Publications
69 found
Show per page
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William HJ, Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P, & . (2025). Molecular architecture of thylakoid membranes within intact spinach chloroplasts. eLife, 14. https://doi.org/10.7554/elife.105496
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William HJ, Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P, & . (2025). Molecular architecture of thylakoid membranes within intact spinach chloroplasts. eLife, 14. https://doi.org/10.7554/elife.105496
Bertiaux, Eloïse, Louvel, Vincent, McCafferty, Caitlyn L., van den Hoek, Hugo, Batman, Umut, Mukherjee, Souradip, Bournonville, Lorène, Mercey, Olivier, Mean, Isabelle, Müller, Adrian, Van der Stappen, Philippe, Buss, Garrison, Daraspe, Jean, Genoud, Christel, Stearns, Tim, , Hamel, Virginie, & Guichard, Paul. (2025). The Luminal Ring Protein C2CD3 Acts as a Radial In-to-Out Organizer of the Distal Centriole and Appendages. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.06.17.660204
Bertiaux, Eloïse, Louvel, Vincent, McCafferty, Caitlyn L., van den Hoek, Hugo, Batman, Umut, Mukherjee, Souradip, Bournonville, Lorène, Mercey, Olivier, Mean, Isabelle, Müller, Adrian, Van der Stappen, Philippe, Buss, Garrison, Daraspe, Jean, Genoud, Christel, Stearns, Tim, , Hamel, Virginie, & Guichard, Paul. (2025). The Luminal Ring Protein C2CD3 Acts as a Radial In-to-Out Organizer of the Distal Centriole and Appendages. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.06.17.660204
Kishore, Vinith, Bebarnot, Valentin, Righetto, Ricardo D, Khorashadizadeh, AmirEhsan, , & Dokmanić, Ivan. (2025). End-to-end localized deep learning for Cryo-ET. In arXiv (01.08.2025). Cornell University. https://doi.org/10.48550/arXiv.2501.15246
Kishore, Vinith, Bebarnot, Valentin, Righetto, Ricardo D, Khorashadizadeh, AmirEhsan, , & Dokmanić, Ivan. (2025). End-to-end localized deep learning for Cryo-ET. In arXiv (01.08.2025). Cornell University. https://doi.org/10.48550/arXiv.2501.15246
Waltz, Florent, Righetto, Ricardo D., Lamm, Lorenz, Salinas-Giegé, Thalia, Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & (2025). In-cell architecture of the mitochondrial respiratory chain [Journal-article]. Science, 387(6740), 1296–1301. https://doi.org/10.1126/science.ads8738
Waltz, Florent, Righetto, Ricardo D., Lamm, Lorenz, Salinas-Giegé, Thalia, Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & (2025). In-cell architecture of the mitochondrial respiratory chain [Journal-article]. Science, 387(6740), 1296–1301. https://doi.org/10.1126/science.ads8738
Kelley, Ron, Khavnekar, Sagar, Righetto, Ricardo D., Heebner, Jessica, Obr, Martin, Zhang, Xianjun, Chakraborty, Saikat, Tagiltsev, Grigory, Michael, Alicia K., van Dorst, Sofie, Waltz, Florent, McCafferty, Caitlyn L., Lamm, Lorenz, Zufferey, Simon, Van der Stappen, Philippe, van den Hoek, Hugo, Wietrzynski, Wojciech, Harar, Pavol, Wan, William, et al. (2024). Towards community-driven visual proteomics with large-scale cryo-electron tomography of Chlamydomonas reinhardtii [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.12.28.630444
Kelley, Ron, Khavnekar, Sagar, Righetto, Ricardo D., Heebner, Jessica, Obr, Martin, Zhang, Xianjun, Chakraborty, Saikat, Tagiltsev, Grigory, Michael, Alicia K., van Dorst, Sofie, Waltz, Florent, McCafferty, Caitlyn L., Lamm, Lorenz, Zufferey, Simon, Van der Stappen, Philippe, van den Hoek, Hugo, Wietrzynski, Wojciech, Harar, Pavol, Wan, William, et al. (2024). Towards community-driven visual proteomics with large-scale cryo-electron tomography of Chlamydomonas reinhardtii [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.12.28.630444
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William H.J., Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P., & (2024). Molecular architecture of thylakoid membranes within intact spinach chloroplasts [Posted-content]. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.24.625035
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William H.J., Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P., & (2024). Molecular architecture of thylakoid membranes within intact spinach chloroplasts [Posted-content]. In bioRxiv (Cold Spring Harbor Laboratory). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.24.625035
Nam, Onyou, Musiał, Sabina, Demulder, Manon, McKenzie, Caroline, Dowle, Adam, Dowson, Matthew, Barrett, James, Blaza, James N., , & Mackinder, Luke C.M. (2024). A protein blueprint of the diatom CO2-fixing organelle [Journal-article]. Cell, 187(21), 5935–5950. https://doi.org/10.1016/j.cell.2024.09.025
Nam, Onyou, Musiał, Sabina, Demulder, Manon, McKenzie, Caroline, Dowle, Adam, Dowson, Matthew, Barrett, James, Blaza, James N., , & Mackinder, Luke C.M. (2024). A protein blueprint of the diatom CO2-fixing organelle [Journal-article]. Cell, 187(21), 5935–5950. https://doi.org/10.1016/j.cell.2024.09.025
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Ota, Tadayoshi, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D., Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2024). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation [Journal-article]. Cell, 187(21), 5919–5934. https://doi.org/10.1016/j.cell.2024.09.013
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Ota, Tadayoshi, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D., Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2024). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation [Journal-article]. Cell, 187(21), 5919–5934. https://doi.org/10.1016/j.cell.2024.09.013
Waltz, Florent, Righetto, Ricardo D., Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & (2024). In-cell architecture of the mitochondrial respiratory chain [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.03.610704
Waltz, Florent, Righetto, Ricardo D., Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & (2024). In-cell architecture of the mitochondrial respiratory chain [Posted-content]. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.03.610704
Pan, Sichen, Gries, Karin, , Schroda, Michael, Haselwandter, Christoph A., & Scheuring, Simon. (2024). The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers [Journal-article]. Nature Structural & Molecular Biology, 32(3), 543–554. https://doi.org/10.1038/s41594-024-01367-7
Pan, Sichen, Gries, Karin, , Schroda, Michael, Haselwandter, Christoph A., & Scheuring, Simon. (2024). The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers [Journal-article]. Nature Structural & Molecular Biology, 32(3), 543–554. https://doi.org/10.1038/s41594-024-01367-7
Eckardt, Nancy A, Allahverdiyeva, Yagut, Alvarez, Clarisa E, Büchel, Claudia, Burlacot, Adrien, Cardona, Tanai, Chaloner, Emma, , Grossman, Arthur R, Harris, Dvir, Herrmann, Nicolas, Hodges, Michael, Kern, Jan, Kim, Tom Dongmin, Maurino, Veronica G, Mullineaux, Conrad W, Mustila, Henna, Nikkanen, Lauri, Schlau-Cohen, Gabriela, et al. (2024). Lighting the way: Compelling open questions in photosynthesis research [Journal-article]. The Plant Cell, 36(10), 3914–3943. https://doi.org/10.1093/plcell/koae203
Eckardt, Nancy A, Allahverdiyeva, Yagut, Alvarez, Clarisa E, Büchel, Claudia, Burlacot, Adrien, Cardona, Tanai, Chaloner, Emma, , Grossman, Arthur R, Harris, Dvir, Herrmann, Nicolas, Hodges, Michael, Kern, Jan, Kim, Tom Dongmin, Maurino, Veronica G, Mullineaux, Conrad W, Mustila, Henna, Nikkanen, Lauri, Schlau-Cohen, Gabriela, et al. (2024). Lighting the way: Compelling open questions in photosynthesis research [Journal-article]. The Plant Cell, 36(10), 3914–3943. https://doi.org/10.1093/plcell/koae203
Perez-Boerema, Annemarie, , & Wietrzynski, Wojciech. (2024). Evolution of Thylakoid Structural Diversity [Journal-article]. Annual Review of Cell and Developmental Biology, 40(1), 169–193. https://doi.org/10.1146/annurev-cellbio-120823-022747
Perez-Boerema, Annemarie, , & Wietrzynski, Wojciech. (2024). Evolution of Thylakoid Structural Diversity [Journal-article]. Annual Review of Cell and Developmental Biology, 40(1), 169–193. https://doi.org/10.1146/annurev-cellbio-120823-022747
Chung, Kin Pan, Frieboese, Daniel, Waltz, Florent, , & Bock, Ralph. (2024). Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. Plant Direct, 8(6). https://doi.org/10.1002/pld3.614
Chung, Kin Pan, Frieboese, Daniel, Waltz, Florent, , & Bock, Ralph. (2024). Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. Plant Direct, 8(6). https://doi.org/10.1002/pld3.614
McCafferty, Caitlyn L., Klumpe, Sven, Amaro, Rommie E., Kukulski, Wanda, Collinson, Lucy, & (2024). Integrating cellular electron microscopy with multimodal data to explore biology across space and time [Journal-article]. Cell, 187(3), 563–584. https://doi.org/10.1016/j.cell.2024.01.005
McCafferty, Caitlyn L., Klumpe, Sven, Amaro, Rommie E., Kukulski, Wanda, Collinson, Lucy, & (2024). Integrating cellular electron microscopy with multimodal data to explore biology across space and time [Journal-article]. Cell, 187(3), 563–584. https://doi.org/10.1016/j.cell.2024.01.005
Lamm, Lorenz, Zufferey, Simon, Righetto, Ricardo D, Wietrzynski, Wojciech, Yamauchi, Kevin A, Burt, Alister, Liu, Ye, Zhang, Hanyi, Martinez-Sanchez, Antonio, Ziegler, Sebastian, Isensee, Fabian, Schnabel, Julia A, , & Peng, Tingying. (2024). MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. In bioRxiv (05.01.2024). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.05.574336
Lamm, Lorenz, Zufferey, Simon, Righetto, Ricardo D, Wietrzynski, Wojciech, Yamauchi, Kevin A, Burt, Alister, Liu, Ye, Zhang, Hanyi, Martinez-Sanchez, Antonio, Ziegler, Sebastian, Isensee, Fabian, Schnabel, Julia A, , & Peng, Tingying. (2024). MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. In bioRxiv (05.01.2024). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.05.574336
Yamauchi, Kevin A, Lamm, Lorenz, Gaifas, Lorenzo, Righetto, Ricardo D, Litvinov, Daniil, , & Harrington, Kyle. (2024). Surforama: interactive exploration of volumetric data by leveraging 3D surfaces. In bioRxiv (02.06.2024). https://doi.org/10.1101/2024.05.30.596601
Yamauchi, Kevin A, Lamm, Lorenz, Gaifas, Lorenzo, Righetto, Ricardo D, Litvinov, Daniil, , & Harrington, Kyle. (2024). Surforama: interactive exploration of volumetric data by leveraging 3D surfaces. In bioRxiv (02.06.2024). https://doi.org/10.1101/2024.05.30.596601
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Tadayoshi Ota, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wojciech Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D, Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2023). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation. In bioRxiv (26.10.2023). Cold Spring Harbor. https://doi.org/10.1101/2023.10.25.564039
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Tadayoshi Ota, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wojciech Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D, Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2023). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation. In bioRxiv (26.10.2023). Cold Spring Harbor. https://doi.org/10.1101/2023.10.25.564039
Bregy, Irina, Radecke, Julika, Noga, Akira, van den Hoek, Hugo, Kern, Mara, Haenni, Beat, , Siebert, C. Alistair, Ishikawa, Takashi, Zuber, Benoît, & Ochsenreiter, Torsten. (2023). Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex. bioRxiv. https://doi.org/10.1101/2023.03.06.531305
Bregy, Irina, Radecke, Julika, Noga, Akira, van den Hoek, Hugo, Kern, Mara, Haenni, Beat, , Siebert, C. Alistair, Ishikawa, Takashi, Zuber, Benoît, & Ochsenreiter, Torsten. (2023). Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex. bioRxiv. https://doi.org/10.1101/2023.03.06.531305
Goodenough, Ursula, & (2023). Cell Ultrastructure. In Goodenough, Ursula (Ed.), The Chlamydomonas Sourcebook: Vol. 1: Introduction to Chlamydomonas and Its Laboratory Use (3rd ed., pp. 17–40). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-822457-1.00015-7
Goodenough, Ursula, & (2023). Cell Ultrastructure. In Goodenough, Ursula (Ed.), The Chlamydomonas Sourcebook: Vol. 1: Introduction to Chlamydomonas and Its Laboratory Use (3rd ed., pp. 17–40). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-822457-1.00015-7
Khavnekar, Sagar, Kelley, Ron, Waltz, Florent, Wietrzynski, Wojciech, Zhang, Xianjun, Obr, Martin, Tagiltsev, Grigory, Beck, Florian, Wan, William, Briggs, John, , Plitzko, Juergen, & Kotecha, Abhay. (2023). Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET. Microscopy and Microanalysis, 29(29 Suppl 1), 961–963. https://doi.org/10.1093/micmic/ozad067.480
Khavnekar, Sagar, Kelley, Ron, Waltz, Florent, Wietrzynski, Wojciech, Zhang, Xianjun, Obr, Martin, Tagiltsev, Grigory, Beck, Florian, Wan, William, Briggs, John, , Plitzko, Juergen, & Kotecha, Abhay. (2023). Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET. Microscopy and Microanalysis, 29(29 Suppl 1), 961–963. https://doi.org/10.1093/micmic/ozad067.480
Kulaj, Konxhe, Harger, Alexandra, Bauer, Michaela, Caliskan, Özüm S., Gupta, Tilak Kumar, Chiang, Dapi Menglin, Milbank, Edward, Reber, Josefine, Karlas, Angelos, Kotzbeck, Petra, Sailer, David N., Volta, Francesco, Lutter, Dominik, Prakash, Sneha, Merl-Pham, Juliane, Ntziachristos, Vasilis, Hauner, Hans, Pfaffl, Michael W., Tschöp, Matthias H., et al. (2023). Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nature Communications, 14(1), 709. https://doi.org/10.1038/s41467-023-36148-1
Kulaj, Konxhe, Harger, Alexandra, Bauer, Michaela, Caliskan, Özüm S., Gupta, Tilak Kumar, Chiang, Dapi Menglin, Milbank, Edward, Reber, Josefine, Karlas, Angelos, Kotzbeck, Petra, Sailer, David N., Volta, Francesco, Lutter, Dominik, Prakash, Sneha, Merl-Pham, Juliane, Ntziachristos, Vasilis, Hauner, Hans, Pfaffl, Michael W., Tschöp, Matthias H., et al. (2023). Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nature Communications, 14(1), 709. https://doi.org/10.1038/s41467-023-36148-1
Righetto, Ricardo D., & (2023). Visualizing a Carbon-Fixing Nanowire Inside Bacteria. Chimia, 77(5), 348. https://doi.org/10.2533/chimia.2023.348
Righetto, Ricardo D., & (2023). Visualizing a Carbon-Fixing Nanowire Inside Bacteria. Chimia, 77(5), 348. https://doi.org/10.2533/chimia.2023.348
Wietrzynski, Wojciech, & (2023). Supramolecular Organization of Chloroplast Membranes. In Grossman, Arthur R.; Wollman, Francis-André (Ed.), The Chlamydomonas Sourcebook: Vol. 2: Organellar and Metabolic Processes (3rd ed., pp. 763–785). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-821430-5.00018-3
Wietrzynski, Wojciech, & (2023). Supramolecular Organization of Chloroplast Membranes. In Grossman, Arthur R.; Wollman, Francis-André (Ed.), The Chlamydomonas Sourcebook: Vol. 2: Organellar and Metabolic Processes (3rd ed., pp. 763–785). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-821430-5.00018-3
Dietrich, Helge M., Righetto, Ricardo D., Kumar, Anuj, Wietrzynski, Wojciech, Trischler, Raphael, Schuller, Sandra K., Wagner, Jonathan, Schwarz, Fabian M., , Müller, Volker, & Schuller, Jan M. (2022). Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature, 607(7920), 823–830. https://doi.org/10.1038/s41586-022-04971-z
Dietrich, Helge M., Righetto, Ricardo D., Kumar, Anuj, Wietrzynski, Wojciech, Trischler, Raphael, Schuller, Sandra K., Wagner, Jonathan, Schwarz, Fabian M., , Müller, Volker, & Schuller, Jan M. (2022). Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation. Nature, 607(7920), 823–830. https://doi.org/10.1038/s41586-022-04971-z
Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Pöge, Matthias, Martinez-Sanchez, Antonio, Peng, Tingying, & (2022). MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms. Computer Methods and Programs in Biomedicine, 224, 106990. https://doi.org/10.1016/j.cmpb.2022.106990
Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Pöge, Matthias, Martinez-Sanchez, Antonio, Peng, Tingying, & (2022). MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms. Computer Methods and Programs in Biomedicine, 224, 106990. https://doi.org/10.1016/j.cmpb.2022.106990
Righetto, Ricardo D., & (2022). Expanding the arsenal of bacterial spearguns. Nature Microbiology, 7(3), 363–364. https://doi.org/10.1038/s41564-022-01078-z
Righetto, Ricardo D., & (2022). Expanding the arsenal of bacterial spearguns. Nature Microbiology, 7(3), 363–364. https://doi.org/10.1038/s41564-022-01078-z
Righetto, Ricardo D, & (2022). Publisher Correction: Expanding the arsenal of bacterial spearguns. Nature Microbiology, 7(March 2022), 1. https://doi.org/10.1038/s41564-022-01102-2
Righetto, Ricardo D, & (2022). Publisher Correction: Expanding the arsenal of bacterial spearguns. Nature Microbiology, 7(March 2022), 1. https://doi.org/10.1038/s41564-022-01102-2
van den Hoek, Hugo, Klena, Nikolai, Jordan, Mareike A., Alvarez Viar, Gonzalo, Righetto, Ricardo D., Schaffer, Miroslava, Erdmann, Philipp S., Wan, William, Geimer, Stefan, Plitzko, Jürgen M., Baumeister, Wolfgang, Pigino, Gaia, Hamel, Virginie, Guichard, Paul, & (2022). In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science, 377(6605), 543–548. https://doi.org/10.1126/science.abm6704
van den Hoek, Hugo, Klena, Nikolai, Jordan, Mareike A., Alvarez Viar, Gonzalo, Righetto, Ricardo D., Schaffer, Miroslava, Erdmann, Philipp S., Wan, William, Geimer, Stefan, Plitzko, Jürgen M., Baumeister, Wolfgang, Pigino, Gaia, Hamel, Virginie, Guichard, Paul, & (2022). In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science, 377(6605), 543–548. https://doi.org/10.1126/science.abm6704
Gupta, Tilak Kumar, Klumpe, Sven, Gries, Karin, Heinz, Steffen, Wietrzynski, Wojciech, Ohnishi, Norikazu, Niemeyer, Justus, Spaniol, Benjamin, Schaffer, Miroslava, Rast, Anna, Ostermeier, Matthias, Strauss, Mike, Plitzko, Jürgen M., Baumeister, Wolfgang, Rudack, Till, Sakamoto, Wataru, Nickelsen, Jörg, Schuller, Jan M., Schroda, Michael, & (2021). Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 184(14), 3643–3659. https://doi.org/10.1016/j.cell.2021.05.011
Gupta, Tilak Kumar, Klumpe, Sven, Gries, Karin, Heinz, Steffen, Wietrzynski, Wojciech, Ohnishi, Norikazu, Niemeyer, Justus, Spaniol, Benjamin, Schaffer, Miroslava, Rast, Anna, Ostermeier, Matthias, Strauss, Mike, Plitzko, Jürgen M., Baumeister, Wolfgang, Rudack, Till, Sakamoto, Wataru, Nickelsen, Jörg, Schuller, Jan M., Schroda, Michael, & (2021). Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 184(14), 3643–3659. https://doi.org/10.1016/j.cell.2021.05.011
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, , & Kervrann, Charles. (2021). Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 18(11), 1386–1394. https://doi.org/10.1038/s41592-021-01275-4
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, , & Kervrann, Charles. (2021). Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 18(11), 1386–1394. https://doi.org/10.1038/s41592-021-01275-4
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, , & Kervrann, Charles. (2021). Author Correction: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 19 (129), 1178.
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, , & Kervrann, Charles. (2021). Author Correction: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 19 (129), 1178.
Waltz, Florent, Salinas-Giegé, Thalia, Englmeier, Robert, Meichel, Herrade, Soufari, Heddy, Kuhn, Lauriane, Pfeffer, Stefan, Förster, Friedrich, , Giegé, Philippe, Drouard, Laurence, & Hashem, Yaser. (2021). How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications, 12(1), 7176. https://doi.org/10.1038/s41467-021-27200-z
Waltz, Florent, Salinas-Giegé, Thalia, Englmeier, Robert, Meichel, Herrade, Soufari, Heddy, Kuhn, Lauriane, Pfeffer, Stefan, Förster, Friedrich, , Giegé, Philippe, Drouard, Laurence, & Hashem, Yaser. (2021). How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications, 12(1), 7176. https://doi.org/10.1038/s41467-021-27200-z
Wietrzynski, Wojciech, & (2021). Chlorophyll biogenesis sees the light. Nature Plants. Scientific Reports, 7(4), 380–381. https://doi.org/10.1038/s41477-021-00900-6
Wietrzynski, Wojciech, & (2021). Chlorophyll biogenesis sees the light. Nature Plants. Scientific Reports, 7(4), 380–381. https://doi.org/10.1038/s41477-021-00900-6
Zabret, Jure, Bohn, Stefan, Schuller, Sandra K., Arnolds, Oliver, Möller, Madeline, Meier-Credo, Jakob, Liauw, Pasqual, Chan, Aaron, Tajkhorshid, Emad, Langer, Julian D., Stoll, Raphael, Krieger-Liszkay, Anja, , Rudack, Till, Schuller, Jan M., & Nowaczyk, Marc M. (2021). Structural insights into photosystem II assembly. Nature Plants. Scientific Reports, 7(4), 524–538. https://doi.org/10.1038/s41477-021-00895-0
Zabret, Jure, Bohn, Stefan, Schuller, Sandra K., Arnolds, Oliver, Möller, Madeline, Meier-Credo, Jakob, Liauw, Pasqual, Chan, Aaron, Tajkhorshid, Emad, Langer, Julian D., Stoll, Raphael, Krieger-Liszkay, Anja, , Rudack, Till, Schuller, Jan M., & Nowaczyk, Marc M. (2021). Structural insights into photosystem II assembly. Nature Plants. Scientific Reports, 7(4), 524–538. https://doi.org/10.1038/s41477-021-00895-0
Albert, Sahradha, Wietrzynski, Wojciech, Lee, Chia-Wei, Schaffer, Miroslava, Beck, Florian, Schuller, Jan M., Salomé, Patrice A., Plitzko, Jürgen M., Baumeister, Wolfgang, & (2020). Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1069–1080. https://doi.org/10.1073/pnas.1905641117
Albert, Sahradha, Wietrzynski, Wojciech, Lee, Chia-Wei, Schaffer, Miroslava, Beck, Florian, Schuller, Jan M., Salomé, Patrice A., Plitzko, Jürgen M., Baumeister, Wolfgang, & (2020). Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1069–1080. https://doi.org/10.1073/pnas.1905641117
He, Shan, Chou, Hui-Ting, Matthies, Doreen, Wunder, Tobias, Meyer, Moritz T., Atkinson, Nicky, Martinez-Sanchez, Antonio, Jeffrey, Philip D., Port, Sarah A., Patena, Weronika, He, Guanhua, Chen, Vivian K., Hughson, Frederick M., McCormick, Alistair J., Müller-Cajar, Oliver, , Yu, Zhiheng, & Jonikas, Martin C. (2020). The structural basis of Rubisco phase separation in the pyrenoid. Nature Plants. Scientific Reports, 6(12), 1480–1490. https://doi.org/10.1038/s41477-020-00811-y
He, Shan, Chou, Hui-Ting, Matthies, Doreen, Wunder, Tobias, Meyer, Moritz T., Atkinson, Nicky, Martinez-Sanchez, Antonio, Jeffrey, Philip D., Port, Sarah A., Patena, Weronika, He, Guanhua, Chen, Vivian K., Hughson, Frederick M., McCormick, Alistair J., Müller-Cajar, Oliver, , Yu, Zhiheng, & Jonikas, Martin C. (2020). The structural basis of Rubisco phase separation in the pyrenoid. Nature Plants. Scientific Reports, 6(12), 1480–1490. https://doi.org/10.1038/s41477-020-00811-y
Klena, Nikolai, Le Guennec, Maeva, Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Geimer, Stefan, Aeschlimann, Gabriel, Kovacik, Lubomir, Sadian, Yashar, Goldie, Kenneth N., Stahlberg, Henning, , Hamel, Virginie, & Guichard, Paul. (2020). Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography. The EMBO Journal, 39(22), e106246. https://doi.org/10.15252/embj.2020106246
Klena, Nikolai, Le Guennec, Maeva, Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Geimer, Stefan, Aeschlimann, Gabriel, Kovacik, Lubomir, Sadian, Yashar, Goldie, Kenneth N., Stahlberg, Henning, , Hamel, Virginie, & Guichard, Paul. (2020). Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography. The EMBO Journal, 39(22), e106246. https://doi.org/10.15252/embj.2020106246
Le Guennec, Maeva, Klena, Nikolai, Gambarotto, Davide, Laporte, Marine H., Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Kovacik, Lubomir, Borgers, Susanne, Goldie, Kenneth N., Stahlberg, Henning, Bornens, Michel, Azimzadeh, Juliette, , Hamel, Virginie, & Guichard, Paul. (2020). A helical inner scaffold provides a structural basis for centriole cohesion. Science Advances, 6(7), eaaz4137. https://doi.org/10.1126/sciadv.aaz4137
Le Guennec, Maeva, Klena, Nikolai, Gambarotto, Davide, Laporte, Marine H., Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Kovacik, Lubomir, Borgers, Susanne, Goldie, Kenneth N., Stahlberg, Henning, Bornens, Michel, Azimzadeh, Juliette, , Hamel, Virginie, & Guichard, Paul. (2020). A helical inner scaffold provides a structural basis for centriole cohesion. Science Advances, 6(7), eaaz4137. https://doi.org/10.1126/sciadv.aaz4137
Theis, Jasmine, Niemeyer, Justus, Schmollinger, Stefan, Ries, Fabian, Rütgers, Mark, Gupta, Tilak Kumar, Sommer, Frederik, Muranaka, Ligia Segatto, Venn, Benedikt, Schulz-Raffelt, Miriam, Willmund, Felix, , & Schroda, Michael. (2020). VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression. Plant, Cell and Environment, 43(5), 1212–1229. https://doi.org/10.1111/pce.13732
Theis, Jasmine, Niemeyer, Justus, Schmollinger, Stefan, Ries, Fabian, Rütgers, Mark, Gupta, Tilak Kumar, Sommer, Frederik, Muranaka, Ligia Segatto, Venn, Benedikt, Schulz-Raffelt, Miriam, Willmund, Felix, , & Schroda, Michael. (2020). VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression. Plant, Cell and Environment, 43(5), 1212–1229. https://doi.org/10.1111/pce.13732
Wietrzynski, Wojciech, Schaffer, Miroslava, Tegunov, Dimitry, Albert, Sahradha, Kanazawa, Atsuko, Plitzko, Jürgen M., Baumeister, Wolfgang, & (2020). Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife, 9, e53740. https://doi.org/10.7554/elife.53740
Wietrzynski, Wojciech, Schaffer, Miroslava, Tegunov, Dimitry, Albert, Sahradha, Kanazawa, Atsuko, Plitzko, Jürgen M., Baumeister, Wolfgang, & (2020). Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife, 9, e53740. https://doi.org/10.7554/elife.53740
Chicano, Andrea, Crosas, Eva, Otón, Joaquín, Melero, Roberto, , & Daban, Joan-Ramon. (2019). Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. The EMBO Journal, 38(7), e99769. https://doi.org/10.15252/embj.201899769
Chicano, Andrea, Crosas, Eva, Otón, Joaquín, Melero, Roberto, , & Daban, Joan-Ramon. (2019). Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure. The EMBO Journal, 38(7), e99769. https://doi.org/10.15252/embj.201899769
Craig, Evan W., Müller, David M., Bigge, Brae M., Schaffer, Miroslava, , & Avasthi, Prachee. (2019). The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins. Molecular Biology of the Cell, 30(22), 2827–2837. https://doi.org/10.1091/mbc.e19-03-0141
Craig, Evan W., Müller, David M., Bigge, Brae M., Schaffer, Miroslava, , & Avasthi, Prachee. (2019). The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins. Molecular Biology of the Cell, 30(22), 2827–2837. https://doi.org/10.1091/mbc.e19-03-0141
Rast, Anna, Schaffer, Miroslava, Albert, Sahradha, Wan, William, Pfeffer, Stefan, Beck, Florian, Plitzko, Jürgen M., Nickelsen, Jörg, & (2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants. Scientific Reports, 5(4), 436–446. https://doi.org/10.1038/s41477-019-0399-7
Rast, Anna, Schaffer, Miroslava, Albert, Sahradha, Wan, William, Pfeffer, Stefan, Beck, Florian, Plitzko, Jürgen M., Nickelsen, Jörg, & (2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants. Scientific Reports, 5(4), 436–446. https://doi.org/10.1038/s41477-019-0399-7
Schaffer, Miroslava, Pfeffer, Stefan, Mahamid, Julia, Kleindiek, Stephan, Laugks, Tim, Albert, Sahradha, , Rummel, Andreas, Smith, Andrew J., Baumeister, Wolfgang, & Plitzko, Juergen M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 16(8), 757–762. https://doi.org/10.1038/s41592-019-0497-5
Schaffer, Miroslava, Pfeffer, Stefan, Mahamid, Julia, Kleindiek, Stephan, Laugks, Tim, Albert, Sahradha, , Rummel, Andreas, Smith, Andrew J., Baumeister, Wolfgang, & Plitzko, Juergen M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 16(8), 757–762. https://doi.org/10.1038/s41592-019-0497-5
Schuller, Jan M., Birrell, James A., Tanaka, Hideaki, Konuma, Tsuyoshi, Wulfhorst, Hannes, Cox, Nicholas, Schuller, Sandra K., Thiemann, Jacqueline, Lubitz, Wolfgang, Sétif, Pierre, Ikegami, Takahisa, , Kurisu, Genji, & Nowaczyk, Marc M. (2019). Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science, 363(6424), 257–260. https://doi.org/10.1126/science.aau3613
Schuller, Jan M., Birrell, James A., Tanaka, Hideaki, Konuma, Tsuyoshi, Wulfhorst, Hannes, Cox, Nicholas, Schuller, Sandra K., Thiemann, Jacqueline, Lubitz, Wolfgang, Sétif, Pierre, Ikegami, Takahisa, , Kurisu, Genji, & Nowaczyk, Marc M. (2019). Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science, 363(6424), 257–260. https://doi.org/10.1126/science.aau3613
Theis, Jasmine, Gupta, Tilak Kumar, Klingler, Johannes, Wan, William, Albert, Sahradha, Keller, Sandro, , & Schroda, Michael. (2019). VIPP1 rods engulf membranes containing phosphatidylinositol phosphates. Scientific Reports, 9(1), 8725. https://doi.org/10.1038/s41598-019-44259-3
Theis, Jasmine, Gupta, Tilak Kumar, Klingler, Johannes, Wan, William, Albert, Sahradha, Keller, Sandro, , & Schroda, Michael. (2019). VIPP1 rods engulf membranes containing phosphatidylinositol phosphates. Scientific Reports, 9(1), 8725. https://doi.org/10.1038/s41598-019-44259-3
Delarue, M., Brittingham, G. P., Pfeffer, S., Surovtsev, I. V., Pinglay, S., Kennedy, K. J., Schaffer, M., Gutierrez, J. I., Sang, D., Poterewicz, G., Chung, J. K., Plitzko, J. M., Groves, J. T., Jacobs-Wagner, C., , & Holt, L. J. (2018). mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell, 174(2), 338–349. https://doi.org/10.1016/j.cell.2018.05.042
Delarue, M., Brittingham, G. P., Pfeffer, S., Surovtsev, I. V., Pinglay, S., Kennedy, K. J., Schaffer, M., Gutierrez, J. I., Sang, D., Poterewicz, G., Chung, J. K., Plitzko, J. M., Groves, J. T., Jacobs-Wagner, C., , & Holt, L. J. (2018). mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell, 174(2), 338–349. https://doi.org/10.1016/j.cell.2018.05.042
Kovtun, Oleksiy, Leneva, Natalya, Bykov, Yury S., Ariotti, Nicholas, Teasdale, Rohan D., Schaffer, Miroslava, , Owen, David J., Briggs, John A. G., & Collins, Brett M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature, 561(7724), 561–564. https://doi.org/10.1038/s41586-018-0526-z
Kovtun, Oleksiy, Leneva, Natalya, Bykov, Yury S., Ariotti, Nicholas, Teasdale, Rohan D., Schaffer, Miroslava, , Owen, David J., Briggs, John A. G., & Collins, Brett M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature, 561(7724), 561–564. https://doi.org/10.1038/s41586-018-0526-z
Mosalaganti, Shyamal, Kosinski, Jan, Albert, Sahradha, Schaffer, Miroslava, Strenkert, Daniela, Salomé, Patrice A., Merchant, Sabeeha S., Plitzko, Jürgen M., Baumeister, Wolfgang, , & Beck, Martin. (2018). In situ architecture of the algal nuclear pore complex. Nature Communications, 9(1), 2361. https://doi.org/10.1038/s41467-018-04739-y
Mosalaganti, Shyamal, Kosinski, Jan, Albert, Sahradha, Schaffer, Miroslava, Strenkert, Daniela, Salomé, Patrice A., Merchant, Sabeeha S., Plitzko, Jürgen M., Baumeister, Wolfgang, , & Beck, Martin. (2018). In situ architecture of the algal nuclear pore complex. Nature Communications, 9(1), 2361. https://doi.org/10.1038/s41467-018-04739-y
Albanese, Pascal, Melero, Roberto, , Grinzato, Alessandro, Berto, Paola, Manfredi, Marcello, Chiodoni, Angelica, Vargas, Javier, Sorzano, Carlos Óscar Sánchez, Marengo, Emilio, Saracco, Guido, Zanotti, Giuseppe, Carazo, Jose-Maria, & Pagliano, Cristina. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 7(1), 10067. https://doi.org/10.1038/s41598-017-10700-8
Albanese, Pascal, Melero, Roberto, , Grinzato, Alessandro, Berto, Paola, Manfredi, Marcello, Chiodoni, Angelica, Vargas, Javier, Sorzano, Carlos Óscar Sánchez, Marengo, Emilio, Saracco, Guido, Zanotti, Giuseppe, Carazo, Jose-Maria, & Pagliano, Cristina. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 7(1), 10067. https://doi.org/10.1038/s41598-017-10700-8
Albert, Sahradha, Schaffer, Miroslava, Beck, Florian, Mosalaganti, Shyamal, Asano, Shoh, Thomas, Henry F., Plitzko, Jürgen M., Beck, Martin, Baumeister, Wolfgang, & (2017). Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13726–13731. https://doi.org/10.1073/pnas.1716305114
Albert, Sahradha, Schaffer, Miroslava, Beck, Florian, Mosalaganti, Shyamal, Asano, Shoh, Thomas, Henry F., Plitzko, Jürgen M., Beck, Martin, Baumeister, Wolfgang, & (2017). Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13726–13731. https://doi.org/10.1073/pnas.1716305114
Bykov, Yury S., Schaffer, Miroslava, Dodonova, Svetlana O., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, , & Briggs, John Ag. (2017). The structure of the COPI coat determined within the cell. eLife, 6, e32493. https://doi.org/10.7554/elife.32493
Bykov, Yury S., Schaffer, Miroslava, Dodonova, Svetlana O., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, , & Briggs, John Ag. (2017). The structure of the COPI coat determined within the cell. eLife, 6, e32493. https://doi.org/10.7554/elife.32493
Freeman Rosenzweig, Elizabeth S., Xu, Bin, Kuhn Cuellar, Luis, Martinez-Sanchez, Antonio, Schaffer, Miroslava, Strauss, Mike, Cartwright, Heather N., Ronceray, Pierre, Plitzko, Jürgen M., Förster, Friedrich, Wingreen, Ned S., , Mackinder, Luke C. M., & Jonikas, Martin C. (2017). The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell, 171(1), 148–162. https://doi.org/10.1016/j.cell.2017.08.008
Freeman Rosenzweig, Elizabeth S., Xu, Bin, Kuhn Cuellar, Luis, Martinez-Sanchez, Antonio, Schaffer, Miroslava, Strauss, Mike, Cartwright, Heather N., Ronceray, Pierre, Plitzko, Jürgen M., Förster, Friedrich, Wingreen, Ned S., , Mackinder, Luke C. M., & Jonikas, Martin C. (2017). The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell, 171(1), 148–162. https://doi.org/10.1016/j.cell.2017.08.008
Pfeffer, Stefan, Dudek, Johanna, Schaffer, Miroslava, Ng, Bobby G., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, Zimmermann, Richard, Freeze, Hudson H., , & Förster, Friedrich. (2017). Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 8, 14516. https://doi.org/10.1038/ncomms14516
Pfeffer, Stefan, Dudek, Johanna, Schaffer, Miroslava, Ng, Bobby G., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, Zimmermann, Richard, Freeze, Hudson H., , & Förster, Friedrich. (2017). Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 8, 14516. https://doi.org/10.1038/ncomms14516
Schaffer, Miroslava, Mahamid, Julia, , Laugks, Tim, Baumeister, Wolfgang, & Plitzko, Jürgen M. (2017). Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. Journal of Structural Biology, 197(2), 73–82. https://doi.org/10.1016/j.jsb.2016.07.010
Schaffer, Miroslava, Mahamid, Julia, , Laugks, Tim, Baumeister, Wolfgang, & Plitzko, Jürgen M. (2017). Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. Journal of Structural Biology, 197(2), 73–82. https://doi.org/10.1016/j.jsb.2016.07.010
Asano, Shoh, , & Baumeister, Wolfgang. (2016). In situ cryo-electron tomography: a post-reductionist approach to structural biology. Journal of Molecular Biology, 428(2 Pt A), 332–343. https://doi.org/10.1016/j.jmb.2015.09.030
Asano, Shoh, , & Baumeister, Wolfgang. (2016). In situ cryo-electron tomography: a post-reductionist approach to structural biology. Journal of Molecular Biology, 428(2 Pt A), 332–343. https://doi.org/10.1016/j.jmb.2015.09.030
, Schaffer, Miroslava, Albert, Sahradha, Asano, Shoh, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 9–11264. https://doi.org/10.1073/pnas.1515337112
, Schaffer, Miroslava, Albert, Sahradha, Asano, Shoh, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 9–11264. https://doi.org/10.1073/pnas.1515337112
, Schaffer, Miroslava, Cueller Kuhn, Luis, Villa, Elizabeth, Plitzko, Jürgen M, & Baumeister, Wolfgang. (2015). Correction: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife, September, 1. https://doi.org/10.7554/elife.11383
, Schaffer, Miroslava, Cueller Kuhn, Luis, Villa, Elizabeth, Plitzko, Jürgen M, & Baumeister, Wolfgang. (2015). Correction: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife, September, 1. https://doi.org/10.7554/elife.11383
, Schaffer, Miroslava, Kuhn Cuellar, Luis, Villa, Elizabeth, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife, 4, e04889. https://doi.org/10.7554/elife.04889
, Schaffer, Miroslava, Kuhn Cuellar, Luis, Villa, Elizabeth, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife, 4, e04889. https://doi.org/10.7554/elife.04889
Schaffer, Miroslava, , Laugks, Tim, Mahamid, Julia, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio-protocol, 5(17), e1575. https://doi.org/10.21769/bioprotoc.1575
Schaffer, Miroslava, , Laugks, Tim, Mahamid, Julia, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio-protocol, 5(17), e1575. https://doi.org/10.21769/bioprotoc.1575
Bhogaraju, Sagar, Weber, Kristina, , Lechtreck, Karl-Ferdinand, & Lorentzen, Esben. (2014). Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites? BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 36(5), 7–463. https://doi.org/10.1002/bies.201400007
Bhogaraju, Sagar, Weber, Kristina, , Lechtreck, Karl-Ferdinand, & Lorentzen, Esben. (2014). Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites? BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 36(5), 7–463. https://doi.org/10.1002/bies.201400007
Bhogaraju, Sagar, , & Lorentzen, Esben. (2013). Intraflagellar transport complex structure and cargo interactions. Cilia, 2(1), 10. https://doi.org/10.1186/2046-2530-2-10
Bhogaraju, Sagar, , & Lorentzen, Esben. (2013). Intraflagellar transport complex structure and cargo interactions. Cilia, 2(1), 10. https://doi.org/10.1186/2046-2530-2-10
Shih, Sheng Min, , Kocabas, Fatih, Bilyard, Thomas, Gennerich, Arne, Marshall, Wallace F., & Yildiz, Ahmet. (2013). Intraflagellar transport drives flagellar surface motility. eLife, 2, e00744. https://doi.org/10.7554/elife.00744
Shih, Sheng Min, , Kocabas, Fatih, Bilyard, Thomas, Gennerich, Arne, Marshall, Wallace F., & Yildiz, Ahmet. (2013). Intraflagellar transport drives flagellar surface motility. eLife, 2, e00744. https://doi.org/10.7554/elife.00744
, Ishikawa, Hiroaki, Wemmer, Kimberly A., Geimer, Stefan, Wakabayashi, Ken-ichi, Hirono, Masafumi, Craige, Branch, Pazour, Gregory J., Witman, George B., Kamiya, Ritsu, & Marshall, Wallace F. (2012). The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. Journal of Cell Biology, 199(1), 67–151. https://doi.org/10.1083/jcb.201206068
, Ishikawa, Hiroaki, Wemmer, Kimberly A., Geimer, Stefan, Wakabayashi, Ken-ichi, Hirono, Masafumi, Craige, Branch, Pazour, Gregory J., Witman, George B., Kamiya, Ritsu, & Marshall, Wallace F. (2012). The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. Journal of Cell Biology, 199(1), 67–151. https://doi.org/10.1083/jcb.201206068
Mizuno, Naoko, Taschner, Michael, , & Lorentzen, Esben. (2012). Structural studies of ciliary components. Journal of Molecular Biology, 422(2), 80–163. https://doi.org/10.1016/j.jmb.2012.05.040
Mizuno, Naoko, Taschner, Michael, , & Lorentzen, Esben. (2012). Structural studies of ciliary components. Journal of Molecular Biology, 422(2), 80–163. https://doi.org/10.1016/j.jmb.2012.05.040
Rigort, Alexander, Villa, Elizabeth, Bäuerlein, Felix J. B., , & Plitzko, Jürgen M. (2012). Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. Methods in Cell Biology, 111, 81–259. https://doi.org/10.1016/b978-0-12-416026-2.00014-5
Rigort, Alexander, Villa, Elizabeth, Bäuerlein, Felix J. B., , & Plitzko, Jürgen M. (2012). Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. Methods in Cell Biology, 111, 81–259. https://doi.org/10.1016/b978-0-12-416026-2.00014-5
, Ishikawa, Hiroaki, Feldman, Jessica L., Wilson, Christopher W., Chuang, Pao-Tien, Snedecor, June, Williams, Janice, Sun, Zhaoxia, & Marshall, Wallace F. (2011). A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow. Cell Motility and the Cytoskeleton, 68(3), 188–203. https://doi.org/10.1002/cm.20504
, Ishikawa, Hiroaki, Feldman, Jessica L., Wilson, Christopher W., Chuang, Pao-Tien, Snedecor, June, Williams, Janice, Sun, Zhaoxia, & Marshall, Wallace F. (2011). A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow. Cell Motility and the Cytoskeleton, 68(3), 188–203. https://doi.org/10.1002/cm.20504
, Lechtreck, Karl-Ferdinand, Sakai, Tsuyoshi, Ikebe, Mitsuo, Witman, George B., & Marshall, Wallace F. (2009). Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella. Methods in cell biology, 93, 77–157. https://doi.org/10.1016/s0091-679x(08)93009-0
, Lechtreck, Karl-Ferdinand, Sakai, Tsuyoshi, Ikebe, Mitsuo, Witman, George B., & Marshall, Wallace F. (2009). Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella. Methods in cell biology, 93, 77–157. https://doi.org/10.1016/s0091-679x(08)93009-0
, Ludington, William B., & Marshall, Wallace F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. Journal of Cell Biology, 187(1), 9–81. https://doi.org/10.1083/jcb.200812084
, Ludington, William B., & Marshall, Wallace F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. Journal of Cell Biology, 187(1), 9–81. https://doi.org/10.1083/jcb.200812084