Publications
281 found
Show per page
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Maier, Timm, & (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article]. Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Maier, Timm, & (2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article]. Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
Borenäs, Marcus, Umapathy, Ganesh, Lind, Dan E., Lai, Wei-Yun, Guan, Jikui, Johansson, Joel, Jennische, Eva, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Aniszewska, Agata, Strömberg, Anneli, Bemark, Mats, , Van den Eynden, Jimmy, Hallberg, Bengt, & Palmer, Ruth H. (2024). ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proceedings of the National Academy of Sciences of the United States of America, 121(1). https://doi.org/10.1073/pnas.2315242121
Borenäs, Marcus, Umapathy, Ganesh, Lind, Dan E., Lai, Wei-Yun, Guan, Jikui, Johansson, Joel, Jennische, Eva, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Aniszewska, Agata, Strömberg, Anneli, Bemark, Mats, , Van den Eynden, Jimmy, Hallberg, Bengt, & Palmer, Ruth H. (2024). ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proceedings of the National Academy of Sciences of the United States of America, 121(1). https://doi.org/10.1073/pnas.2315242121
Mossmann, Dirk, Müller, Christoph, Park, Sujin, Ryback, Brendan, Colombi, Marco, Ritter, Nathalie, Weißenberger, Diana, Dazert, Eva, Coto-Llerena, Mairene, Nuciforo, Sandro, Blukacz, Lauriane, Ercan, Caner, Jimenez, Veronica, Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, Heim, Markus H., & (2023). Arginine reprograms metabolism in liver cancer via RBM39. Cell, 186(23), 5068–5083. https://doi.org/10.1016/j.cell.2023.09.011
Mossmann, Dirk, Müller, Christoph, Park, Sujin, Ryback, Brendan, Colombi, Marco, Ritter, Nathalie, Weißenberger, Diana, Dazert, Eva, Coto-Llerena, Mairene, Nuciforo, Sandro, Blukacz, Lauriane, Ercan, Caner, Jimenez, Veronica, Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, Heim, Markus H., & (2023). Arginine reprograms metabolism in liver cancer via RBM39. Cell, 186(23), 5068–5083. https://doi.org/10.1016/j.cell.2023.09.011
Lai, Wei-Yun, Borenäs, Marcus, Umapathy, Ganesh, Strömberg, Anneli, Lind, Dan E., Guan, Jikui, Bemark, Mats, Hallberg, Bengt, Aniszewska, Agata, Johansson, Joel, Jennische, Eva, , Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Van den Eynden, Jimmy, & Palmer, Ruth H. (2023). ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.30.555570
Lai, Wei-Yun, Borenäs, Marcus, Umapathy, Ganesh, Strömberg, Anneli, Lind, Dan E., Guan, Jikui, Bemark, Mats, Hallberg, Bengt, Aniszewska, Agata, Johansson, Joel, Jennische, Eva, , Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Van den Eynden, Jimmy, & Palmer, Ruth H. (2023). ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.30.555570
Cortada, Maurizio, Levano, Soledad, , & Bodmer, Daniel. (2023). mTORC2 regulates auditory hair cell structure and function. iScience, 26(9), 107687. https://doi.org/10.1016/j.isci.2023.107687
Cortada, Maurizio, Levano, Soledad, , & Bodmer, Daniel. (2023). mTORC2 regulates auditory hair cell structure and function. iScience, 26(9), 107687. https://doi.org/10.1016/j.isci.2023.107687
Frei, Irina C., Weissenberger, Diana, Müller, Christoph, , & Shimobayashi, Mitsugu. (2023). Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism, 324(6), E589–E598. https://doi.org/10.1152/ajpendo.00338.2022
Frei, Irina C., Weissenberger, Diana, Müller, Christoph, , & Shimobayashi, Mitsugu. (2023). Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism, 324(6), E589–E598. https://doi.org/10.1152/ajpendo.00338.2022
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & (2023). Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells. Biomedicine, 11(2158), 1–8. https://doi.org/10.3390/biomedicines11082158
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & (2023). Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells. Biomedicine, 11(2158), 1–8. https://doi.org/10.3390/biomedicines11082158
Shetty, Sunil, Hofstetter, Jon, Battaglioni, Stefania, Ritz, Danilo, & (2023). TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes. The EMBO Journal, 42(5), e112344. https://doi.org/10.15252/embj.2022112344
Shetty, Sunil, Hofstetter, Jon, Battaglioni, Stefania, Ritz, Danilo, & (2023). TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes. The EMBO Journal, 42(5), e112344. https://doi.org/10.15252/embj.2022112344
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia. eLife, 12, e85103. https://doi.org/10.7554/elife.85103
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & (2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia. eLife, 12, e85103. https://doi.org/10.7554/elife.85103
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Maier, Timm, & (2022). mTOR substrate phosphorylation in growth control. Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Maier, Timm, & (2022). mTOR substrate phosphorylation in growth control. Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
Benjamin, Don, & (2022). Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal. Frontiers in Oncology, 12, 1034397. https://doi.org/10.3389/fonc.2022.1034397
Benjamin, Don, & (2022). Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal. Frontiers in Oncology, 12, 1034397. https://doi.org/10.3389/fonc.2022.1034397
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, Rüegg, Markus A., , & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, Rüegg, Markus A., , & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling. American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
Frei, Irina C., Weissenberger, Diana, Ritz, Danilo, Heusermann, Wolf, Colombi, Marco, Shimobayashi, Mitsugu, & (2022). Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis. Molecular metabolism, 65, 101580. https://doi.org/10.1016/j.molmet.2022.101580
Frei, Irina C., Weissenberger, Diana, Ritz, Danilo, Heusermann, Wolf, Colombi, Marco, Shimobayashi, Mitsugu, & (2022). Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis. Molecular metabolism, 65, 101580. https://doi.org/10.1016/j.molmet.2022.101580
Mossmann, Dirk, Park, Sujin, Ryback, Brendan, Weißenberger, Diana, Colombi, Marco, Hindupur, Sravanth K., Dazert, Eva, Coto-Llerena, Mairene, Caner, Ercan, Cenzano, Veronica J., Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, & (2022). Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth. bioRxiv. https://doi.org/10.1101/2022.04.26.489545
Mossmann, Dirk, Park, Sujin, Ryback, Brendan, Weißenberger, Diana, Colombi, Marco, Hindupur, Sravanth K., Dazert, Eva, Coto-Llerena, Mairene, Caner, Ercan, Cenzano, Veronica J., Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, & (2022). Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth. bioRxiv. https://doi.org/10.1101/2022.04.26.489545
Ng, Charlotte K. Y., Dazert, Eva, Boldanova, Tuyana, Coto-Llerena, Mairene, Nuciforo, Sandro, Ercan, Caner, Suslov, Aleksei, Meier, Marie-Anne, Bock, Thomas, Schmidt, Alexander, Ketterer, Sylvia, Wang, Xueya, Wieland, Stefan, Matter, Matthias S., Colombi, Marco, Piscuoglio, Salvatore, Terracciano, Luigi M., , & Heim, Markus H. (2022). Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nature Communications, 13(1), 2436. https://doi.org/10.1038/s41467-022-29960-8
Ng, Charlotte K. Y., Dazert, Eva, Boldanova, Tuyana, Coto-Llerena, Mairene, Nuciforo, Sandro, Ercan, Caner, Suslov, Aleksei, Meier, Marie-Anne, Bock, Thomas, Schmidt, Alexander, Ketterer, Sylvia, Wang, Xueya, Wieland, Stefan, Matter, Matthias S., Colombi, Marco, Piscuoglio, Salvatore, Terracciano, Luigi M., , & Heim, Markus H. (2022). Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nature Communications, 13(1), 2436. https://doi.org/10.1038/s41467-022-29960-8
Park, Sujin, Mossmann, Dirk, Chen, Qian, Wang, Xueya, Dazert, Eva, Colombi, Marco, Schmidt, Alexander, Ryback, Brendan, Ng, Charlotte K. Y., Terracciano, Luigi M., Heim, Markus H., & (2022). Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis. Molecular Cell, 82(22), 4246–4261. https://doi.org/10.1016/j.molcel.2022.10.027
Park, Sujin, Mossmann, Dirk, Chen, Qian, Wang, Xueya, Dazert, Eva, Colombi, Marco, Schmidt, Alexander, Ryback, Brendan, Ng, Charlotte K. Y., Terracciano, Luigi M., Heim, Markus H., & (2022). Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis. Molecular Cell, 82(22), 4246–4261. https://doi.org/10.1016/j.molcel.2022.10.027
Suter, Polina, Dazert, Eva, Kuipers, Jack, Ng, Charlotte K. Y., Boldanova, Tuyana, , Heim, Markus H., & Beerenwinkel, Niko. (2022). Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model. PLoS Computational Biology, 18(9), e1009767. https://doi.org/10.1371/journal.pcbi.1009767
Suter, Polina, Dazert, Eva, Kuipers, Jack, Ng, Charlotte K. Y., Boldanova, Tuyana, , Heim, Markus H., & Beerenwinkel, Niko. (2022). Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model. PLoS Computational Biology, 18(9), e1009767. https://doi.org/10.1371/journal.pcbi.1009767
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., , Maier, Timm, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., , Maier, Timm, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1. Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
Dimitrakopoulos, Christos, Hindupur, Sravanth Kumar, Colombi, Marco, Liko, Dritan, Ng, Charlotte K. Y., Piscuoglio, Salvatore, Behr, Jonas, Moore, Ariane L., Singer, Jochen, Ruscheweyh, Hans-Joachim, Matter, Matthias S., Mossmann, Dirk, Terracciano, Luigi M., , & Beerenwinkel, Niko. (2021). Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma. BMC genomics, 22(1), 592. https://doi.org/10.1186/s12864-021-07876-9
Dimitrakopoulos, Christos, Hindupur, Sravanth Kumar, Colombi, Marco, Liko, Dritan, Ng, Charlotte K. Y., Piscuoglio, Salvatore, Behr, Jonas, Moore, Ariane L., Singer, Jochen, Ruscheweyh, Hans-Joachim, Matter, Matthias S., Mossmann, Dirk, Terracciano, Luigi M., , & Beerenwinkel, Niko. (2021). Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma. BMC genomics, 22(1), 592. https://doi.org/10.1186/s12864-021-07876-9
Gao, Ruize, Buechel, David, Kalathur, Ravi K. R., Morini, Marco F., Coto-Llerena, Mairene, Ercan, Caner, Piscuoglio, Salvatore, Chen, Qian, Blumer, Tanja, Wang, Xueya, Dazert, Eva, Heim, Markus H., , Tang, Fengyuan, & Christofori, Gerhard. (2021). USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis, 10(7), 52. https://doi.org/10.1038/s41389-021-00338-7
Gao, Ruize, Buechel, David, Kalathur, Ravi K. R., Morini, Marco F., Coto-Llerena, Mairene, Ercan, Caner, Piscuoglio, Salvatore, Chen, Qian, Blumer, Tanja, Wang, Xueya, Dazert, Eva, Heim, Markus H., , Tang, Fengyuan, & Christofori, Gerhard. (2021). USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis, 10(7), 52. https://doi.org/10.1038/s41389-021-00338-7
Muralidharan, Sneha, Shimobayashi, Mitsugu, Ji, Shanshan, Burla, Bo, , Wenk, Markus R., & Torta, Federico. (2021). A reference map of sphingolipids in murine tissues. Cell Reports, 35(11), 109250. https://doi.org/10.1016/j.celrep.2021.109250
Muralidharan, Sneha, Shimobayashi, Mitsugu, Ji, Shanshan, Burla, Bo, , Wenk, Markus R., & Torta, Federico. (2021). A reference map of sphingolipids in murine tissues. Cell Reports, 35(11), 109250. https://doi.org/10.1016/j.celrep.2021.109250
Shetty, Sunil, & (2021). More writing: mTORC1 promotes m; 6; A mRNA methylation. Molecular Cell, 81(10), 2057–2058. https://doi.org/10.1016/j.molcel.2021.04.020
Shetty, Sunil, & (2021). More writing: mTORC1 promotes m; 6; A mRNA methylation. Molecular Cell, 81(10), 2057–2058. https://doi.org/10.1016/j.molcel.2021.04.020
Teufel, Claudia, Horvath, Edit, Peter, Annick, Ercan, Caner, Piscuoglio, Salvatore, , Finke, Daniela, & Lehmann, Frank M. (2021). mTOR signaling mediates ILC3-driven immunopathology. Mucosal Immunology, 14(6), 1323–1334. https://doi.org/10.1038/s41385-021-00432-4
Teufel, Claudia, Horvath, Edit, Peter, Annick, Ercan, Caner, Piscuoglio, Salvatore, , Finke, Daniela, & Lehmann, Frank M. (2021). mTOR signaling mediates ILC3-driven immunopathology. Mucosal Immunology, 14(6), 1323–1334. https://doi.org/10.1038/s41385-021-00432-4
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, , & Maier, Timm. (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, e70871. https://doi.org/10.7554/elife.70871
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, , & Maier, Timm. (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, e70871. https://doi.org/10.7554/elife.70871
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., , Rüegg, Markus A., & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., , Rüegg, Markus A., & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
Fu, Wenxiang, & (2020). Regulation of mTORC2 Signaling. Genes, 11(9), 1045. https://doi.org/10.3390/genes11091045
Fu, Wenxiang, & (2020). Regulation of mTORC2 Signaling. Genes, 11(9), 1045. https://doi.org/10.3390/genes11091045
González, Asier, , Lin, Sheng-Cai, & Hardie, D. Grahame. (2020). AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell metabolism, 31(3), 472–492. https://doi.org/10.1016/j.cmet.2020.01.015
González, Asier, , Lin, Sheng-Cai, & Hardie, D. Grahame. (2020). AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell metabolism, 31(3), 472–492. https://doi.org/10.1016/j.cmet.2020.01.015
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Zavolan, Mihaela, & (2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Zavolan, Mihaela, & (2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & (2020). Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells. bioRxiv. https://doi.org/10.1101/2020.10.11.334334
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & (2020). Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells. bioRxiv. https://doi.org/10.1101/2020.10.11.334334
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, , Ban, Nenad, & Maier, Timm. (2020). The 3.2-Å resolution structure of human mTORC2. Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, , Ban, Nenad, & Maier, Timm. (2020). The 3.2-Å resolution structure of human mTORC2. Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & (2020). Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & (2020). Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
Benjamin, Don, Colombi, Marco, Moroni, Christoph, & (2019). mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells. bioRxiv, 1–24. https://doi.org/10.1101/737817
Benjamin, Don, Colombi, Marco, Moroni, Christoph, & (2019). mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells. bioRxiv, 1–24. https://doi.org/10.1101/737817
Benjamin, Don, & (2019). Lactate jump-starts mTORC1 in cancer cells. EMBO Reports, 20(6), e48302. https://doi.org/10.15252/embr.201948302
Benjamin, Don, & (2019). Lactate jump-starts mTORC1 in cancer cells. EMBO Reports, 20(6), e48302. https://doi.org/10.15252/embr.201948302
Kessi-Pérez, Eduardo I., Salinas, Francisco, González, Asier, Su, Ying, Guillamón, José M., , Larrondo, Luis F., & Martínez, Claudio. (2019). KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Frontiers in Microbiology, 10, 1686. https://doi.org/10.3389/fmicb.2019.01686
Kessi-Pérez, Eduardo I., Salinas, Francisco, González, Asier, Su, Ying, Guillamón, José M., , Larrondo, Luis F., & Martínez, Claudio. (2019). KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Frontiers in Microbiology, 10, 1686. https://doi.org/10.3389/fmicb.2019.01686
Kessi-Pérez, E. I., Salinas, F., Molinet, J., González, A., Muñiz, S., Guillamón, J. M., , Larrondo, L. F., & Martínez, C. (2019). Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast, 36(1), 65–74. https://doi.org/10.1002/yea.3351
Kessi-Pérez, E. I., Salinas, F., Molinet, J., González, A., Muñiz, S., Guillamón, J. M., , Larrondo, L. F., & Martínez, C. (2019). Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast, 36(1), 65–74. https://doi.org/10.1002/yea.3351
Li, Jing, Vázquez-García, Ignacio, Persson, Karl, González, Asier, Yue, Jia-Xing, Barré, Benjamin, , Long, Anthony, Warringer, Jonas, Mustonen, Ville, & Liti, Gianni. (2019). Shared molecular targets confer resistance over short and long evolutionary timescales. Molecular biology and evolution, 36(4), 691–708. https://doi.org/10.1093/molbev/msz006
Li, Jing, Vázquez-García, Ignacio, Persson, Karl, González, Asier, Yue, Jia-Xing, Barré, Benjamin, , Long, Anthony, Warringer, Jonas, Mustonen, Ville, & Liti, Gianni. (2019). Shared molecular targets confer resistance over short and long evolutionary timescales. Molecular biology and evolution, 36(4), 691–708. https://doi.org/10.1093/molbev/msz006
Suda, Kazuki, Kaneko, Atsuki, Shimobayashi, Mitsugu, Nakashima, Akio, Tatsuya, Maeda, , & Ushimaru, Takashi. (2019). TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells. Biochemical and Biophysical Research Communications, 511(2), 434–439. https://doi.org/10.1016/j.bbrc.2019.02.077
Suda, Kazuki, Kaneko, Atsuki, Shimobayashi, Mitsugu, Nakashima, Akio, Tatsuya, Maeda, , & Ushimaru, Takashi. (2019). TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells. Biochemical and Biophysical Research Communications, 511(2), 434–439. https://doi.org/10.1016/j.bbrc.2019.02.077
Tang, Fengyuan, Gao, Ruize, Jeevan-Raj, Beena, Wyss, Christof B., Kalathur, Ravi K. R., Piscuoglio, Salvatore, Ng, Charlotte K. Y., Hindupur, Sravanth K., Nuciforo, Sandro, Dazert, Eva, Bock, Thomas, Song, Shuang, Buechel, David, Morini, Marco F., Hergovich, Alexander, Matthias, Patrick, Lim, Dae-Sik, Terracciano, Luigi M., Heim, Markus H., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 10(1), 5755. https://doi.org/10.1038/s41467-019-13591-7
Tang, Fengyuan, Gao, Ruize, Jeevan-Raj, Beena, Wyss, Christof B., Kalathur, Ravi K. R., Piscuoglio, Salvatore, Ng, Charlotte K. Y., Hindupur, Sravanth K., Nuciforo, Sandro, Dazert, Eva, Bock, Thomas, Song, Shuang, Buechel, David, Morini, Marco F., Hergovich, Alexander, Matthias, Patrick, Lim, Dae-Sik, Terracciano, Luigi M., Heim, Markus H., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 10(1), 5755. https://doi.org/10.1038/s41467-019-13591-7
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, Cavelti-Weder, Claudia, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, , Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors. The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, Cavelti-Weder, Claudia, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, , Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors. The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
Bantug, G. R., Fischer, M., Grählert, J., Balmer, M. L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A. S. H., Gubser, P. M., Burgener, A.-V., Sauder, U., Löliger, J., Belle, R., Dimeloe, S., Lötscher, J., Jauch, A., Recher, M., Hönger, G., et al. (2018). Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells. Immunity, 48(3), 542–555. https://doi.org/10.1016/j.immuni.2018.02.012
Bantug, G. R., Fischer, M., Grählert, J., Balmer, M. L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A. S. H., Gubser, P. M., Burgener, A.-V., Sauder, U., Löliger, J., Belle, R., Dimeloe, S., Lötscher, J., Jauch, A., Recher, M., Hönger, G., et al. (2018). Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells. Immunity, 48(3), 542–555. https://doi.org/10.1016/j.immuni.2018.02.012
Benjamin, Don, Robay, Dimitri, Hindupur, Sravanth K., Pohlmann, Jens, Colombi, Marco, El-Shemerly, Mahmoud Y., Maira, Sauveur-Michel, Moroni, Christoph, Lane, Heidi A., & (2018). Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells. Cell Reports, 25(11), 3047–3058. https://doi.org/10.1016/j.celrep.2018.11.043
Benjamin, Don, Robay, Dimitri, Hindupur, Sravanth K., Pohlmann, Jens, Colombi, Marco, El-Shemerly, Mahmoud Y., Maira, Sauveur-Michel, Moroni, Christoph, Lane, Heidi A., & (2018). Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells. Cell Reports, 25(11), 3047–3058. https://doi.org/10.1016/j.celrep.2018.11.043
Dimitrakopoulos, C., Kumar Hindupur, S., Häfliger, L., Behr, J., Montazeri, H., , & Beerenwinkel, N. (2018). Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics, 34(14), 2441–2448. https://doi.org/10.1093/bioinformatics/bty148
Dimitrakopoulos, C., Kumar Hindupur, S., Häfliger, L., Behr, J., Montazeri, H., , & Beerenwinkel, N. (2018). Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics, 34(14), 2441–2448. https://doi.org/10.1093/bioinformatics/bty148
Hindupur, Sravanth K., Colombi, Marco, Fuhs, Stephen R., Matter, Matthias S., Guri, Yakir, Adam, Kevin, Cornu, Marion, Piscuoglio, Salvatore, Ng, Charlotte K. Y., Betz, Charles, Liko, Dritan, Quagliata, Luca, Moes, Suzette, Jenoe, Paul, Terracciano, Luigi M., Heim, Markus H., Hunter, Tony, & (2018). The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 555(7698), 678–+. https://doi.org/10.1038/nature26140
Hindupur, Sravanth K., Colombi, Marco, Fuhs, Stephen R., Matter, Matthias S., Guri, Yakir, Adam, Kevin, Cornu, Marion, Piscuoglio, Salvatore, Ng, Charlotte K. Y., Betz, Charles, Liko, Dritan, Quagliata, Luca, Moes, Suzette, Jenoe, Paul, Terracciano, Luigi M., Heim, Markus H., Hunter, Tony, & (2018). The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 555(7698), 678–+. https://doi.org/10.1038/nature26140
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Ruegg, Markus A., , Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Ruegg, Markus A., , Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis. Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
Mossmann, Dirk, Park, Sujin, & (2018). mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer, 18(12), 744–757. https://doi.org/10.1038/s41568-018-0074-8
Mossmann, Dirk, Park, Sujin, & (2018). mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer, 18(12), 744–757. https://doi.org/10.1038/s41568-018-0074-8
Mostofa, M. G., Rahman, M. A., Koike, N., Yeasmin, A. M., Islam, N., Waliullah, T. Mu., Hosoyamada, S., Shimobayashi, M., Kobayashi, T., , & Ushimaru, T. (2018). CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. Journal of Cell Biology, 217(8), 2675–2690. https://doi.org/10.1083/jcb.201706164
Mostofa, M. G., Rahman, M. A., Koike, N., Yeasmin, A. M., Islam, N., Waliullah, T. Mu., Hosoyamada, S., Shimobayashi, M., Kobayashi, T., , & Ushimaru, T. (2018). CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. Journal of Cell Biology, 217(8), 2675–2690. https://doi.org/10.1083/jcb.201706164
Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & (2018). Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation, 128(4), 1538–1550. https://doi.org/10.1172/jci96139
Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & (2018). Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation, 128(4), 1538–1550. https://doi.org/10.1172/jci96139
Singer, Jochen, Ruscheweyh, Hans-Joachim, Hofmann, Ariane L., Thurnherr, Thomas, Singer, Franziska, Toussaint, Nora C., Ng, Charlotte K. Y., Piscuoglio, Salvatore, Beisel, Christian, Christofori, Gerhard, Dummer, Reinhard, , Krek, Wilhelm, Levesque, Mitchell, Manz, Markus G., Moch, Holger, Papassotiropoulos, Andreas, Stekhoven, Daniel J., Wild, Peter, et al. (2018). NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis. Bioinformatics, 34(1), 107–108. https://doi.org/10.1093/bioinformatics/btx540
Singer, Jochen, Ruscheweyh, Hans-Joachim, Hofmann, Ariane L., Thurnherr, Thomas, Singer, Franziska, Toussaint, Nora C., Ng, Charlotte K. Y., Piscuoglio, Salvatore, Beisel, Christian, Christofori, Gerhard, Dummer, Reinhard, , Krek, Wilhelm, Levesque, Mitchell, Manz, Markus G., Moch, Holger, Papassotiropoulos, Andreas, Stekhoven, Daniel J., Wild, Peter, et al. (2018). NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis. Bioinformatics, 34(1), 107–108. https://doi.org/10.1093/bioinformatics/btx540
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., , Maier, T., & Ban, N. (2018). Architecture of the human mTORC2 core complex. eLife, 7, e33101. https://doi.org/10.7554/elife.33101
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., , Maier, T., & Ban, N. (2018). Architecture of the human mTORC2 core complex. eLife, 7, e33101. https://doi.org/10.7554/elife.33101
Swierczynska, Marta M., Betz, Matthias J., Colombi, Marco, Dazert, Eva, Jenö, Paul, Moes, Suzette, Pfaff, Cécile, Glatz, Katharina, Reincke, Martin, Beuschlein, Felix, Donath, Marc Y., & (2018). Proteomic Landscape of Aldosterone-Producing Adenoma. Hypertension (Dallas, Tex. : 1979), 73(2), 469–480. https://doi.org/10.1161/hypertensionaha.118.11733
Swierczynska, Marta M., Betz, Matthias J., Colombi, Marco, Dazert, Eva, Jenö, Paul, Moes, Suzette, Pfaff, Cécile, Glatz, Katharina, Reincke, Martin, Beuschlein, Felix, Donath, Marc Y., & (2018). Proteomic Landscape of Aldosterone-Producing Adenoma. Hypertension (Dallas, Tex. : 1979), 73(2), 469–480. https://doi.org/10.1161/hypertensionaha.118.11733
Benjamin, D., & (2017). mTORC1 Controls Synthesis of Its Activator GTP. Cell Reports, 19(13), 2643–2644. https://doi.org/10.1016/j.celrep.2017.06.032
Benjamin, D., & (2017). mTORC1 Controls Synthesis of Its Activator GTP. Cell Reports, 19(13), 2643–2644. https://doi.org/10.1016/j.celrep.2017.06.032
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Rüegg, M. A., , & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Rüegg, M. A., , & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., Rüegg, Markus A., , MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., Rüegg, Markus A., , MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Ruegg, Markus A., , Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Ruegg, Markus A., , Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
González, A., & (2017). Nutrient sensing and TOR signaling in yeast and mammals. The EMBO Journal, 36(4), 397–408. https://doi.org/10.15252/embj.201696010
González, A., & (2017). Nutrient sensing and TOR signaling in yeast and mammals. The EMBO Journal, 36(4), 397–408. https://doi.org/10.15252/embj.201696010
Guri, Y., Colombi, M., Dazert, E., Hindupur, S. K., Roszik, J., Moes, S., Jenoe, P., Heim, M. H., Riezman, I., Riezman, H., & (2017). mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell, 32(6), 807–823. https://doi.org/10.1016/j.ccell.2017.11.011
Guri, Y., Colombi, M., Dazert, E., Hindupur, S. K., Roszik, J., Moes, S., Jenoe, P., Heim, M. H., Riezman, I., Riezman, H., & (2017). mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell, 32(6), 807–823. https://doi.org/10.1016/j.ccell.2017.11.011
(2017). An Amazing Turn of Events. Cell, 171(1), 19–22. https://doi.org/10.1016/j.cell.2017.08.021
(2017). An Amazing Turn of Events. Cell, 171(1), 19–22. https://doi.org/10.1016/j.cell.2017.08.021
Tang, F., Zhang, P., Ye, P., Lazarski, C. A., Wu, Q., Bergin, I. L., Bender, T. P., , Cui, Y., Zhang, L., Jiang, T., Liu, Y., & Zheng, P. (2017). A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. eLife, 6, e32497. https://doi.org/10.7554/elife.32497
Tang, F., Zhang, P., Ye, P., Lazarski, C. A., Wu, Q., Bergin, I. L., Bender, T. P., , Cui, Y., Zhang, L., Jiang, T., Liu, Y., & Zheng, P. (2017). A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. eLife, 6, e32497. https://doi.org/10.7554/elife.32497
Fonseca, B. D., Graber, T. E., Hoang, H.-D., González, A., Soukas, A. A., Hernández, G., Alain, T., Swift, S. L., Weisman, R., Meyer, C., Robaglia, C., Avruch, J., & (2016). Evolution of TOR and Translation Control. In Hernández, G.; Jagus, R. (Ed.), Evolution of the Protein Synthesis Machinery and Its Regulation (1 ed., pp. 327–412). Springer. https://doi.org/10.1007/978-3-319-39468-8
Fonseca, B. D., Graber, T. E., Hoang, H.-D., González, A., Soukas, A. A., Hernández, G., Alain, T., Swift, S. L., Weisman, R., Meyer, C., Robaglia, C., Avruch, J., & (2016). Evolution of TOR and Translation Control. In Hernández, G.; Jagus, R. (Ed.), Evolution of the Protein Synthesis Machinery and Its Regulation (1 ed., pp. 327–412). Springer. https://doi.org/10.1007/978-3-319-39468-8
Swierczynska, M. M., & (2016). mTOR in Metabolic and Endocrine Disorders. In Maiese, K. (Ed.), Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies (1st ed., pp. 347–364). Academic Press. https://doi.org/10.1016/b978-0-12-802733-2.00008-6
Swierczynska, M. M., & (2016). mTOR in Metabolic and Endocrine Disorders. In Maiese, K. (Ed.), Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies (1st ed., pp. 347–364). Academic Press. https://doi.org/10.1016/b978-0-12-802733-2.00008-6
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Muñoz, Sergio, Jimenez, Veronica, Handschin, Christoph, Bosch, Fatima, & (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
Albert, Verena, Svensson, Kristoffer, Shimobayashi, Mitsugu, Colombi, Marco, Muñoz, Sergio, Jimenez, Veronica, Handschin, Christoph, Bosch, Fatima, & (2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, , Ban, Nenad, & Maier, Timm. (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, , Ban, Nenad, & Maier, Timm. (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
Benjamin, D., Colombi, M., Hindupur, S. K., Betz, C., Lane, H. A., El-Shemerly, M. Y. M., Lu, M., Quagliata, L., Terracciano, L., Moes, S., Sharpe, T., Wodnar-Filipowicz, A., Moroni, C., & (2016). Syrosingopine sensitizes cancer cells to killing by metformin. Science Advances, 2(12), e1601756. https://doi.org/10.1126/sciadv.1601756
Benjamin, D., Colombi, M., Hindupur, S. K., Betz, C., Lane, H. A., El-Shemerly, M. Y. M., Lu, M., Quagliata, L., Terracciano, L., Moes, S., Sharpe, T., Wodnar-Filipowicz, A., Moroni, C., & (2016). Syrosingopine sensitizes cancer cells to killing by metformin. Science Advances, 2(12), e1601756. https://doi.org/10.1126/sciadv.1601756
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., Roth, V., Terracciano, L., Heim, M. H., Jenoe, P., & (2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., Roth, V., Terracciano, L., Heim, M. H., Jenoe, P., & (2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
Ding, X., Bloch, W., Iden, S., Rüegg, M. A., , Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
Ding, X., Bloch, W., Iden, S., Rüegg, M. A., , Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
Drägert, K., Bhattacharya, I., , Humar, R., Battegay, E., & Haas, E. (2016). Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue. Biochemical and Biophysical Research Communications, 473(1), 317–322. https://doi.org/10.1016/j.bbrc.2016.03.102
Drägert, K., Bhattacharya, I., , Humar, R., Battegay, E., & Haas, E. (2016). Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue. Biochemical and Biophysical Research Communications, 473(1), 317–322. https://doi.org/10.1016/j.bbrc.2016.03.102
Driscoll, D. R., Karim, S. A., Sano, M., Gay, D. M., Jacob, W., Yu, J., Mizukami, Y., Gopinathan, A., Jodrell, D. I., Evans, T. R. J., Bardeesy, N., , Quattrochi, B. J., Klimstra, D. S., Barry, S. T., Sansom, O. J., Lewis, B. C., & Morton, J. P. (2016). mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), 6911–6923. https://doi.org/10.1158/0008-5472.can-16-0810
Driscoll, D. R., Karim, S. A., Sano, M., Gay, D. M., Jacob, W., Yu, J., Mizukami, Y., Gopinathan, A., Jodrell, D. I., Evans, T. R. J., Bardeesy, N., , Quattrochi, B. J., Klimstra, D. S., Barry, S. T., Sansom, O. J., Lewis, B. C., & Morton, J. P. (2016). mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), 6911–6923. https://doi.org/10.1158/0008-5472.can-16-0810
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Rüegg, M. A., , Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling. Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Rüegg, M. A., , Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling. Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
Guri, Yakir, & (2016). mTOR Signaling Confers Resistance to Targeted Cancer Drugs. Trends in Cancer, 2(11), 688–697. https://doi.org/10.1016/j.trecan.2016.10.006
Guri, Yakir, & (2016). mTOR Signaling Confers Resistance to Targeted Cancer Drugs. Trends in Cancer, 2(11), 688–697. https://doi.org/10.1016/j.trecan.2016.10.006
(2016). TOR and paradigm change: cell growth is controlled. Molecular Biology of the Cell, 27(18), 2804–2806. https://doi.org/10.1091/mbc.e15-05-0311
(2016). TOR and paradigm change: cell growth is controlled. Molecular Biology of the Cell, 27(18), 2804–2806. https://doi.org/10.1091/mbc.e15-05-0311
Herkert, B., Kauffmann, A., Mollé, S., Schnell, C., Ferrat, T., Voshol, H., Juengert, J., Erasimus, H., Marszalek, G., Kazic-Legueux, M., Billy, E., Ruddy, D., Stump, M., Guthy, D., Ristov, M., Calkins, K., Maira, S.-M., Sellers, W. R., Hofmann, F., et al. (2016). Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition. Cancer Research, 76(2), 390–402. https://doi.org/10.1158/0008-5472.can-14-3358
Herkert, B., Kauffmann, A., Mollé, S., Schnell, C., Ferrat, T., Voshol, H., Juengert, J., Erasimus, H., Marszalek, G., Kazic-Legueux, M., Billy, E., Ruddy, D., Stump, M., Guthy, D., Ristov, M., Calkins, K., Maira, S.-M., Sellers, W. R., Hofmann, F., et al. (2016). Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition. Cancer Research, 76(2), 390–402. https://doi.org/10.1158/0008-5472.can-14-3358
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., , Rüegg, M. A., & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., , Rüegg, M. A., & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
Shimobayashi, M., & (2016). Multiple amino acid sensing inputs to mTORC1. Cell Research, 26(1), 7–20. https://doi.org/10.1038/cr.2015.146
Shimobayashi, M., & (2016). Multiple amino acid sensing inputs to mTORC1. Cell Research, 26(1), 7–20. https://doi.org/10.1038/cr.2015.146
Swierczynska, M. M., & (2016). eIF4A moonlights as an off switch for TORC1. The EMBO Journal, 35(10), 1013–1014. https://doi.org/10.15252/embj.201694326
Swierczynska, M. M., & (2016). eIF4A moonlights as an off switch for TORC1. The EMBO Journal, 35(10), 1013–1014. https://doi.org/10.15252/embj.201694326
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Rüegg, M. A., , Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Rüegg, M. A., , Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
Cornu, M., de Caudron de Coquereaumont, G., & (2015). mTOR signaling in liver disease. In Dufour, J.-F.; Clavien, P.-A. (Ed.), Signaling Pathways in Liver Diseases (3rd ed., pp. 314–325). John Wiley. https://doi.org/10.1002/9781118663387.ch22
Cornu, M., de Caudron de Coquereaumont, G., & (2015). mTOR signaling in liver disease. In Dufour, J.-F.; Clavien, P.-A. (Ed.), Signaling Pathways in Liver Diseases (3rd ed., pp. 314–325). John Wiley. https://doi.org/10.1002/9781118663387.ch22
Hindupur, Sravanth K., González, Asier, & (2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. In Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (Ed.), Size Control in Biology: From Organelles to Organisms (pp. 221–240). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a019141
Hindupur, Sravanth K., González, Asier, & (2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. In Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (Ed.), Size Control in Biology: From Organelles to Organisms (pp. 221–240). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a019141
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Rüegg, M. A., , Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Rüegg, M. A., , Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
Albert, V., Cornu, M., & (2015). mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior. Biochemical and Biophysical Research Communications, 464(2), 480–486. https://doi.org/10.1016/j.bbrc.2015.06.161
Albert, V., Cornu, M., & (2015). mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior. Biochemical and Biophysical Research Communications, 464(2), 480–486. https://doi.org/10.1016/j.bbrc.2015.06.161
Albert, V., & (2015). mTOR signaling in cellular and organismal energetics [Review of mTOR signaling in cellular and organismal energetics]. Current Opinion in Cell Biology, 33, 55–66. https://doi.org/10.1016/j.ceb.2014.12.001
Albert, V., & (2015). mTOR signaling in cellular and organismal energetics [Review of mTOR signaling in cellular and organismal energetics]. Current Opinion in Cell Biology, 33, 55–66. https://doi.org/10.1016/j.ceb.2014.12.001
Carr, T. D., Feehan, R. P., , Rüegg, M. A., & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
Carr, T. D., Feehan, R. P., , Rüegg, M. A., & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
Drägert, K., Bhattacharya, I., Pellegrini, G., Seebeck, P., Azzi, A., Brown, S. A., Georgiopoulou, S., Held, U., Blyszczuk, P., Arras, M., Humar, R., , Battegay, E., & Haas, E. (2015). Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure. Hypertension, 66(2), 332–339. https://doi.org/10.1161/hypertensionaha.115.05398
Drägert, K., Bhattacharya, I., Pellegrini, G., Seebeck, P., Azzi, A., Brown, S. A., Georgiopoulou, S., Held, U., Blyszczuk, P., Arras, M., Humar, R., , Battegay, E., & Haas, E. (2015). Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure. Hypertension, 66(2), 332–339. https://doi.org/10.1161/hypertensionaha.115.05398
Faller, W. J., Jackson, T. J., Knight, J. R. P., Ridgway, R. A., Jamieson, T., Karim, S. A., Jones, C., Radulescu, S., Huels, D. J., Myant, K. B., Dudek, K. M., Casey, H. A., Scopelliti, A., Cordero, J. B., Vidal, M., Pende, M., Ryazanov, A. G., Sonenberg, N., Meyuhas, O., et al. (2015). mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 517(7535), 497–500. https://doi.org/10.1038/nature13896
Faller, W. J., Jackson, T. J., Knight, J. R. P., Ridgway, R. A., Jamieson, T., Karim, S. A., Jones, C., Radulescu, S., Huels, D. J., Myant, K. B., Dudek, K. M., Casey, H. A., Scopelliti, A., Cordero, J. B., Vidal, M., Pende, M., Ryazanov, A. G., Sonenberg, N., Meyuhas, O., et al. (2015). mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 517(7535), 497–500. https://doi.org/10.1038/nature13896
González, A., Shimobayashi, M., Eisenberg, T., Merle, D. A., Pendl, T., , & Moustafa, T. (2015). TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE, 10(3), e0120250. https://doi.org/10.1371/journal.pone.0120250
González, A., Shimobayashi, M., Eisenberg, T., Merle, D. A., Pendl, T., , & Moustafa, T. (2015). TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE, 10(3), e0120250. https://doi.org/10.1371/journal.pone.0120250
(2015). Reduced C/EBPβ-LIP translation improves metabolic health. EMBO Reports, 16(8), 881–882. https://doi.org/10.15252/embr.201540757
(2015). Reduced C/EBPβ-LIP translation improves metabolic health. EMBO Reports, 16(8), 881–882. https://doi.org/10.15252/embr.201540757
Liko, D., & (2015). mTOR in health and in sickness. Journal of Molecular Medicine, 93(10), 1061–1073. https://doi.org/10.1007/s00109-015-1326-7
Liko, D., & (2015). mTOR in health and in sickness. Journal of Molecular Medicine, 93(10), 1061–1073. https://doi.org/10.1007/s00109-015-1326-7
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., , Rüegg, M. A., Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex. Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., , Rüegg, M. A., Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex. Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., , Ruegg, Markus A., Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation. Stem Cells, 33(4), 65–1359. https://doi.org/10.1002/stem.1931
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., , Ruegg, Markus A., Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation. Stem Cells, 33(4), 65–1359. https://doi.org/10.1002/stem.1931
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., , Rüegg, M. A., & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., , Rüegg, M. A., & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
Oliveira, A. P., Dimopoulos, S., Busetto, A. G., Christen, S., Dechant, R., Falter, L., Haghir Chehreghani, M., Jozefczuk, S., Ludwig, C., Rudroff, F., Schulz, J. C., González, A., Soulard, A., Stracka, D., Aebersold, R., Buhmann, J. M., , Peter, M., Sauer, U., & Stelling, J. (2015). Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Molecular Systems Biology, 11(4), 802. https://doi.org/10.15252/msb.20145475
Oliveira, A. P., Dimopoulos, S., Busetto, A. G., Christen, S., Dechant, R., Falter, L., Haghir Chehreghani, M., Jozefczuk, S., Ludwig, C., Rudroff, F., Schulz, J. C., González, A., Soulard, A., Stracka, D., Aebersold, R., Buhmann, J. M., , Peter, M., Sauer, U., & Stelling, J. (2015). Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Molecular Systems Biology, 11(4), 802. https://doi.org/10.15252/msb.20145475
Venkatesh, A., Ma, S., Le, Y. Z., , Rüegg, M. A., & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
Venkatesh, A., Ma, S., Le, Y. Z., , Rüegg, M. A., & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
Benjamin, D., & (2014). mTORC1: Turning Off Is Just as Important as Turning On. Cell, 156(4), 627–628. https://doi.org/10.1016/j.cell.2014.01.057
Benjamin, D., & (2014). mTORC1: Turning Off Is Just as Important as Turning On. Cell, 156(4), 627–628. https://doi.org/10.1016/j.cell.2014.01.057
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., Rüegg, M. A., , Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1. PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., Rüegg, M. A., , Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1. PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Rüegg, Markus A., , Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development. Journal of Immunology, 193(3), 70–1162. https://doi.org/10.4049/jimmunol.1303162
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Rüegg, Markus A., , Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development. Journal of Immunology, 193(3), 70–1162. https://doi.org/10.4049/jimmunol.1303162
Cornu, M., Oppliger, W., Albert, V., Robitaille, A. M., Trapani, F., Quagliata, L., Fuhrer, T., Sauer, U., Terracciano, L., & (2014). Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11592–11599. https://doi.org/10.1073/pnas.1412047111
Cornu, M., Oppliger, W., Albert, V., Robitaille, A. M., Trapani, F., Quagliata, L., Fuhrer, T., Sauer, U., Terracciano, L., & (2014). Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11592–11599. https://doi.org/10.1073/pnas.1412047111
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., , & Madeo, F. (2014). The Search for Antiaging Interventions : From Elixirs to Fasting Regimens [Review of The Search for Antiaging Interventions : From Elixirs to Fasting Regimens]. Cell, 157, Article 7. https://doi.org/10.1016/j.cell.2014.05.031
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., , & Madeo, F. (2014). The Search for Antiaging Interventions : From Elixirs to Fasting Regimens [Review of The Search for Antiaging Interventions : From Elixirs to Fasting Regimens]. Cell, 157, Article 7. https://doi.org/10.1016/j.cell.2014.05.031
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., , Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., , Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Rüegg, M. A., , & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Rüegg, M. A., , & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination. Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Rüegg, M. A., , & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells. Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Rüegg, M. A., , & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells. Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
Shimobayashi, M., & (2014). Making new contacts : the mTOR network in metabolism and signalling crosstalk. Nature Reviews. Molecular Cell Biology, 15(3), 155–162. https://doi.org/10.1038/nrm3757
Shimobayashi, M., & (2014). Making new contacts : the mTOR network in metabolism and signalling crosstalk. Nature Reviews. Molecular Cell Biology, 15(3), 155–162. https://doi.org/10.1038/nrm3757