 found
Show per page
Peng, Jiaming, Hughes, Gregory R., Müller, Manuel M., & Angewandte Chemie International Edition, 63(1). https://doi.org/10.1002/anie.202312104
(2023). Enzymatic Fluoromethylation as a Tool for ATP‐Independent Ligation [Journal-article]. Reed, John H., & Angewandte Chemie International Edition, 63(7). https://doi.org/10.1002/anie.202311159
(2023). Reagent Engineering for Group Transfer Biocatalysis [Journal-article]. Gericke, Lukas, Mhaindarkar, Dipali, Karst, Lukas C., Jahn, Sören, Kuge, Marco, Mohr, Michael K. F., Gagsteiger, Jana, Cornelissen, Nicolas V., Wen, Xiaojin, Mordhorst, Silja, Jessen, Henning J., Rentmeister, Andrea, ChemBioChem, 24(9). https://doi.org/10.1002/cbic.202300133
, Layer, Gunhild, Loenarz, Christoph, & Andexer, Jennifer N. (2023). Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes [Journal-article]. Hartmann, Lea, Free Radical Biology and Medicine, 198, 12–26. https://doi.org/10.1016/j.freeradbiomed.2023.01.023
, Schmalz, Hans-Günther, & Gründemann, Dirk. (2023). Isotope-labeled ergothioneine clarifies the mechanism of reaction with singlet oxygen [Journal-article]. Beliaeva, Mariia A., Atac, Reyhan, & ACS Chemical Biology, 17(7), 1989–1995. https://doi.org/10.1021/acschembio.2c00437
(2022). Bacterial Degradation of Nτ-Methylhistidine. Beliaeva, Mariia A., & JACS Au, 2(9), 2098–2107. https://doi.org/10.1021/jacsau.2c00365
(2022). Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. Wen, Xiaojin, Leisinger, Florian, Leopold, Viviane, & Angewandte Chemie International Edition, 61(41), e202208746. https://doi.org/10.1002/anie.202208746
(2022). Synthetic Reagents for Enzyme-Catalyzed Methylation. Beliaeva, Mariia A., Burn, Reto, Lim, David, & Angewandte Chemie International Edition, 60(10), 5209–5212. https://doi.org/10.1002/anie.202011096
(2021). In Vitro Production of Ergothioneine Isotopologues. Beliaeva, Mariia A., Leisinger, Florian, & ACS Chemical Biology, 16(2), 397–403. https://doi.org/10.1021/acschembio.0c00968
(2021). In Vitro Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism. Duncombe, Todd, Ponti, Aron, Analytical Chemistry, 93(38), 13008–13013. https://doi.org/10.1021/acs.analchem.1c02822
, & Dittrich, Petra. (2021). UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Drople. Leisinger, Florian, Miarzlou , Dzmitry A., & Angewandte Chemie International Edition, 60(11), 6154–6159. https://doi.org/10.1002/anie.202014981
(2021). Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme. Peng, Jiaming, Liao, Cangsong, Bauer, Carste, & Angewandte Chemie International Edition, 60(52), 27178–27183. https://doi.org/10.1002/anie.202108802
. (2021). Fluorinated S-Adenosylmethionine as a Reagent for Enzyme-Catalyzed Fluoromethylation. Schneider, Peter, Henßen, Birgit, Paschold, Beatrix, Chapple, Benjamin P., Schatton, Marcel, Angewandte Chemie International Edition, 60(43), 23412–23418. https://doi.org/10.1002/anie.202107619
, Classen , Thomas, & Pietruszka, Jörg. (2021). Biocatalytic C3-Indole Methylation-A Useful Tool for the Natural-Product-Inspired Stereoselective Synthesis of Pyrroloindoles. Flückger, Sebastian, Igareta, Nico V., & ChemBioChem, 21(21), 3082–3086. https://doi.org/10.1002/cbic.202000317
(2020). Convergent Evolution of Fungal Cysteine Dioxygenases. Goncharenko, Kristina V., Flückiger, Sebastian, Liao, Cangsong, Lim, David, Stampfli, Anja R., & Chemistry - A European Journal, 26(6), 1328–1334. https://doi.org/10.1002/chem.201903898
(2020). Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases. Liao, Cangsong, & Angewandte Chemie International Edition, 59(18), 7184–7187. https://doi.org/10.1002/anie.201916025
(2020). Asymmetric β-Methylation of l- and d-α-Amino Acids by a Self-Contained Enzyme Cascade. Lim, David, Wen, Xiaojin, & Chembiochem : A European Journal of Chemical Biology, 21(24), 3515–3520. https://doi.org/10.1002/cbic.202000557
(2020). Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation. Maurer, Alice, & ChemBioChem, 21(20), 2908–2911. https://doi.org/10.1002/cbic.202000232
(2020). Reexamination of the Ergothioneine Biosynthetic Methyltransferase EgtD from Mycobacterium tuberculosis as a Protein Kinase Substrate. Milito, Alfonsina, Castellano, Immacolata, Burn, Reto, Free Radical Biology and Medicine, 152, 680–688. https://doi.org/10.1016/j.freeradbiomed.2020.01.010
, Brunet, Christophe, & Palumbo, Anna. (2020). First evidence of ovothiol biosynthesis in marine diatoms. Stampfli, Anja R., Blankenfeldt, Wulf, & Current Opinion in Structural Biology, 65, 1–8. https://doi.org/10.1016/j.sbi.2020.04.002
(2020). Structural basis of ergothioneine biosynthesis. Stampfli, Anja R., & Current Opinion in Chemical Biology, 59, 111–118. https://doi.org/10.1016/j.cbpa.2020.06.007
(2020). The catalytic mechanism of sulfoxide synthases. Leisinger, Florian, Burn, Reto, Meury, Marcel, Lukat, Peer, & Journal of the American Chemical Society, 141(17), 6906–6914. https://doi.org/10.1021/jacs.8b12596
(2019). Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. Liao, Cangsong, & Nature Catalysis, 2(8), 696–701. https://doi.org/10.1038/s41929-019-0300-0
(2019). S-adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Liao, Cangsong, & Angew. Chemie Int. Ed, 58(11), 3553–3556. https://doi.org/10.1002/anie.201814662
. (2019). In vitro reconstitution of bacterial DMSP biosynthesis. Lim, David, Gründemann, Dirk, & Angewandte Chemie International Edition, 58(42), 15026–15030. https://doi.org/10.1002/anie.201908967
(2019). Total Synthesis and Functional Characterization of Selenoneine. Maurer, Alice, Leisinger, Florian, Lim, David, & Chemistry - A European Journal, 25(44), 10298–10303. https://doi.org/10.1002/chem.201901866
(2019). Structure and Mechanism of Ergothionase from Treponema denticola. Miarzlou, Dzmitry A., Leisinger, Florian, Joss, Daniel, Häussinger, Daniel, & Chemical Science, 10(29), 7049–7058. https://doi.org/10.1039/c9sc01723b
(2019). Structure of formylglycine-generating enzyme in complex with copper and a substrate reveals an acidic pocket for binding and activation of molecular oxygen. Stampfli, Anja R., Goncharenko, Kristina V., Meury, Marcel, Dubey, Badri N., Schirmer, Tilman, & Journal of American Chemical Society, 141(13), 5275–5285. https://doi.org/10.1021/jacs.8b13023
(2019). An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. Castellano, Immacolata, & Natural Product Reports, 35(12), 1241–1250. https://doi.org/10.1039/c8np00045j
(2018). On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Gamage, Akshamal M., Liao, Cangsong, Cheah, Irwin K., Chen, Yahua, Lim, Daniel R. X., Ku, Joanne W. K., Chee, Rhonda Sin Ling, Gengenbacher, Martin, FASEB Journal, 32(12), 6395–6409. https://doi.org/10.1096/fj.201800716
, Halliwell, Barry, & Gan, Yunn-Hwen. (2018). The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection. Misson, Laëtitia, Burn, Reto, Vit, Allegra, Hildesheim, Julia, Beliaeva, Mariia A., Blankenfeldt, Wulf, & ACS Chemical Biology, 13(5), 1333–1342. https://doi.org/10.1021/acschembio.8b00127
(2018). Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. Burn, Reto, Misson, Laëtitia, Meury, Marcel, & Angewandte Chemie International Edition, 56(41), 12508–12511. https://doi.org/10.1002/anie.201705932
(2017). Anaerobic Origin of Ergothioneine. Faponle, Abayomi S., Journal of the American Chemical Society, 139(27), 9259–9270. https://doi.org/10.1021/jacs.7b04251
, & de Visser, Sam P. (2017). Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. Knop, Matthias, Dang, Thanh Quy, Jeschke, Gunnar, & ChemBioChem, 18(2), 161–165. https://doi.org/10.1002/cbic.201600359
(2017). Copper is a Cofactor of the Formylglycine-Generating Enzyme. Knop, Matthias, Lemnaru, Roxana, & ChemBioChem, 18(17), 1755–1761. https://doi.org/10.1002/cbic.201700174
(2017). Mutation of Conserved Residues Increases in Vitro Activity of the Formylglycine-Generating Enzyme. Liao, Cangsong, & ChemBioChem, 18(21), 2115–2118. https://doi.org/10.1002/cbic.201700354
(2017). Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria. Meury, Marcel, Knop, Matthias, & Angewandte Chemie International Edition, 56(28), 8115–8119. https://doi.org/10.1002/anie.201702901
(2017). Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. Goncharenko, Kristina V, & Chemical Communications, 52(9), 1945–1948. https://doi.org/10.1039/c5cc07772a
. (2016). Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Goncharenko, Kristina V., Vit, Allegra, Blankenfeldt, Wulf, & Angewandte Chemie International Edition, 54(9), 2821–2824. https://doi.org/10.1002/anie.201410045
(2015). Structure of the Sulfoxide Synthase EgtB from the Ergothioneine Biosynthetic Pathway. Knop, Matthias, Engi, Pascal, Lemnaru, Roxana, & ChemBioChem, 16(15), 2147–2150. https://doi.org/10.1002/cbic.201500322
(2015). In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). Vit, Allegra, Mashabela, Gabriel, Blankenfeldt, Wulf, & ChemBioChem, 16(10), 1490–1496. https://doi.org/10.1002/cbic.201500168
(2015). Structure of the Ergothioneine-Biosynthesis Amidohydrolase EgtC. Vit, Allegra, Misson, L., Blankenfeldt, W., & ChemBioChem, 16(1), 119–125. https://doi.org/10.1002/cbic.201402522
(2015). Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis. Vit, Allegra, Misson, Laetitia, Blankenfeldt, W., & Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 70(Pt 5), 676–680. https://doi.org/10.1107/s2053230x1400805x
. (2014). Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD. Mashabela, Gabriel T M, & Chemical Communications, 49(70), 7714–7716. https://doi.org/10.1039/c3cc42594k
. (2013). Substrate specificity of an oxygen dependent sulfoxide synthase in ovothiol biosynthesis. Chimia, 67(5), 333–336. https://doi.org/10.2533/chimia.2013.333
. (2013). Thiohistidine biosynthesis. Amrein, Beat, Schmid, Maurus, Collet, Guillaume, Cuniasse, Philippe, Gilardoni, Francois, Metallomics, 4(4), 379–388. https://doi.org/10.1039/c2mt20010d
, & Ward, Thomas R. (2012). Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Hofmann, Frank T., Szostak, Jack W., & Journal of the American Chemical Society, 134(19), 8038–8041. https://doi.org/10.1021/ja302082d
(2012). In vitro selection of functional lantipeptides.