Publications
281 found
Show per page
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Maier, Timm, & Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
(2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article].
Battaglioni, Stefania, Craigie, Louise-Marie, Filippini, Sofia, Maier, Timm, & Proceedings of the National Academy of Sciences, 121(34). https://doi.org/10.1073/pnas.2405959121
(2024). mTORC1 phosphorylates and stabilizes LST2 to negatively regulate EGFR [Journal-article].
Borenäs, Marcus, Umapathy, Ganesh, Lind, Dan E., Lai, Wei-Yun, Guan, Jikui, Johansson, Joel, Jennische, Eva, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Aniszewska, Agata, Strömberg, Anneli, Bemark, Mats, Proceedings of the National Academy of Sciences of the United States of America, 121(1). https://doi.org/10.1073/pnas.2315242121
, Van den Eynden, Jimmy, Hallberg, Bengt, & Palmer, Ruth H. (2024). ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition.
Borenäs, Marcus, Umapathy, Ganesh, Lind, Dan E., Lai, Wei-Yun, Guan, Jikui, Johansson, Joel, Jennische, Eva, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Aniszewska, Agata, Strömberg, Anneli, Bemark, Mats, Proceedings of the National Academy of Sciences of the United States of America, 121(1). https://doi.org/10.1073/pnas.2315242121
, Van den Eynden, Jimmy, Hallberg, Bengt, & Palmer, Ruth H. (2024). ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition.
Lai, Wei-Yun, Borenäs, Marcus, Umapathy, Ganesh, Strömberg, Anneli, Lind, Dan E., Guan, Jikui, Bemark, Mats, Hallberg, Bengt, Aniszewska, Agata, Johansson, Joel, Jennische, Eva, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.30.555570
, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Van den Eynden, Jimmy, & Palmer, Ruth H. (2023). ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition [Posted-content]. In
Lai, Wei-Yun, Borenäs, Marcus, Umapathy, Ganesh, Strömberg, Anneli, Lind, Dan E., Guan, Jikui, Bemark, Mats, Hallberg, Bengt, Aniszewska, Agata, Johansson, Joel, Jennische, Eva, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.08.30.555570
, Schmidt, Alexander, Kurhe, Yeshwant, Gabre, Jonatan L., Van den Eynden, Jimmy, & Palmer, Ruth H. (2023). ALK signalling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition [Posted-content]. In
Cortada, Maurizio, Levano, Soledad, iScience, 26(9), 107687. https://doi.org/10.1016/j.isci.2023.107687
, & Bodmer, Daniel. (2023). mTORC2 regulates auditory hair cell structure and function.
Cortada, Maurizio, Levano, Soledad, iScience, 26(9), 107687. https://doi.org/10.1016/j.isci.2023.107687
, & Bodmer, Daniel. (2023). mTORC2 regulates auditory hair cell structure and function.
Frei, Irina C., Weissenberger, Diana, Müller, Christoph, American Journal of Physiology. Endocrinology and Metabolism, 324(6), E589–E598. https://doi.org/10.1152/ajpendo.00338.2022
, & Shimobayashi, Mitsugu. (2023). Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis.
Frei, Irina C., Weissenberger, Diana, Müller, Christoph, American Journal of Physiology. Endocrinology and Metabolism, 324(6), E589–E598. https://doi.org/10.1152/ajpendo.00338.2022
, & Shimobayashi, Mitsugu. (2023). Hepatic mTORC2 compensates for loss of adipose mTORC2 in mediating energy storage and glucose homeostasis.
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & Biomedicine, 11(2158), 1–8. https://doi.org/10.3390/biomedicines11082158
(2023). Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells.
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & Biomedicine, 11(2158), 1–8. https://doi.org/10.3390/biomedicines11082158
(2023). Colitis Is Associated with Loss of the Histidine Phosphatase LHPP and Upregulation of Histidine Phosphorylation in Intestinal Epithelial Cells.
Mossmann, Dirk, Müller, Christoph, Park, Sujin, Ryback, Brendan, Colombi, Marco, Ritter, Nathalie, Weißenberger, Diana, Dazert, Eva, Coto-Llerena, Mairene, Nuciforo, Sandro, Blukacz, Lauriane, Ercan, Caner, Jimenez, Veronica, Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, Heim, Markus H., & Cell, 186, 5068–5083. https://doi.org/10.1016/j.cell.2023.09.011
(2023). Arginine reprograms metabolism in liver cancer via RBM39.
Mossmann, Dirk, Müller, Christoph, Park, Sujin, Ryback, Brendan, Colombi, Marco, Ritter, Nathalie, Weißenberger, Diana, Dazert, Eva, Coto-Llerena, Mairene, Nuciforo, Sandro, Blukacz, Lauriane, Ercan, Caner, Jimenez, Veronica, Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, Heim, Markus H., & Cell, 186, 5068–5083. https://doi.org/10.1016/j.cell.2023.09.011
(2023). Arginine reprograms metabolism in liver cancer via RBM39.
Shetty, Sunil, Hofstetter, Jon, Battaglioni, Stefania, Ritz, Danilo, & The EMBO Journal, 42(5), e112344. https://doi.org/10.15252/embj.2022112344
(2023). TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes.
Shetty, Sunil, Hofstetter, Jon, Battaglioni, Stefania, Ritz, Danilo, & The EMBO Journal, 42(5), e112344. https://doi.org/10.15252/embj.2022112344
(2023). TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & eLife, 12, e85103. https://doi.org/10.7554/elife.85103
(2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & eLife, 12, e85103. https://doi.org/10.7554/elife.85103
(2023). Diet-induced loss of adipose hexokinase 2 correlates with hyperglycemia.
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Maier, Timm, & Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
(2022). mTOR substrate phosphorylation in growth control.
Battaglioni, Stefania, Benjamin, Don, Wälchli, Matthias, Maier, Timm, & Cell, 185(11), 1814–1836. https://doi.org/10.1016/j.cell.2022.04.013
(2022). mTOR substrate phosphorylation in growth control.
Benjamin, Don, & Frontiers in Oncology, 12, 1034397. https://doi.org/10.3389/fonc.2022.1034397
(2022). Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal.
Benjamin, Don, & Frontiers in Oncology, 12, 1034397. https://doi.org/10.3389/fonc.2022.1034397
(2022). Combining metformin with lactate transport inhibitors as a treatment modality for cancer-recommendation proposal.
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, Rüegg, Markus A., American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
, & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling.
Blandino-Rosano, Manuel, Scheys, Joshua O., Werneck-de-Castro, Joao Pedro, Louzada, Ruy A., Almaça, Joana, Leibowitz, Gil, Rüegg, Markus A., American Journal of Physiology, Endocrinology and Metabolism, 323(2), E133–E144. https://doi.org/10.1152/ajpendo.00076.2022
, & Bernal-Mizrachi, Ernesto. (2022). Novel roles of mTORC2 in regulation of insulin secretion by actin filament remodeling.
Frei, Irina C., Weissenberger, Diana, Ritz, Danilo, Heusermann, Wolf, Colombi, Marco, Shimobayashi, Mitsugu, & Molecular metabolism, 65, 101580. https://doi.org/10.1016/j.molmet.2022.101580
(2022). Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis.
Frei, Irina C., Weissenberger, Diana, Ritz, Danilo, Heusermann, Wolf, Colombi, Marco, Shimobayashi, Mitsugu, & Molecular metabolism, 65, 101580. https://doi.org/10.1016/j.molmet.2022.101580
(2022). Adipose mTORC2 is essential for sensory innervation in white adipose tissue and whole-body energy homeostasis.
Mossmann, Dirk, Park, Sujin, Ryback, Brendan, Weißenberger, Diana, Colombi, Marco, Hindupur, Sravanth K., Dazert, Eva, Coto-Llerena, Mairene, Caner, Ercan, Cenzano, Veronica J., Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, & Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth. bioRxiv. https://doi.org/10.1101/2022.04.26.489545
(2022).
Mossmann, Dirk, Park, Sujin, Ryback, Brendan, Weißenberger, Diana, Colombi, Marco, Hindupur, Sravanth K., Dazert, Eva, Coto-Llerena, Mairene, Caner, Ercan, Cenzano, Veronica J., Piscuoglio, Salvatore, Bosch, Fatima, Terracciano, Luigi M., Sauer, Uwe, & Elevated arginine levels in liver tumors promote metabolic reprogramming and tumor growth. bioRxiv. https://doi.org/10.1101/2022.04.26.489545
(2022).
Ng, Charlotte K. Y., Dazert, Eva, Boldanova, Tuyana, Coto-Llerena, Mairene, Nuciforo, Sandro, Ercan, Caner, Suslov, Aleksei, Meier, Marie-Anne, Bock, Thomas, Schmidt, Alexander, Ketterer, Sylvia, Wang, Xueya, Wieland, Stefan, Matter, Matthias S., Colombi, Marco, Piscuoglio, Salvatore, Terracciano, Luigi M., Nature Communications, 13(1), 2436. https://doi.org/10.1038/s41467-022-29960-8
, & Heim, Markus H. (2022). Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages.
Ng, Charlotte K. Y., Dazert, Eva, Boldanova, Tuyana, Coto-Llerena, Mairene, Nuciforo, Sandro, Ercan, Caner, Suslov, Aleksei, Meier, Marie-Anne, Bock, Thomas, Schmidt, Alexander, Ketterer, Sylvia, Wang, Xueya, Wieland, Stefan, Matter, Matthias S., Colombi, Marco, Piscuoglio, Salvatore, Terracciano, Luigi M., Nature Communications, 13(1), 2436. https://doi.org/10.1038/s41467-022-29960-8
, & Heim, Markus H. (2022). Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages.
Park, Sujin, Mossmann, Dirk, Chen, Qian, Wang, Xueya, Dazert, Eva, Colombi, Marco, Schmidt, Alexander, Ryback, Brendan, Ng, Charlotte K. Y., Terracciano, Luigi M., Heim, Markus H., & Molecular Cell, 82(22), 4246–4261. https://doi.org/10.1016/j.molcel.2022.10.027
(2022). Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis.
Park, Sujin, Mossmann, Dirk, Chen, Qian, Wang, Xueya, Dazert, Eva, Colombi, Marco, Schmidt, Alexander, Ryback, Brendan, Ng, Charlotte K. Y., Terracciano, Luigi M., Heim, Markus H., & Molecular Cell, 82(22), 4246–4261. https://doi.org/10.1016/j.molcel.2022.10.027
(2022). Transcription factors TEAD2 and E2A globally repress acetyl-CoA synthesis to promote tumorigenesis.
Suter, Polina, Dazert, Eva, Kuipers, Jack, Ng, Charlotte K. Y., Boldanova, Tuyana, PLoS Computational Biology, 18(9), e1009767. https://doi.org/10.1371/journal.pcbi.1009767
, Heim, Markus H., & Beerenwinkel, Niko. (2022). Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model.
Suter, Polina, Dazert, Eva, Kuipers, Jack, Ng, Charlotte K. Y., Boldanova, Tuyana, PLoS Computational Biology, 18(9), e1009767. https://doi.org/10.1371/journal.pcbi.1009767
, Heim, Markus H., & Beerenwinkel, Niko. (2022). Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model.
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
, Maier, Timm, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Böhm, Raphael, Imseng, Stefan, Jakob, Roman P., Molecular Cell, 81(11), 2403–2416. https://doi.org/10.1016/j.molcel.2021.03.031
, Maier, Timm, & Hiller, Sebastian. (2021). The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1.
Dimitrakopoulos, Christos, Hindupur, Sravanth Kumar, Colombi, Marco, Liko, Dritan, Ng, Charlotte K. Y., Piscuoglio, Salvatore, Behr, Jonas, Moore, Ariane L., Singer, Jochen, Ruscheweyh, Hans-Joachim, Matter, Matthias S., Mossmann, Dirk, Terracciano, Luigi M., BMC genomics, 22(1), 592. https://doi.org/10.1186/s12864-021-07876-9
, & Beerenwinkel, Niko. (2021). Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma.
Dimitrakopoulos, Christos, Hindupur, Sravanth Kumar, Colombi, Marco, Liko, Dritan, Ng, Charlotte K. Y., Piscuoglio, Salvatore, Behr, Jonas, Moore, Ariane L., Singer, Jochen, Ruscheweyh, Hans-Joachim, Matter, Matthias S., Mossmann, Dirk, Terracciano, Luigi M., BMC genomics, 22(1), 592. https://doi.org/10.1186/s12864-021-07876-9
, & Beerenwinkel, Niko. (2021). Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma.
Gao, Ruize, Buechel, David, Kalathur, Ravi K. R., Morini, Marco F., Coto-Llerena, Mairene, Ercan, Caner, Piscuoglio, Salvatore, Chen, Qian, Blumer, Tanja, Wang, Xueya, Dazert, Eva, Heim, Markus H., Oncogenesis, 10(7), 52. https://doi.org/10.1038/s41389-021-00338-7
, Tang, Fengyuan, & Christofori, Gerhard. (2021). USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis.
Gao, Ruize, Buechel, David, Kalathur, Ravi K. R., Morini, Marco F., Coto-Llerena, Mairene, Ercan, Caner, Piscuoglio, Salvatore, Chen, Qian, Blumer, Tanja, Wang, Xueya, Dazert, Eva, Heim, Markus H., Oncogenesis, 10(7), 52. https://doi.org/10.1038/s41389-021-00338-7
, Tang, Fengyuan, & Christofori, Gerhard. (2021). USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis.
Muralidharan, Sneha, Shimobayashi, Mitsugu, Ji, Shanshan, Burla, Bo, Cell Reports, 35(11), 109250. https://doi.org/10.1016/j.celrep.2021.109250
, Wenk, Markus R., & Torta, Federico. (2021). A reference map of sphingolipids in murine tissues.
Muralidharan, Sneha, Shimobayashi, Mitsugu, Ji, Shanshan, Burla, Bo, Cell Reports, 35(11), 109250. https://doi.org/10.1016/j.celrep.2021.109250
, Wenk, Markus R., & Torta, Federico. (2021). A reference map of sphingolipids in murine tissues.
Shetty, Sunil, & Molecular Cell, 81(10), 2057–2058. https://doi.org/10.1016/j.molcel.2021.04.020
(2021). More writing: mTORC1 promotes m; 6; A mRNA methylation.
Shetty, Sunil, & Molecular Cell, 81(10), 2057–2058. https://doi.org/10.1016/j.molcel.2021.04.020
(2021). More writing: mTORC1 promotes m; 6; A mRNA methylation.
Teufel, Claudia, Horvath, Edit, Peter, Annick, Ercan, Caner, Piscuoglio, Salvatore, Mucosal Immunology, 14(6), 1323–1334. https://doi.org/10.1038/s41385-021-00432-4
, Finke, Daniela, & Lehmann, Frank M. (2021). mTOR signaling mediates ILC3-driven immunopathology.
Teufel, Claudia, Horvath, Edit, Peter, Annick, Ercan, Caner, Piscuoglio, Salvatore, Mucosal Immunology, 14(6), 1323–1334. https://doi.org/10.1038/s41385-021-00432-4
, Finke, Daniela, & Lehmann, Frank M. (2021). mTOR signaling mediates ILC3-driven immunopathology.
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, eLife, 10, e70871. https://doi.org/10.7554/elife.70871
, & Maier, Timm. (2021). Regulation of human mTOR complexes by DEPTOR.
Wälchli, Matthias, Berneiser, Karolin, Mangia, Francesca, Imseng, Stefan, Craigie, Louise-Marie, Stuttfeld, Edward, eLife, 10, e70871. https://doi.org/10.7554/elife.70871
, & Maier, Timm. (2021). Regulation of human mTOR complexes by DEPTOR.
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
, Rüegg, Markus A., & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation.
Ding, Xiaolei, Willenborg, Sebastian, Bloch, Wilhelm, Wickström, Sara A., Wagle, Prerana, Brodesser, Susanne, Roers, Axel, Jais, Alexander, Brüning, Jens C., Journal of Allergy and Clinical Immunology, 145(1), 283–300. https://doi.org/10.1016/j.jaci.2019.07.033
, Rüegg, Markus A., & Eming, Sabine A. (2020). Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation.
Fu, Wenxiang, & Genes, 11(9), 1045. https://doi.org/10.3390/genes11091045
(2020). Regulation of mTORC2 Signaling.
Fu, Wenxiang, & Genes, 11(9), 1045. https://doi.org/10.3390/genes11091045
(2020). Regulation of mTORC2 Signaling.
González, Asier, Cell metabolism, 31(3), 472–492. https://doi.org/10.1016/j.cmet.2020.01.015
, Lin, Sheng-Cai, & Hardie, D. Grahame. (2020). AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control.
González, Asier, Cell metabolism, 31(3), 472–492. https://doi.org/10.1016/j.cmet.2020.01.015
, Lin, Sheng-Cai, & Hardie, D. Grahame. (2020). AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control.
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Zavolan, Mihaela, & Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
(2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs.
Liko, Dritan, Rzepiela, Andrzej, Vukojevic, Vanja, Zavolan, Mihaela, & Proceedings of the National Academy of Sciences, 117(3), 1524–1532. https://doi.org/10.1073/pnas.1918931117
(2020). Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs.
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells. bioRxiv. https://doi.org/10.1101/2020.10.11.334334
(2020).
Linder, Markus, Liko, Dritan, Kancherla, Venkatesh, Piscuoglio, Salvatore, & Colitis is associated with loss of LHPP and up-regulation of histidine phosphorylation in intestinal epithelial cells. bioRxiv. https://doi.org/10.1101/2020.10.11.334334
(2020).
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
, Ban, Nenad, & Maier, Timm. (2020). The 3.2-Å resolution structure of human mTORC2.
Scaiola, Alain, Mangia, Francesca, Imseng, Stefan, Boehringer, Daniel, Berneiser, Karolin, Shimobayashi, Mitsugu, Stuttfeld, Edward, Science advances, 6(45), eabc1251. https://doi.org/10.1126/sciadv.abc1251
, Ban, Nenad, & Maier, Timm. (2020). The 3.2-Å resolution structure of human mTORC2.
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
(2020).
Shimobayashi, Mitsugu, Shetty, Sunil, Frei, Irina C., Wölnerhanssen, Bettina K., Weissenberger, Diana, Dietz, Nikolaus, Thomas, Amandine, Ritz, Danilo, Meyer-Gerspach, Anne Christin, Maier, Timm, Hay, Nissim, Peterli, Ralph, Rohner, Nicolas, & Diet-induced loss of adipose Hexokinase 2 triggers hyperglycemia. bioRxiv. https://doi.org/10.1101/2019.12.28.887794
(2020).
Benjamin, Don, Colombi, Marco, Moroni, Christoph, & bioRxiv, 1–24. https://doi.org/10.1101/737817
(2019). mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells.
Benjamin, Don, Colombi, Marco, Moroni, Christoph, & bioRxiv, 1–24. https://doi.org/10.1101/737817
(2019). mTOR dependent transformed human cells have a distinct set of essential genes from bcr-abl transformed cells.
Benjamin, Don, & EMBO Reports, 20(6), e48302. https://doi.org/10.15252/embr.201948302
(2019). Lactate jump-starts mTORC1 in cancer cells.
Benjamin, Don, & EMBO Reports, 20(6), e48302. https://doi.org/10.15252/embr.201948302
(2019). Lactate jump-starts mTORC1 in cancer cells.
Kessi-Pérez, Eduardo I., Salinas, Francisco, González, Asier, Su, Ying, Guillamón, José M., Frontiers in Microbiology, 10, 1686. https://doi.org/10.3389/fmicb.2019.01686
, Larrondo, Luis F., & Martínez, Claudio. (2019). KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae.
Kessi-Pérez, Eduardo I., Salinas, Francisco, González, Asier, Su, Ying, Guillamón, José M., Frontiers in Microbiology, 10, 1686. https://doi.org/10.3389/fmicb.2019.01686
, Larrondo, Luis F., & Martínez, Claudio. (2019). KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae.
Kessi-Pérez, E. I., Salinas, F., Molinet, J., González, A., Muñiz, S., Guillamón, J. M., Yeast, 36(1), 65–74. https://doi.org/10.1002/yea.3351
, Larrondo, L. F., & Martínez, C. (2019). Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains.
Kessi-Pérez, E. I., Salinas, F., Molinet, J., González, A., Muñiz, S., Guillamón, J. M., Yeast, 36(1), 65–74. https://doi.org/10.1002/yea.3351
, Larrondo, L. F., & Martínez, C. (2019). Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains.
Li, Jing, Vázquez-García, Ignacio, Persson, Karl, González, Asier, Yue, Jia-Xing, Barré, Benjamin, Molecular biology and evolution, 36(4), 691–708. https://doi.org/10.1093/molbev/msz006
, Long, Anthony, Warringer, Jonas, Mustonen, Ville, & Liti, Gianni. (2019). Shared molecular targets confer resistance over short and long evolutionary timescales.
Li, Jing, Vázquez-García, Ignacio, Persson, Karl, González, Asier, Yue, Jia-Xing, Barré, Benjamin, Molecular biology and evolution, 36(4), 691–708. https://doi.org/10.1093/molbev/msz006
, Long, Anthony, Warringer, Jonas, Mustonen, Ville, & Liti, Gianni. (2019). Shared molecular targets confer resistance over short and long evolutionary timescales.
Suda, Kazuki, Kaneko, Atsuki, Shimobayashi, Mitsugu, Nakashima, Akio, Tatsuya, Maeda, Biochemical and Biophysical Research Communications, 511(2), 434–439. https://doi.org/10.1016/j.bbrc.2019.02.077
, & Ushimaru, Takashi. (2019). TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells.
Suda, Kazuki, Kaneko, Atsuki, Shimobayashi, Mitsugu, Nakashima, Akio, Tatsuya, Maeda, Biochemical and Biophysical Research Communications, 511(2), 434–439. https://doi.org/10.1016/j.bbrc.2019.02.077
, & Ushimaru, Takashi. (2019). TORC1 regulates autophagy induction in response to proteotoxic stress in yeast and human cells.
Tang, Fengyuan, Gao, Ruize, Jeevan-Raj, Beena, Wyss, Christof B., Kalathur, Ravi K. R., Piscuoglio, Salvatore, Ng, Charlotte K. Y., Hindupur, Sravanth K., Nuciforo, Sandro, Dazert, Eva, Bock, Thomas, Song, Shuang, Buechel, David, Morini, Marco F., Hergovich, Alexander, Matthias, Patrick, Lim, Dae-Sik, Terracciano, Luigi M., Heim, Markus H., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 10(1), 5755. https://doi.org/10.1038/s41467-019-13591-7
Tang, Fengyuan, Gao, Ruize, Jeevan-Raj, Beena, Wyss, Christof B., Kalathur, Ravi K. R., Piscuoglio, Salvatore, Ng, Charlotte K. Y., Hindupur, Sravanth K., Nuciforo, Sandro, Dazert, Eva, Bock, Thomas, Song, Shuang, Buechel, David, Morini, Marco F., Hergovich, Alexander, Matthias, Patrick, Lim, Dae-Sik, Terracciano, Luigi M., Heim, Markus H., et al. (2019). LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 10(1), 5755. https://doi.org/10.1038/s41467-019-13591-7
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, Cavelti-Weder, Claudia, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
, Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors.
Trinh, Beckey, Hepprich, Matthias, Betz, Matthias J., Burkard, Thilo, Cavelti-Weder, Claudia, Seelig, Eleonora, Meienberg, Fabian, Kratschmar, Denise V., Beuschlein, Felix, Reincke, Martin, Odermatt, Alex, The Journal of Clinical Endocrinology and Metabolism, 104(10), 4703–4714. https://doi.org/10.1210/jc.2019-00563
, Donath, Marc Y., & Swierczynska, Marta M. (2019). Treatment of Primary Aldosteronism with mTORC1 Inhibitors.
Bantug, G. R., Fischer, M., Grählert, J., Balmer, M. L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A. S. H., Gubser, P. M., Burgener, A.-V., Sauder, U., Löliger, J., Belle, R., Dimeloe, S., Lötscher, J., Jauch, A., Recher, M., Hönger, G., et al. (2018). Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells. Immunity, 48(3), 542–555. https://doi.org/10.1016/j.immuni.2018.02.012
Bantug, G. R., Fischer, M., Grählert, J., Balmer, M. L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A. S. H., Gubser, P. M., Burgener, A.-V., Sauder, U., Löliger, J., Belle, R., Dimeloe, S., Lötscher, J., Jauch, A., Recher, M., Hönger, G., et al. (2018). Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8+ T Cells. Immunity, 48(3), 542–555. https://doi.org/10.1016/j.immuni.2018.02.012
Benjamin, Don, Robay, Dimitri, Hindupur, Sravanth K., Pohlmann, Jens, Colombi, Marco, El-Shemerly, Mahmoud Y., Maira, Sauveur-Michel, Moroni, Christoph, Lane, Heidi A., & Cell Reports, 25(11), 3047–3058. https://doi.org/10.1016/j.celrep.2018.11.043
(2018). Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells.
Benjamin, Don, Robay, Dimitri, Hindupur, Sravanth K., Pohlmann, Jens, Colombi, Marco, El-Shemerly, Mahmoud Y., Maira, Sauveur-Michel, Moroni, Christoph, Lane, Heidi A., & Cell Reports, 25(11), 3047–3058. https://doi.org/10.1016/j.celrep.2018.11.043
(2018). Dual Inhibition of the Lactate Transporters MCT1 and MCT4 Is Synthetic Lethal with Metformin due to NAD+ Depletion in Cancer Cells.
Dimitrakopoulos, C., Kumar Hindupur, S., Häfliger, L., Behr, J., Montazeri, H., Bioinformatics, 34(14), 2441–2448. https://doi.org/10.1093/bioinformatics/bty148
, & Beerenwinkel, N. (2018). Network-based integration of multi-omics data for prioritizing cancer genes.
Dimitrakopoulos, C., Kumar Hindupur, S., Häfliger, L., Behr, J., Montazeri, H., Bioinformatics, 34(14), 2441–2448. https://doi.org/10.1093/bioinformatics/bty148
, & Beerenwinkel, N. (2018). Network-based integration of multi-omics data for prioritizing cancer genes.
Hindupur, Sravanth K., Colombi, Marco, Fuhs, Stephen R., Matter, Matthias S., Guri, Yakir, Adam, Kevin, Cornu, Marion, Piscuoglio, Salvatore, Ng, Charlotte K. Y., Betz, Charles, Liko, Dritan, Quagliata, Luca, Moes, Suzette, Jenoe, Paul, Terracciano, Luigi M., Heim, Markus H., Hunter, Tony, & Nature, 555(7698), 678–+. https://doi.org/10.1038/nature26140
(2018). The protein histidine phosphatase LHPP is a tumour suppressor.
Hindupur, Sravanth K., Colombi, Marco, Fuhs, Stephen R., Matter, Matthias S., Guri, Yakir, Adam, Kevin, Cornu, Marion, Piscuoglio, Salvatore, Ng, Charlotte K. Y., Betz, Charles, Liko, Dritan, Quagliata, Luca, Moes, Suzette, Jenoe, Paul, Terracciano, Luigi M., Heim, Markus H., Hunter, Tony, & Nature, 555(7698), 678–+. https://doi.org/10.1038/nature26140
(2018). The protein histidine phosphatase LHPP is a tumour suppressor.
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Ruegg, Markus A., Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
, Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis.
Martin, Sally K., Fitter, Stephen, El Khawanky, Nadia, Grose, Randall H., Walkley, Carl R., Purton, Louise E., Ruegg, Markus A., Scientific Reports, 8(1), 14501. https://doi.org/10.1038/s41598-018-32858-5
, Gronthos, Stan, & Zannettino, Andrew C. W. (2018). mTORC1 plays an important role in osteoblastic regulation of B-lymphopoiesis.
Mossmann, Dirk, Park, Sujin, & Nature Reviews. Cancer, 18(12), 744–757. https://doi.org/10.1038/s41568-018-0074-8
(2018). mTOR signalling and cellular metabolism are mutual determinants in cancer.
Mossmann, Dirk, Park, Sujin, & Nature Reviews. Cancer, 18(12), 744–757. https://doi.org/10.1038/s41568-018-0074-8
(2018). mTOR signalling and cellular metabolism are mutual determinants in cancer.
Mostofa, M. G., Rahman, M. A., Koike, N., Yeasmin, A. M., Islam, N., Waliullah, T. Mu., Hosoyamada, S., Shimobayashi, M., Kobayashi, T., Journal of Cell Biology, 217(8), 2675–2690. https://doi.org/10.1083/jcb.201706164
, & Ushimaru, T. (2018). CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy.
Mostofa, M. G., Rahman, M. A., Koike, N., Yeasmin, A. M., Islam, N., Waliullah, T. Mu., Hosoyamada, S., Shimobayashi, M., Kobayashi, T., Journal of Cell Biology, 217(8), 2675–2690. https://doi.org/10.1083/jcb.201706164
, & Ushimaru, T. (2018). CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy.
Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & Journal of Clinical Investigation, 128(4), 1538–1550. https://doi.org/10.1172/jci96139
(2018). Insulin resistance causes inflammation in adipose tissue.
Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., Meier, J. A., Swierczynska, M. M., Jenö, P., Beglinger, C., Peterli, R., & Journal of Clinical Investigation, 128(4), 1538–1550. https://doi.org/10.1172/jci96139
(2018). Insulin resistance causes inflammation in adipose tissue.
Singer, Jochen, Ruscheweyh, Hans-Joachim, Hofmann, Ariane L., Thurnherr, Thomas, Singer, Franziska, Toussaint, Nora C., Ng, Charlotte K. Y., Piscuoglio, Salvatore, Beisel, Christian, Christofori, Gerhard, Dummer, Reinhard, Bioinformatics, 34(1), 107–108. https://doi.org/10.1093/bioinformatics/btx540
, Krek, Wilhelm, Levesque, Mitchell, Manz, Markus G., Moch, Holger, Papassotiropoulos, Andreas, Stekhoven, Daniel J., Wild, Peter, et al. (2018). NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis.
Singer, Jochen, Ruscheweyh, Hans-Joachim, Hofmann, Ariane L., Thurnherr, Thomas, Singer, Franziska, Toussaint, Nora C., Ng, Charlotte K. Y., Piscuoglio, Salvatore, Beisel, Christian, Christofori, Gerhard, Dummer, Reinhard, Bioinformatics, 34(1), 107–108. https://doi.org/10.1093/bioinformatics/btx540
, Krek, Wilhelm, Levesque, Mitchell, Manz, Markus G., Moch, Holger, Papassotiropoulos, Andreas, Stekhoven, Daniel J., Wild, Peter, et al. (2018). NGS-pipe: a flexible, easily extendable, and highly configurable framework for NGS analysis.
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., eLife, 7, e33101. https://doi.org/10.7554/elife.33101
, Maier, T., & Ban, N. (2018). Architecture of the human mTORC2 core complex.
Stuttfeld, E., Aylett, C. H. S., Imseng, S., Boehringer, D., Scaiola, A., Sauer, E., eLife, 7, e33101. https://doi.org/10.7554/elife.33101
, Maier, T., & Ban, N. (2018). Architecture of the human mTORC2 core complex.
Swierczynska, Marta M., Betz, Matthias J., Colombi, Marco, Dazert, Eva, Jenö, Paul, Moes, Suzette, Pfaff, Cécile, Glatz, Katharina, Reincke, Martin, Beuschlein, Felix, Donath, Marc Y., & Hypertension (Dallas, Tex. : 1979), 73(2), 469–480. https://doi.org/10.1161/hypertensionaha.118.11733
(2018). Proteomic Landscape of Aldosterone-Producing Adenoma.
Swierczynska, Marta M., Betz, Matthias J., Colombi, Marco, Dazert, Eva, Jenö, Paul, Moes, Suzette, Pfaff, Cécile, Glatz, Katharina, Reincke, Martin, Beuschlein, Felix, Donath, Marc Y., & Hypertension (Dallas, Tex. : 1979), 73(2), 469–480. https://doi.org/10.1161/hypertensionaha.118.11733
(2018). Proteomic Landscape of Aldosterone-Producing Adenoma.
Benjamin, D., & Cell Reports, 19(13), 2643–2644. https://doi.org/10.1016/j.celrep.2017.06.032
(2017). mTORC1 Controls Synthesis of Its Activator GTP.
Benjamin, D., & Cell Reports, 19(13), 2643–2644. https://doi.org/10.1016/j.celrep.2017.06.032
(2017). mTORC1 Controls Synthesis of Its Activator GTP.
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Rüegg, M. A., Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
, & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing.
Blandino-Rosano, M., Barbaresso, R., Jimenez-Palomares, M., Bozadjieva, N., Werneck-de-Castro, J. P., Hatanaka, M., Mirmira, R. G., Sonenberg, N., Liu, M., Rüegg, M. A., Nature Communications, 8, 16014. https://doi.org/10.1038/ncomms16014
, & Bernal-Mizrachi, E. (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing.
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., Rüegg, Markus A., The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
, MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion.
Bozadjieva, Nadejda, Blandino-Rosano, Manuel, Chase, Jennifer, Dai, Xiao-Qing, Cummings, Kelsey, Gimeno, Jennifer, Dean, Danielle, Powers, Alvin C., Gittes, George K., Rüegg, Markus A., The Journal of Clinical Investigation, 127(12), 4379–4393. https://doi.org/10.1172/jci90004
, MacDonald, Patrick E., & Bernal-Mizrachi, Ernesto. (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion.
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Ruegg, Markus A., Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
, Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.
Fitter, Stephen, Matthews, Mary P., Martin, Sally K., Xie, Jianling, Ooi, Soo Siang, Walkley, Carl R., Codrington, John D., Ruegg, Markus A., Molecular and Cellular Biology, 37(7), e00668–16. https://doi.org/10.1128/mcb.00668-16
, Proud, Christopher G., Gronthos, Stan, & Zannettino, Andrew C. W. (2017). mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.
González, A., & The EMBO Journal, 36(4), 397–408. https://doi.org/10.15252/embj.201696010
(2017). Nutrient sensing and TOR signaling in yeast and mammals.
González, A., & The EMBO Journal, 36(4), 397–408. https://doi.org/10.15252/embj.201696010
(2017). Nutrient sensing and TOR signaling in yeast and mammals.
Guri, Y., Colombi, M., Dazert, E., Hindupur, S. K., Roszik, J., Moes, S., Jenoe, P., Heim, M. H., Riezman, I., Riezman, H., & Cancer Cell, 32(6), 807–823. https://doi.org/10.1016/j.ccell.2017.11.011
(2017). mTORC2 Promotes Tumorigenesis via Lipid Synthesis.
Guri, Y., Colombi, M., Dazert, E., Hindupur, S. K., Roszik, J., Moes, S., Jenoe, P., Heim, M. H., Riezman, I., Riezman, H., & Cancer Cell, 32(6), 807–823. https://doi.org/10.1016/j.ccell.2017.11.011
(2017). mTORC2 Promotes Tumorigenesis via Lipid Synthesis.
Cell, 171(1), 19–22. https://doi.org/10.1016/j.cell.2017.08.021
(2017). An Amazing Turn of Events.
Cell, 171(1), 19–22. https://doi.org/10.1016/j.cell.2017.08.021
(2017). An Amazing Turn of Events.
Tang, F., Zhang, P., Ye, P., Lazarski, C. A., Wu, Q., Bergin, I. L., Bender, T. P., eLife, 6, e32497. https://doi.org/10.7554/elife.32497
, Cui, Y., Zhang, L., Jiang, T., Liu, Y., & Zheng, P. (2017). A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice.
Tang, F., Zhang, P., Ye, P., Lazarski, C. A., Wu, Q., Bergin, I. L., Bender, T. P., eLife, 6, e32497. https://doi.org/10.7554/elife.32497
, Cui, Y., Zhang, L., Jiang, T., Liu, Y., & Zheng, P. (2017). A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice.
Albert, V., Svensson, K., Shimobayashi, M., Colombi, M., Muñoz, S., Jimenez, V., Handschin, C., Bosch, F., & EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
(2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Albert, V., Svensson, K., Shimobayashi, M., Colombi, M., Muñoz, S., Jimenez, V., Handschin, C., Bosch, F., & EMBO Molecular Medicine, 8(3), 232–246. https://doi.org/10.15252/emmm.201505610
(2016). mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
, Ban, Nenad, & Maier, Timm. (2016). Architecture of human mTOR complex 1.
Aylett, Christopher H. S., Sauer, Evelyn, Imseng, Stefan, Boehringer, Daniel, Science, 351(6268), 48–52. https://doi.org/10.1126/science.aaa3870
, Ban, Nenad, & Maier, Timm. (2016). Architecture of human mTOR complex 1.
Benjamin, D., Colombi, M., Hindupur, S. K., Betz, C., Lane, H. A., El-Shemerly, M. Y. M., Lu, M., Quagliata, L., Terracciano, L., Moes, S., Sharpe, T., Wodnar-Filipowicz, A., Moroni, C., & Science Advances, 2(12), e1601756. https://doi.org/10.1126/sciadv.1601756
(2016). Syrosingopine sensitizes cancer cells to killing by metformin.
Benjamin, D., Colombi, M., Hindupur, S. K., Betz, C., Lane, H. A., El-Shemerly, M. Y. M., Lu, M., Quagliata, L., Terracciano, L., Moes, S., Sharpe, T., Wodnar-Filipowicz, A., Moroni, C., & Science Advances, 2(12), e1601756. https://doi.org/10.1126/sciadv.1601756
(2016). Syrosingopine sensitizes cancer cells to killing by metformin.
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., Roth, V., Terracciano, L., Heim, M. H., Jenoe, P., & Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
(2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient.
Dazert, E., Colombi, M., Boldanova, T., Moes, S., Adametz, D., Quagliata, L., Roth, V., Terracciano, L., Heim, M. H., Jenoe, P., & Proceedings of the National Academy of Sciences of the United States of America, 113(5), 1381–1386. https://doi.org/10.1073/pnas.1523434113
(2016). Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient.
Ding, X., Bloch, W., Iden, S., Rüegg, M. A., Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
, Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation.
Ding, X., Bloch, W., Iden, S., Rüegg, M. A., Nature Communications, 7, 13226. https://doi.org/10.1038/ncomms13226
, Leptin, M., Partridge, L., & Eming, S. A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation.
Drägert, K., Bhattacharya, I., Biochemical and Biophysical Research Communications, 473(1), 317–322. https://doi.org/10.1016/j.bbrc.2016.03.102
, Humar, R., Battegay, E., & Haas, E. (2016). Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue.
Drägert, K., Bhattacharya, I., Biochemical and Biophysical Research Communications, 473(1), 317–322. https://doi.org/10.1016/j.bbrc.2016.03.102
, Humar, R., Battegay, E., & Haas, E. (2016). Basal mTORC2 activity and expression of its components display diurnal variation in mouse perivascular adipose tissue.
Driscoll, D. R., Karim, S. A., Sano, M., Gay, D. M., Jacob, W., Yu, J., Mizukami, Y., Gopinathan, A., Jodrell, D. I., Evans, T. R. J., Bardeesy, N., Cancer Research, 76(23), 6911–6923. https://doi.org/10.1158/0008-5472.can-16-0810
, Quattrochi, B. J., Klimstra, D. S., Barry, S. T., Sansom, O. J., Lewis, B. C., & Morton, J. P. (2016). mTORC2 signaling drives the development and progression of pancreatic cancer.
Driscoll, D. R., Karim, S. A., Sano, M., Gay, D. M., Jacob, W., Yu, J., Mizukami, Y., Gopinathan, A., Jodrell, D. I., Evans, T. R. J., Bardeesy, N., Cancer Research, 76(23), 6911–6923. https://doi.org/10.1158/0008-5472.can-16-0810
, Quattrochi, B. J., Klimstra, D. S., Barry, S. T., Sansom, O. J., Lewis, B. C., & Morton, J. P. (2016). mTORC2 signaling drives the development and progression of pancreatic cancer.
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Rüegg, M. A., Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
, Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling.
Grahammer, F., Nesterov, V., Ahmed, A., Steinhardt, F., Sandner, L., Arnold, F., Cordts, T., Negrea, S., Bertog, M., Rüegg, M. A., Journal of Clinical Investigation, 126(5), 1773–1782. https://doi.org/10.1172/jci80304
, Walz, G., Korbmacher, C., Artunc, F., & Huber, T. B. (2016). mTORC2 critically regulates renal potassium handling.
Guri, Yakir, & Trends in Cancer, 2(11), 688–697. https://doi.org/10.1016/j.trecan.2016.10.006
(2016). mTOR Signaling Confers Resistance to Targeted Cancer Drugs.
Guri, Yakir, & Trends in Cancer, 2(11), 688–697. https://doi.org/10.1016/j.trecan.2016.10.006
(2016). mTOR Signaling Confers Resistance to Targeted Cancer Drugs.
Molecular Biology of the Cell, 27(18), 2804–2806. https://doi.org/10.1091/mbc.e15-05-0311
(2016). TOR and paradigm change: cell growth is controlled.
Molecular Biology of the Cell, 27(18), 2804–2806. https://doi.org/10.1091/mbc.e15-05-0311
(2016). TOR and paradigm change: cell growth is controlled.
Herkert, B., Kauffmann, A., Mollé, S., Schnell, C., Ferrat, T., Voshol, H., Juengert, J., Erasimus, H., Marszalek, G., Kazic-Legueux, M., Billy, E., Ruddy, D., Stump, M., Guthy, D., Ristov, M., Calkins, K., Maira, S.-M., Sellers, W. R., Hofmann, F., et al. (2016). Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition. Cancer Research, 76(2), 390–402. https://doi.org/10.1158/0008-5472.can-14-3358
Herkert, B., Kauffmann, A., Mollé, S., Schnell, C., Ferrat, T., Voshol, H., Juengert, J., Erasimus, H., Marszalek, G., Kazic-Legueux, M., Billy, E., Ruddy, D., Stump, M., Guthy, D., Ristov, M., Calkins, K., Maira, S.-M., Sellers, W. R., Hofmann, F., et al. (2016). Maximizing the Efficacy of MAPK-Targeted Treatment in PTENLOF/BRAFMUT Melanoma through PI3K and IGF1R Inhibition. Cancer Research, 76(2), 390–402. https://doi.org/10.1158/0008-5472.can-14-3358
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
, Rüegg, M. A., & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy.
Shende, P., Xu, L., Morandi, C., Pentassuglia, L., Heim, P., Lebboukh, S., Berthonneche, C., Pedrazzini, T., Kaufmann, B. A., Cardiovascular Research, 109(1), 103–114. https://doi.org/10.1093/cvr/cvv252
, Rüegg, M. A., & Brink, M. (2016). Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy.
Shimobayashi, M., & Cell Research, 26(1), 7–20. https://doi.org/10.1038/cr.2015.146
(2016). Multiple amino acid sensing inputs to mTORC1.
Shimobayashi, M., & Cell Research, 26(1), 7–20. https://doi.org/10.1038/cr.2015.146
(2016). Multiple amino acid sensing inputs to mTORC1.
Swierczynska, M. M., & The EMBO Journal, 35(10), 1013–1014. https://doi.org/10.15252/embj.201694326
(2016). eIF4A moonlights as an off switch for TORC1.
Swierczynska, M. M., & The EMBO Journal, 35(10), 1013–1014. https://doi.org/10.15252/embj.201694326
(2016). eIF4A moonlights as an off switch for TORC1.
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Rüegg, M. A., Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
, Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.
Zhang, L., Tschumi, B. O., Lopez-Mejia, I. C., Oberle, S. G., Meyer, M., Samson, G., Rüegg, M. A., Cell Reports, 14(5), 1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095
, Fajas, L., Zehn, D., Mach, J.-P., Donda, A., & Romero, P. (2016). Mammalian Target of Rapamycin Complex 2 Controls CD8 T Cell Memory Differentiation in a Foxo1-Dependent Manner.
Fonseca, B. D., Graber, T. E., Hoang, H.-D., González, A., Soukas, A. A., Hernández, G., Alain, T., Swift, S. L., Weisman, R., Meyer, C., Robaglia, C., Avruch, J., & Evolution of the Protein Synthesis Machinery and Its Regulation (1 ed., pp. 327–412). Springer. https://doi.org/10.1007/978-3-319-39468-8
(2016). Evolution of TOR and Translation Control. In Hernández, G.; Jagus, R. (Ed.),
Fonseca, B. D., Graber, T. E., Hoang, H.-D., González, A., Soukas, A. A., Hernández, G., Alain, T., Swift, S. L., Weisman, R., Meyer, C., Robaglia, C., Avruch, J., & Evolution of the Protein Synthesis Machinery and Its Regulation (1 ed., pp. 327–412). Springer. https://doi.org/10.1007/978-3-319-39468-8
(2016). Evolution of TOR and Translation Control. In Hernández, G.; Jagus, R. (Ed.),
Swierczynska, M. M., & Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies (1st ed., pp. 347–364). Academic Press. https://doi.org/10.1016/b978-0-12-802733-2.00008-6
(2016). mTOR in Metabolic and Endocrine Disorders. In Maiese, K. (Ed.),
Swierczynska, M. M., & Molecules to Medicine with mTOR. Translating Critical Pathways into Novel Therapeutic Strategies (1st ed., pp. 347–364). Academic Press. https://doi.org/10.1016/b978-0-12-802733-2.00008-6
(2016). mTOR in Metabolic and Endocrine Disorders. In Maiese, K. (Ed.),
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Rüegg, M. A., Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
, Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult.
Aimi, F., Georgiopoulou, S., Kalus, I., Lehner, F., Hegglin, A., Limani, P., Gomes de Lima, V., Rüegg, M. A., Scientific Reports, 5, 17705. https://doi.org/10.1038/srep17705
, Lindenblatt, N., Haas, E., Battegay, E. J., & Humar, R. (2015). Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult.
Albert, V., Cornu, M., & Biochemical and Biophysical Research Communications, 464(2), 480–486. https://doi.org/10.1016/j.bbrc.2015.06.161
(2015). mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior.
Albert, V., Cornu, M., & Biochemical and Biophysical Research Communications, 464(2), 480–486. https://doi.org/10.1016/j.bbrc.2015.06.161
(2015). mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior.
Albert, V., & mTOR signaling in cellular and organismal energetics]. Current Opinion in Cell Biology, 33, 55–66. https://doi.org/10.1016/j.ceb.2014.12.001
(2015). mTOR signaling in cellular and organismal energetics [Review of
Albert, V., & mTOR signaling in cellular and organismal energetics]. Current Opinion in Cell Biology, 33, 55–66. https://doi.org/10.1016/j.ceb.2014.12.001
(2015). mTOR signaling in cellular and organismal energetics [Review of
Carr, T. D., Feehan, R. P., Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
, Rüegg, M. A., & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors.
Carr, T. D., Feehan, R. P., Carcinogenesis, 36(4), 487–497. https://doi.org/10.1093/carcin/bgv012
, Rüegg, M. A., & Shantz, L. M. (2015). Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors.
Drägert, K., Bhattacharya, I., Pellegrini, G., Seebeck, P., Azzi, A., Brown, S. A., Georgiopoulou, S., Held, U., Blyszczuk, P., Arras, M., Humar, R., Hypertension, 66(2), 332–339. https://doi.org/10.1161/hypertensionaha.115.05398
, Battegay, E., & Haas, E. (2015). Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure.
Drägert, K., Bhattacharya, I., Pellegrini, G., Seebeck, P., Azzi, A., Brown, S. A., Georgiopoulou, S., Held, U., Blyszczuk, P., Arras, M., Humar, R., Hypertension, 66(2), 332–339. https://doi.org/10.1161/hypertensionaha.115.05398
, Battegay, E., & Haas, E. (2015). Deletion of Rictor in Brain and Fat Alters Peripheral Clock Gene Expression and Increases Blood Pressure.
Faller, W. J., Jackson, T. J., Knight, J. R. P., Ridgway, R. A., Jamieson, T., Karim, S. A., Jones, C., Radulescu, S., Huels, D. J., Myant, K. B., Dudek, K. M., Casey, H. A., Scopelliti, A., Cordero, J. B., Vidal, M., Pende, M., Ryazanov, A. G., Sonenberg, N., Meyuhas, O., et al. (2015). mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 517(7535), 497–500. https://doi.org/10.1038/nature13896
Faller, W. J., Jackson, T. J., Knight, J. R. P., Ridgway, R. A., Jamieson, T., Karim, S. A., Jones, C., Radulescu, S., Huels, D. J., Myant, K. B., Dudek, K. M., Casey, H. A., Scopelliti, A., Cordero, J. B., Vidal, M., Pende, M., Ryazanov, A. G., Sonenberg, N., Meyuhas, O., et al. (2015). mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature, 517(7535), 497–500. https://doi.org/10.1038/nature13896
González, A., Shimobayashi, M., Eisenberg, T., Merle, D. A., Pendl, T., PLoS ONE, 10(3), e0120250. https://doi.org/10.1371/journal.pone.0120250
, & Moustafa, T. (2015). TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae.
González, A., Shimobayashi, M., Eisenberg, T., Merle, D. A., Pendl, T., PLoS ONE, 10(3), e0120250. https://doi.org/10.1371/journal.pone.0120250
, & Moustafa, T. (2015). TORC1 Promotes Phosphorylation of Ribosomal Protein S6 via the AGC Kinase Ypk3 in Saccharomyces cerevisiae.
EMBO Reports, 16(8), 881–882. https://doi.org/10.15252/embr.201540757
(2015). Reduced C/EBPβ-LIP translation improves metabolic health.
EMBO Reports, 16(8), 881–882. https://doi.org/10.15252/embr.201540757
(2015). Reduced C/EBPβ-LIP translation improves metabolic health.
Liko, D., & Journal of Molecular Medicine, 93(10), 1061–1073. https://doi.org/10.1007/s00109-015-1326-7
(2015). mTOR in health and in sickness.
Liko, D., & Journal of Molecular Medicine, 93(10), 1061–1073. https://doi.org/10.1007/s00109-015-1326-7
(2015). mTOR in health and in sickness.
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
, Rüegg, M. A., Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.
Lopez, R. J., Mosca, B., Treves, S., Maj, M., Bergamelli, L., Calderon, J. C., Bentzinger, C. F., Romanino, K., Biochemical Journal, 466(1), 123–135. https://doi.org/10.1042/bj20140935
, Rüegg, M. A., Delbono, O., Caputo, C., & Zorzato, F. (2015). Raptor ablation in skeletal muscle decreases Cav1.1 expression and affects the function of the excitation-contraction coupling supramolecular complex.
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., Stem Cells, 33(4), 1359–1365. https://doi.org/10.1002/stem.1931
, Ruegg, Markus A., Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation.
Martin, Sally K., Fitter, Stephen, Dutta, Ankit K., Matthews, Mary P., Walkley, Carl R., Stem Cells, 33(4), 1359–1365. https://doi.org/10.1002/stem.1931
, Ruegg, Markus A., Gronthos, Stan, & Zannettino, Andrew C. W. (2015). Brief Report: The Differential Roles of mTORC1 and mTORC2 in Mesenchymal Stem Cell Differentiation.
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
, Rüegg, M. A., & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
Ma, S., Venkatesh, A., Langellotto, F., Le, Y. Z., Experimental Eye Research, 135, 1–13. https://doi.org/10.1016/j.exer.2015.04.006
, Rüegg, M. A., & Punzo, C. (2015). Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival.
Oliveira, A. P., Dimopoulos, S., Busetto, A. G., Christen, S., Dechant, R., Falter, L., Haghir Chehreghani, M., Jozefczuk, S., Ludwig, C., Rudroff, F., Schulz, J. C., González, A., Soulard, A., Stracka, D., Aebersold, R., Buhmann, J. M., Molecular Systems Biology, 11(4), 802. https://doi.org/10.15252/msb.20145475
, Peter, M., Sauer, U., & Stelling, J. (2015). Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.
Oliveira, A. P., Dimopoulos, S., Busetto, A. G., Christen, S., Dechant, R., Falter, L., Haghir Chehreghani, M., Jozefczuk, S., Ludwig, C., Rudroff, F., Schulz, J. C., González, A., Soulard, A., Stracka, D., Aebersold, R., Buhmann, J. M., Molecular Systems Biology, 11(4), 802. https://doi.org/10.15252/msb.20145475
, Peter, M., Sauer, U., & Stelling, J. (2015). Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.
Venkatesh, A., Ma, S., Le, Y. Z., Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
, Rüegg, M. A., & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice.
Venkatesh, A., Ma, S., Le, Y. Z., Journal of Clinical Investigation, 125(4), 1446–1458. https://doi.org/10.1172/jci79766
, Rüegg, M. A., & Punzo, C. (2015). Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice.
Cornu, M., de Caudron de Coquereaumont, G., & Signaling Pathways in Liver Diseases (3rd ed., pp. 314–325). John Wiley. https://doi.org/10.1002/9781118663387.ch22
(2015). mTOR signaling in liver disease. In Dufour, J.-F.; Clavien, P.-A. (Ed.),
Cornu, M., de Caudron de Coquereaumont, G., & Signaling Pathways in Liver Diseases (3rd ed., pp. 314–325). John Wiley. https://doi.org/10.1002/9781118663387.ch22
(2015). mTOR signaling in liver disease. In Dufour, J.-F.; Clavien, P.-A. (Ed.),
Hindupur, Sravanth K., González, Asier, & Size Control in Biology: From Organelles to Organisms (pp. 221–240). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a019141
(2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. In Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (Ed.),
Hindupur, Sravanth K., González, Asier, & Size Control in Biology: From Organelles to Organisms (pp. 221–240). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a019141
(2015). The Opposing Actions of Target of Rapamycin and AMP-Activated Protein Kinase in Cell Growth Control. In Heald, Rebecca; Hariharan, Iswar K.; Wake, David B. (Ed.),
Benjamin, D., & Cell, 156(4), 627–628. https://doi.org/10.1016/j.cell.2014.01.057
(2014). mTORC1: Turning Off Is Just as Important as Turning On.
Benjamin, D., & Cell, 156(4), 627–628. https://doi.org/10.1016/j.cell.2014.01.057
(2014). mTORC1: Turning Off Is Just as Important as Turning On.
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., Rüegg, M. A., PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
, Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1.
Chen, J., Tu, X., Esen, E., Joeng, K. S., Lin, C., Arbeit, J. M., Rüegg, M. A., PLoS Genetics, 10(1), e1004145. https://doi.org/10.1371/journal.pgen.1004145
, Ma, L., & Long, F. (2014). WNT7B promotes bone formation in part through mTORC1.
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Rüegg, Markus A., Journal of Immunology, 193(3), 1162–1170. https://doi.org/10.4049/jimmunol.1303162
, Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development.
Chou, Po-Chien, Oh, Won Jun, Wu, Chang-Chih, Moloughney, Joseph, Rüegg, Markus A., Journal of Immunology, 193(3), 1162–1170. https://doi.org/10.4049/jimmunol.1303162
, Jacinto, Estela, & Werlen, Guy. (2014). Mammalian target of rapamycin complex 2 modulates αβTCR processing and surface expression during thymocyte development.
Cornu, M., Oppliger, W., Albert, V., Robitaille, A. M., Trapani, F., Quagliata, L., Fuhrer, T., Sauer, U., Terracciano, L., & Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11592–11599. https://doi.org/10.1073/pnas.1412047111
(2014). Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.
Cornu, M., Oppliger, W., Albert, V., Robitaille, A. M., Trapani, F., Quagliata, L., Fuhrer, T., Sauer, U., Terracciano, L., & Proceedings of the National Academy of Sciences of the United States of America, 111(32), 11592–11599. https://doi.org/10.1073/pnas.1412047111
(2014). Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., The Search for Antiaging Interventions : From Elixirs to Fasting Regimens]. Cell, 157, Article 7. https://doi.org/10.1016/j.cell.2014.05.031
, & Madeo, F. (2014). The Search for Antiaging Interventions : From Elixirs to Fasting Regimens [Review of
de Cabo, R., Carmona-Gutierrez, D., Bernier, M., The Search for Antiaging Interventions : From Elixirs to Fasting Regimens]. Cell, 157, Article 7. https://doi.org/10.1016/j.cell.2014.05.031
, & Madeo, F. (2014). The Search for Antiaging Interventions : From Elixirs to Fasting Regimens [Review of
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
, Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.
Grahammer, F., Haenisch, N., Steinhardt, F., Sander, L., Roerden, M., Arnold, F., Cordts, T., Wanner, N., Reichardt, W., Kerjaschki, D., Ruegg, M. A., Proceedings of the National Academy of Sciences of the United States of America, 111(27), E2817–26. https://doi.org/10.1073/pnas.1402352111
, Moulin, P., Busch, H., Boerries, M., Walz, G., Artunc, F., & Huber, T. B. (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress.
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Rüegg, M. A., Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
, & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination.
Lebrun-Julien, F., Bachmann, L., Norrmén, C., Trötzmüller, M., Köfeler, H., Rüegg, M. A., Journal of Neuroscience, 34(25), 8432–8448. https://doi.org/10.1523/jneurosci.1105-14.2014
, & Suter, U. (2014). Balanced mTORC1 activity in oligodendrocytes is required for accurate CNS myelination.
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Rüegg, M. A., Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
, & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells.
Norrmén, C., Figlia, G., Lebrun-Julien, F., Pereira, J. A., Trötzmüller, M., Köfeler, H. C., Rantanen, V., Wessig, C., van Deijk, A. F., Smit, A. B., Verheijen, M. G., Rüegg, M. A., Cell Reports, 9(2), 646–660. https://doi.org/10.1016/j.celrep.2014.09.001
, & Suter, U. (2014). mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells.
Shimobayashi, M., & Nature Reviews. Molecular Cell Biology, 15(3), 155–162. https://doi.org/10.1038/nrm3757
(2014). Making new contacts : the mTOR network in metabolism and signalling crosstalk.
Shimobayashi, M., & Nature Reviews. Molecular Cell Biology, 15(3), 155–162. https://doi.org/10.1038/nrm3757
(2014). Making new contacts : the mTOR network in metabolism and signalling crosstalk.