Publications
64 found
Show per page
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William H.J., Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.24.625035
(2024). Molecular architecture of thylakoid membranes within intact spinach chloroplasts [Posted-content]. In
Wietrzynski, Wojciech, Lamm, Lorenz, Wood, William H.J., Loukeri, Matina-Jasemi, Malone, Lorna, Peng, Tingying, Johnson, Matthew P., & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.11.24.625035
(2024). Molecular architecture of thylakoid membranes within intact spinach chloroplasts [Posted-content]. In
Nam, Onyou, Musiał, Sabina, Demulder, Manon, McKenzie, Caroline, Dowle, Adam, Dowson, Matthew, Barrett, James, Blaza, James N., Cell, 187(21), 5935–5950. https://doi.org/10.1016/j.cell.2024.09.025
, & Mackinder, Luke C.M. (2024). A protein blueprint of the diatom CO2-fixing organelle [Journal-article].
Nam, Onyou, Musiał, Sabina, Demulder, Manon, McKenzie, Caroline, Dowle, Adam, Dowson, Matthew, Barrett, James, Blaza, James N., Cell, 187(21), 5935–5950. https://doi.org/10.1016/j.cell.2024.09.025
, & Mackinder, Luke C.M. (2024). A protein blueprint of the diatom CO2-fixing organelle [Journal-article].
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Ota, Tadayoshi, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D., Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2024). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation [Journal-article]. Cell, 187(21), 5919–5934. https://doi.org/10.1016/j.cell.2024.09.013
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Ota, Tadayoshi, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D., Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2024). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation [Journal-article]. Cell, 187(21), 5919–5934. https://doi.org/10.1016/j.cell.2024.09.013
Waltz, Florent, Righetto, Ricardo D., Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.03.610704
(2024). In-cell architecture of the mitochondrial respiratory chain [Posted-content]. In
Waltz, Florent, Righetto, Ricardo D., Kelley, Ron, Zhang, Xianjun, Obr, Martin, Khavnekar, Sagar, Kotecha, Abhay, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.09.03.610704
(2024). In-cell architecture of the mitochondrial respiratory chain [Posted-content]. In
Pan, Sichen, Gries, Karin, Nature Structural & Molecular Biology, Online ahead of print. https://doi.org/10.1038/s41594-024-01367-7
, Schroda, Michael, Haselwandter, Christoph A., & Scheuring, Simon. (2024). The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers [Journal-article].
Pan, Sichen, Gries, Karin, Nature Structural & Molecular Biology, Online ahead of print. https://doi.org/10.1038/s41594-024-01367-7
, Schroda, Michael, Haselwandter, Christoph A., & Scheuring, Simon. (2024). The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers [Journal-article].
Eckardt, Nancy A, Allahverdiyeva, Yagut, Alvarez, Clarisa E, Büchel, Claudia, Burlacot, Adrien, Cardona, Tanai, Chaloner, Emma, The Plant Cell, 36(10), 3914–3943. https://doi.org/10.1093/plcell/koae203
, Grossman, Arthur R, Harris, Dvir, Herrmann, Nicolas, Hodges, Michael, Kern, Jan, Kim, Tom Dongmin, Maurino, Veronica G, Mullineaux, Conrad W, Mustila, Henna, Nikkanen, Lauri, Schlau-Cohen, Gabriela, et al. (2024). Lighting the way: Compelling open questions in photosynthesis research [Journal-article].
Eckardt, Nancy A, Allahverdiyeva, Yagut, Alvarez, Clarisa E, Büchel, Claudia, Burlacot, Adrien, Cardona, Tanai, Chaloner, Emma, The Plant Cell, 36(10), 3914–3943. https://doi.org/10.1093/plcell/koae203
, Grossman, Arthur R, Harris, Dvir, Herrmann, Nicolas, Hodges, Michael, Kern, Jan, Kim, Tom Dongmin, Maurino, Veronica G, Mullineaux, Conrad W, Mustila, Henna, Nikkanen, Lauri, Schlau-Cohen, Gabriela, et al. (2024). Lighting the way: Compelling open questions in photosynthesis research [Journal-article].
Perez-Boerema, Annemarie, Annual Review of Cell and Developmental Biology, 40(1), 169–193. https://doi.org/10.1146/annurev-cellbio-120823-022747
, & Wietrzynski, Wojciech. (2024). Evolution of Thylakoid Structural Diversity [Journal-article].
Perez-Boerema, Annemarie, Annual Review of Cell and Developmental Biology, 40(1), 169–193. https://doi.org/10.1146/annurev-cellbio-120823-022747
, & Wietrzynski, Wojciech. (2024). Evolution of Thylakoid Structural Diversity [Journal-article].
McCafferty, Caitlyn L., Klumpe, Sven, Amaro, Rommie E., Kukulski, Wanda, Collinson, Lucy, & Cell, 187(3), 563–584. https://doi.org/10.1016/j.cell.2024.01.005
(2024). Integrating cellular electron microscopy with multimodal data to explore biology across space and time [Journal-article].
McCafferty, Caitlyn L., Klumpe, Sven, Amaro, Rommie E., Kukulski, Wanda, Collinson, Lucy, & Cell, 187(3), 563–584. https://doi.org/10.1016/j.cell.2024.01.005
(2024). Integrating cellular electron microscopy with multimodal data to explore biology across space and time [Journal-article].
Lamm, Lorenz, Zufferey, Simon, Righetto, Ricardo D, Wietrzynski, Wojciech, Yamauchi, Kevin A, Burt, Alister, Liu, Ye, Zhang, Hanyi, Martinez-Sanchez, Antonio, Ziegler, Sebastian, Isensee, Fabian, Schnabel, Julia A, bioRxiv (05.01.2024). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.05.574336
, & Peng, Tingying. (2024). MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. In
Lamm, Lorenz, Zufferey, Simon, Righetto, Ricardo D, Wietrzynski, Wojciech, Yamauchi, Kevin A, Burt, Alister, Liu, Ye, Zhang, Hanyi, Martinez-Sanchez, Antonio, Ziegler, Sebastian, Isensee, Fabian, Schnabel, Julia A, bioRxiv (05.01.2024). Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.01.05.574336
, & Peng, Tingying. (2024). MemBrain v2: an end-to-end tool for the analysis of membranes in cryo-electron tomography. In
Chung, Kin Pan, Frieboese, Daniel, Waltz, Florent, Plant Direct, 8(6). https://doi.org/10.1002/pld3.614
, & Bock, Ralph. (2024). Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas.
Chung, Kin Pan, Frieboese, Daniel, Waltz, Florent, Plant Direct, 8(6). https://doi.org/10.1002/pld3.614
, & Bock, Ralph. (2024). Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas.
Yamauchi, Kevin A, Lamm, Lorenz, Gaifas, Lorenzo, Righetto, Ricardo D, Litvinov, Daniil, bioRxiv (02.06.2024). https://doi.org/10.1101/2024.05.30.596601
, & Harrington, Kyle. (2024). Surforama: interactive exploration of volumetric data by leveraging 3D surfaces. In
Yamauchi, Kevin A, Lamm, Lorenz, Gaifas, Lorenzo, Righetto, Ricardo D, Litvinov, Daniil, bioRxiv (02.06.2024). https://doi.org/10.1101/2024.05.30.596601
, & Harrington, Kyle. (2024). Surforama: interactive exploration of volumetric data by leveraging 3D surfaces. In
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Tadayoshi Ota, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wojciech Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D, Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2023). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation. In bioRxiv (26.10.2023). Cold Spring Harbor. https://doi.org/10.1101/2023.10.25.564039
Shimakawa, Ginga, Demulder, Manon, Flori, Serena, Kawamoto, Akihiro, Tsuji, Yoshinori, Nawaly, Hermanus, Tanaka, Atsuko, Tohda, Rei, Tadayoshi Ota, Matsui, Hiroaki, Morishima, Natsumi, Okubo, Ryosuke, Wojciech Wietrzynski, Wojciech, Lamm, Lorenz, Righetto, Ricardo D, Uwizeye, Clarisse, Gallet, Benoit, Jouneau, Pierre-Henri, Gerle, Christoph, et al. (2023). Diatom pyrenoids are encased in a protein shell that enables efficient CO2 fixation. In bioRxiv (26.10.2023). Cold Spring Harbor. https://doi.org/10.1101/2023.10.25.564039
Bregy, Irina, Radecke, Julika, Noga, Akira, van den Hoek, Hugo, Kern, Mara, Haenni, Beat, Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex. bioRxiv. https://doi.org/10.1101/2023.03.06.531305
, Siebert, C. Alistair, Ishikawa, Takashi, Zuber, Benoît, & Ochsenreiter, Torsten. (2023).
Bregy, Irina, Radecke, Julika, Noga, Akira, van den Hoek, Hugo, Kern, Mara, Haenni, Beat, Cryo-electron tomography sheds light on the elastic nature 2 of the Trypanosoma brucei tripartite attachment complex. bioRxiv. https://doi.org/10.1101/2023.03.06.531305
, Siebert, C. Alistair, Ishikawa, Takashi, Zuber, Benoît, & Ochsenreiter, Torsten. (2023).
Goodenough, Ursula, & The Chlamydomonas Sourcebook: Vol. 1: Introduction to Chlamydomonas and Its Laboratory Use (3rd ed., pp. 17–40). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-822457-1.00015-7
(2023). Cell Ultrastructure. In Goodenough, Ursula (Ed.),
Goodenough, Ursula, & The Chlamydomonas Sourcebook: Vol. 1: Introduction to Chlamydomonas and Its Laboratory Use (3rd ed., pp. 17–40). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-822457-1.00015-7
(2023). Cell Ultrastructure. In Goodenough, Ursula (Ed.),
Khavnekar, Sagar, Kelley, Ron, Waltz, Florent, Wietrzynski, Wojciech, Zhang, Xianjun, Obr, Martin, Tagiltsev, Grigory, Beck, Florian, Wan, William, Briggs, John, Microscopy and Microanalysis, 29(29 Suppl 1), 961–963. https://doi.org/10.1093/micmic/ozad067.480
, Plitzko, Juergen, & Kotecha, Abhay. (2023). Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET.
Khavnekar, Sagar, Kelley, Ron, Waltz, Florent, Wietrzynski, Wojciech, Zhang, Xianjun, Obr, Martin, Tagiltsev, Grigory, Beck, Florian, Wan, William, Briggs, John, Microscopy and Microanalysis, 29(29 Suppl 1), 961–963. https://doi.org/10.1093/micmic/ozad067.480
, Plitzko, Juergen, & Kotecha, Abhay. (2023). Towards the Visual Proteomics of C. reinhardtii using High-throughput Collaborative in situ Cryo-ET.
Kulaj, Konxhe, Harger, Alexandra, Bauer, Michaela, Caliskan, Özüm S., Gupta, Tilak Kumar, Chiang, Dapi Menglin, Milbank, Edward, Reber, Josefine, Karlas, Angelos, Kotzbeck, Petra, Sailer, David N., Volta, Francesco, Lutter, Dominik, Prakash, Sneha, Merl-Pham, Juliane, Ntziachristos, Vasilis, Hauner, Hans, Pfaffl, Michael W., Tschöp, Matthias H., et al. (2023). Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nature Communications, 14(1), 709. https://doi.org/10.1038/s41467-023-36148-1
Kulaj, Konxhe, Harger, Alexandra, Bauer, Michaela, Caliskan, Özüm S., Gupta, Tilak Kumar, Chiang, Dapi Menglin, Milbank, Edward, Reber, Josefine, Karlas, Angelos, Kotzbeck, Petra, Sailer, David N., Volta, Francesco, Lutter, Dominik, Prakash, Sneha, Merl-Pham, Juliane, Ntziachristos, Vasilis, Hauner, Hans, Pfaffl, Michael W., Tschöp, Matthias H., et al. (2023). Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nature Communications, 14(1), 709. https://doi.org/10.1038/s41467-023-36148-1
Righetto, Ricardo D., & Chimia, 77(5), 348. https://doi.org/10.2533/chimia.2023.348
(2023). Visualizing a Carbon-Fixing Nanowire Inside Bacteria.
Righetto, Ricardo D., & Chimia, 77(5), 348. https://doi.org/10.2533/chimia.2023.348
(2023). Visualizing a Carbon-Fixing Nanowire Inside Bacteria.
Wietrzynski, Wojciech, & The Chlamydomonas Sourcebook: Vol. 2: Organellar and Metabolic Processes (3rd ed., pp. 763–785). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-821430-5.00018-3
(2023). Supramolecular Organization of Chloroplast Membranes. In Grossman, Arthur R.; Wollman, Francis-André (Ed.),
Wietrzynski, Wojciech, & The Chlamydomonas Sourcebook: Vol. 2: Organellar and Metabolic Processes (3rd ed., pp. 763–785). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-821430-5.00018-3
(2023). Supramolecular Organization of Chloroplast Membranes. In Grossman, Arthur R.; Wollman, Francis-André (Ed.),
Dietrich, Helge M., Righetto, Ricardo D., Kumar, Anuj, Wietrzynski, Wojciech, Trischler, Raphael, Schuller, Sandra K., Wagner, Jonathan, Schwarz, Fabian M., Nature, 607(7920), 823–830. https://doi.org/10.1038/s41586-022-04971-z
, Müller, Volker, & Schuller, Jan M. (2022). Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation.
Dietrich, Helge M., Righetto, Ricardo D., Kumar, Anuj, Wietrzynski, Wojciech, Trischler, Raphael, Schuller, Sandra K., Wagner, Jonathan, Schwarz, Fabian M., Nature, 607(7920), 823–830. https://doi.org/10.1038/s41586-022-04971-z
, Müller, Volker, & Schuller, Jan M. (2022). Membrane-anchored HDCR nanowires drive hydrogen-powered CO2 fixation.
Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Pöge, Matthias, Martinez-Sanchez, Antonio, Peng, Tingying, & Computer Methods and Programs in Biomedicine, 224, 106990. https://doi.org/10.1016/j.cmpb.2022.106990
(2022). MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms.
Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Pöge, Matthias, Martinez-Sanchez, Antonio, Peng, Tingying, & Computer Methods and Programs in Biomedicine, 224, 106990. https://doi.org/10.1016/j.cmpb.2022.106990
(2022). MemBrain: a deep learning-aided pipeline for detection of membrane proteins in cryo-electron tomograms.
Righetto, Ricardo D., & Nature Microbiology, 7(3), 363–364. https://doi.org/10.1038/s41564-022-01078-z
(2022). Expanding the arsenal of bacterial spearguns.
Righetto, Ricardo D., & Nature Microbiology, 7(3), 363–364. https://doi.org/10.1038/s41564-022-01078-z
(2022). Expanding the arsenal of bacterial spearguns.
Righetto, Ricardo D, & Nature Microbiology, 7(March 2022), 1. https://doi.org/10.1038/s41564-022-01102-2
(2022). Publisher Correction: Expanding the arsenal of bacterial spearguns.
Righetto, Ricardo D, & Nature Microbiology, 7(March 2022), 1. https://doi.org/10.1038/s41564-022-01102-2
(2022). Publisher Correction: Expanding the arsenal of bacterial spearguns.
van den Hoek, Hugo, Klena, Nikolai, Jordan, Mareike A., Alvarez Viar, Gonzalo, Righetto, Ricardo D., Schaffer, Miroslava, Erdmann, Philipp S., Wan, William, Geimer, Stefan, Plitzko, Jürgen M., Baumeister, Wolfgang, Pigino, Gaia, Hamel, Virginie, Guichard, Paul, & Science, 377(6605), 543–548. https://doi.org/10.1126/science.abm6704
(2022). In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains.
van den Hoek, Hugo, Klena, Nikolai, Jordan, Mareike A., Alvarez Viar, Gonzalo, Righetto, Ricardo D., Schaffer, Miroslava, Erdmann, Philipp S., Wan, William, Geimer, Stefan, Plitzko, Jürgen M., Baumeister, Wolfgang, Pigino, Gaia, Hamel, Virginie, Guichard, Paul, & Science, 377(6605), 543–548. https://doi.org/10.1126/science.abm6704
(2022). In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains.
Gupta, Tilak Kumar, Klumpe, Sven, Gries, Karin, Heinz, Steffen, Wietrzynski, Wojciech, Ohnishi, Norikazu, Niemeyer, Justus, Spaniol, Benjamin, Schaffer, Miroslava, Rast, Anna, Ostermeier, Matthias, Strauss, Mike, Plitzko, Jürgen M., Baumeister, Wolfgang, Rudack, Till, Sakamoto, Wataru, Nickelsen, Jörg, Schuller, Jan M., Schroda, Michael, & Cell, 184(14), 3643–3659. https://doi.org/10.1016/j.cell.2021.05.011
(2021). Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity.
Gupta, Tilak Kumar, Klumpe, Sven, Gries, Karin, Heinz, Steffen, Wietrzynski, Wojciech, Ohnishi, Norikazu, Niemeyer, Justus, Spaniol, Benjamin, Schaffer, Miroslava, Rast, Anna, Ostermeier, Matthias, Strauss, Mike, Plitzko, Jürgen M., Baumeister, Wolfgang, Rudack, Till, Sakamoto, Wataru, Nickelsen, Jörg, Schuller, Jan M., Schroda, Michael, & Cell, 184(14), 3643–3659. https://doi.org/10.1016/j.cell.2021.05.011
(2021). Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity.
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Nature Methods, 18(11), 1386–1394. https://doi.org/10.1038/s41592-021-01275-4
, & Kervrann, Charles. (2021). Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms.
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D., Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Nature Methods, 18(11), 1386–1394. https://doi.org/10.1038/s41592-021-01275-4
, & Kervrann, Charles. (2021). Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms.
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Nature Methods, 19 (129), 1178.
, & Kervrann, Charles. (2021). Author Correction: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms.
Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Nature Methods, 19 (129), 1178.
, & Kervrann, Charles. (2021). Author Correction: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms.
Waltz, Florent, Salinas-Giegé, Thalia, Englmeier, Robert, Meichel, Herrade, Soufari, Heddy, Kuhn, Lauriane, Pfeffer, Stefan, Förster, Friedrich, Nature Communications, 12(1), 7176. https://doi.org/10.1038/s41467-021-27200-z
, Giegé, Philippe, Drouard, Laurence, & Hashem, Yaser. (2021). How to build a ribosome from RNA fragments in Chlamydomonas mitochondria.
Waltz, Florent, Salinas-Giegé, Thalia, Englmeier, Robert, Meichel, Herrade, Soufari, Heddy, Kuhn, Lauriane, Pfeffer, Stefan, Förster, Friedrich, Nature Communications, 12(1), 7176. https://doi.org/10.1038/s41467-021-27200-z
, Giegé, Philippe, Drouard, Laurence, & Hashem, Yaser. (2021). How to build a ribosome from RNA fragments in Chlamydomonas mitochondria.
Wietrzynski, Wojciech, & Nature Plants. Scientific Reports, 7(4), 380–381. https://doi.org/10.1038/s41477-021-00900-6
(2021). Chlorophyll biogenesis sees the light.
Wietrzynski, Wojciech, & Nature Plants. Scientific Reports, 7(4), 380–381. https://doi.org/10.1038/s41477-021-00900-6
(2021). Chlorophyll biogenesis sees the light.
Zabret, Jure, Bohn, Stefan, Schuller, Sandra K., Arnolds, Oliver, Möller, Madeline, Meier-Credo, Jakob, Liauw, Pasqual, Chan, Aaron, Tajkhorshid, Emad, Langer, Julian D., Stoll, Raphael, Krieger-Liszkay, Anja, Nature Plants. Scientific Reports, 7(4), 524–538. https://doi.org/10.1038/s41477-021-00895-0
, Rudack, Till, Schuller, Jan M., & Nowaczyk, Marc M. (2021). Structural insights into photosystem II assembly.
Zabret, Jure, Bohn, Stefan, Schuller, Sandra K., Arnolds, Oliver, Möller, Madeline, Meier-Credo, Jakob, Liauw, Pasqual, Chan, Aaron, Tajkhorshid, Emad, Langer, Julian D., Stoll, Raphael, Krieger-Liszkay, Anja, Nature Plants. Scientific Reports, 7(4), 524–538. https://doi.org/10.1038/s41477-021-00895-0
, Rudack, Till, Schuller, Jan M., & Nowaczyk, Marc M. (2021). Structural insights into photosystem II assembly.
Albert, Sahradha, Wietrzynski, Wojciech, Lee, Chia-Wei, Schaffer, Miroslava, Beck, Florian, Schuller, Jan M., Salomé, Patrice A., Plitzko, Jürgen M., Baumeister, Wolfgang, & Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1069–1080. https://doi.org/10.1073/pnas.1905641117
(2020). Direct visualization of degradation microcompartments at the ER membrane.
Albert, Sahradha, Wietrzynski, Wojciech, Lee, Chia-Wei, Schaffer, Miroslava, Beck, Florian, Schuller, Jan M., Salomé, Patrice A., Plitzko, Jürgen M., Baumeister, Wolfgang, & Proceedings of the National Academy of Sciences of the United States of America, 117(2), 1069–1080. https://doi.org/10.1073/pnas.1905641117
(2020). Direct visualization of degradation microcompartments at the ER membrane.
He, Shan, Chou, Hui-Ting, Matthies, Doreen, Wunder, Tobias, Meyer, Moritz T., Atkinson, Nicky, Martinez-Sanchez, Antonio, Jeffrey, Philip D., Port, Sarah A., Patena, Weronika, He, Guanhua, Chen, Vivian K., Hughson, Frederick M., McCormick, Alistair J., Müller-Cajar, Oliver, Nature Plants. Scientific Reports, 6(12), 1480–1490. https://doi.org/10.1038/s41477-020-00811-y
, Yu, Zhiheng, & Jonikas, Martin C. (2020). The structural basis of Rubisco phase separation in the pyrenoid.
He, Shan, Chou, Hui-Ting, Matthies, Doreen, Wunder, Tobias, Meyer, Moritz T., Atkinson, Nicky, Martinez-Sanchez, Antonio, Jeffrey, Philip D., Port, Sarah A., Patena, Weronika, He, Guanhua, Chen, Vivian K., Hughson, Frederick M., McCormick, Alistair J., Müller-Cajar, Oliver, Nature Plants. Scientific Reports, 6(12), 1480–1490. https://doi.org/10.1038/s41477-020-00811-y
, Yu, Zhiheng, & Jonikas, Martin C. (2020). The structural basis of Rubisco phase separation in the pyrenoid.
Klena, Nikolai, Le Guennec, Maeva, Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Geimer, Stefan, Aeschlimann, Gabriel, Kovacik, Lubomir, Sadian, Yashar, Goldie, Kenneth N., Stahlberg, Henning, The EMBO Journal, 39(22), e106246. https://doi.org/10.15252/embj.2020106246
, Hamel, Virginie, & Guichard, Paul. (2020). Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography.
Klena, Nikolai, Le Guennec, Maeva, Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Geimer, Stefan, Aeschlimann, Gabriel, Kovacik, Lubomir, Sadian, Yashar, Goldie, Kenneth N., Stahlberg, Henning, The EMBO Journal, 39(22), e106246. https://doi.org/10.15252/embj.2020106246
, Hamel, Virginie, & Guichard, Paul. (2020). Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography.
Le Guennec, Maeva, Klena, Nikolai, Gambarotto, Davide, Laporte, Marine H., Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Kovacik, Lubomir, Borgers, Susanne, Goldie, Kenneth N., Stahlberg, Henning, Bornens, Michel, Azimzadeh, Juliette, Science Advances, 6(7), eaaz4137. https://doi.org/10.1126/sciadv.aaz4137
, Hamel, Virginie, & Guichard, Paul. (2020). A helical inner scaffold provides a structural basis for centriole cohesion.
Le Guennec, Maeva, Klena, Nikolai, Gambarotto, Davide, Laporte, Marine H., Tassin, Anne-Marie, van den Hoek, Hugo, Erdmann, Philipp S., Schaffer, Miroslava, Kovacik, Lubomir, Borgers, Susanne, Goldie, Kenneth N., Stahlberg, Henning, Bornens, Michel, Azimzadeh, Juliette, Science Advances, 6(7), eaaz4137. https://doi.org/10.1126/sciadv.aaz4137
, Hamel, Virginie, & Guichard, Paul. (2020). A helical inner scaffold provides a structural basis for centriole cohesion.
Theis, Jasmine, Niemeyer, Justus, Schmollinger, Stefan, Ries, Fabian, Rütgers, Mark, Gupta, Tilak Kumar, Sommer, Frederik, Muranaka, Ligia Segatto, Venn, Benedikt, Schulz-Raffelt, Miriam, Willmund, Felix, Plant, Cell and Environment, 43(5), 1212–1229. https://doi.org/10.1111/pce.13732
, & Schroda, Michael. (2020). VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression.
Theis, Jasmine, Niemeyer, Justus, Schmollinger, Stefan, Ries, Fabian, Rütgers, Mark, Gupta, Tilak Kumar, Sommer, Frederik, Muranaka, Ligia Segatto, Venn, Benedikt, Schulz-Raffelt, Miriam, Willmund, Felix, Plant, Cell and Environment, 43(5), 1212–1229. https://doi.org/10.1111/pce.13732
, & Schroda, Michael. (2020). VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression.
Wietrzynski, Wojciech, Schaffer, Miroslava, Tegunov, Dimitry, Albert, Sahradha, Kanazawa, Atsuko, Plitzko, Jürgen M., Baumeister, Wolfgang, & eLife, 9, e53740. https://doi.org/10.7554/elife.53740
(2020). Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision.
Wietrzynski, Wojciech, Schaffer, Miroslava, Tegunov, Dimitry, Albert, Sahradha, Kanazawa, Atsuko, Plitzko, Jürgen M., Baumeister, Wolfgang, & eLife, 9, e53740. https://doi.org/10.7554/elife.53740
(2020). Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision.
Chicano, Andrea, Crosas, Eva, Otón, Joaquín, Melero, Roberto, The EMBO Journal, 38(7), e99769. https://doi.org/10.15252/embj.201899769
, & Daban, Joan-Ramon. (2019). Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure.
Chicano, Andrea, Crosas, Eva, Otón, Joaquín, Melero, Roberto, The EMBO Journal, 38(7), e99769. https://doi.org/10.15252/embj.201899769
, & Daban, Joan-Ramon. (2019). Frozen-hydrated chromatin from metaphase chromosomes has an interdigitated multilayer structure.
Craig, Evan W., Müller, David M., Bigge, Brae M., Schaffer, Miroslava, Molecular Biology of the Cell, 30(22), 2827–2837. https://doi.org/10.1091/mbc.e19-03-0141
, & Avasthi, Prachee. (2019). The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins.
Craig, Evan W., Müller, David M., Bigge, Brae M., Schaffer, Miroslava, Molecular Biology of the Cell, 30(22), 2827–2837. https://doi.org/10.1091/mbc.e19-03-0141
, & Avasthi, Prachee. (2019). The elusive actin cytoskeleton of a green alga expressing both conventional and divergent actins.
Rast, Anna, Schaffer, Miroslava, Albert, Sahradha, Wan, William, Pfeffer, Stefan, Beck, Florian, Plitzko, Jürgen M., Nickelsen, Jörg, & Nature Plants. Scientific Reports, 5(4), 436–446. https://doi.org/10.1038/s41477-019-0399-7
(2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane.
Rast, Anna, Schaffer, Miroslava, Albert, Sahradha, Wan, William, Pfeffer, Stefan, Beck, Florian, Plitzko, Jürgen M., Nickelsen, Jörg, & Nature Plants. Scientific Reports, 5(4), 436–446. https://doi.org/10.1038/s41477-019-0399-7
(2019). Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane.
Schaffer, Miroslava, Pfeffer, Stefan, Mahamid, Julia, Kleindiek, Stephan, Laugks, Tim, Albert, Sahradha, Nature Methods, 16(8), 757–762. https://doi.org/10.1038/s41592-019-0497-5
, Rummel, Andreas, Smith, Andrew J., Baumeister, Wolfgang, & Plitzko, Juergen M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue.
Schaffer, Miroslava, Pfeffer, Stefan, Mahamid, Julia, Kleindiek, Stephan, Laugks, Tim, Albert, Sahradha, Nature Methods, 16(8), 757–762. https://doi.org/10.1038/s41592-019-0497-5
, Rummel, Andreas, Smith, Andrew J., Baumeister, Wolfgang, & Plitzko, Juergen M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue.
Schuller, Jan M., Birrell, James A., Tanaka, Hideaki, Konuma, Tsuyoshi, Wulfhorst, Hannes, Cox, Nicholas, Schuller, Sandra K., Thiemann, Jacqueline, Lubitz, Wolfgang, Sétif, Pierre, Ikegami, Takahisa, Science, 363(6424), 257–260. https://doi.org/10.1126/science.aau3613
, Kurisu, Genji, & Nowaczyk, Marc M. (2019). Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer.
Schuller, Jan M., Birrell, James A., Tanaka, Hideaki, Konuma, Tsuyoshi, Wulfhorst, Hannes, Cox, Nicholas, Schuller, Sandra K., Thiemann, Jacqueline, Lubitz, Wolfgang, Sétif, Pierre, Ikegami, Takahisa, Science, 363(6424), 257–260. https://doi.org/10.1126/science.aau3613
, Kurisu, Genji, & Nowaczyk, Marc M. (2019). Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer.
Theis, Jasmine, Gupta, Tilak Kumar, Klingler, Johannes, Wan, William, Albert, Sahradha, Keller, Sandro, Scientific Reports, 9(1), 8725. https://doi.org/10.1038/s41598-019-44259-3
, & Schroda, Michael. (2019). VIPP1 rods engulf membranes containing phosphatidylinositol phosphates.
Theis, Jasmine, Gupta, Tilak Kumar, Klingler, Johannes, Wan, William, Albert, Sahradha, Keller, Sandro, Scientific Reports, 9(1), 8725. https://doi.org/10.1038/s41598-019-44259-3
, & Schroda, Michael. (2019). VIPP1 rods engulf membranes containing phosphatidylinositol phosphates.
Delarue, M., Brittingham, G. P., Pfeffer, S., Surovtsev, I. V., Pinglay, S., Kennedy, K. J., Schaffer, M., Gutierrez, J. I., Sang, D., Poterewicz, G., Chung, J. K., Plitzko, J. M., Groves, J. T., Jacobs-Wagner, C., Cell, 174(2), 338–349. https://doi.org/10.1016/j.cell.2018.05.042
, & Holt, L. J. (2018). mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding.
Delarue, M., Brittingham, G. P., Pfeffer, S., Surovtsev, I. V., Pinglay, S., Kennedy, K. J., Schaffer, M., Gutierrez, J. I., Sang, D., Poterewicz, G., Chung, J. K., Plitzko, J. M., Groves, J. T., Jacobs-Wagner, C., Cell, 174(2), 338–349. https://doi.org/10.1016/j.cell.2018.05.042
, & Holt, L. J. (2018). mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding.
Kovtun, Oleksiy, Leneva, Natalya, Bykov, Yury S., Ariotti, Nicholas, Teasdale, Rohan D., Schaffer, Miroslava, Nature, 561(7724), 561–564. https://doi.org/10.1038/s41586-018-0526-z
, Owen, David J., Briggs, John A. G., & Collins, Brett M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography.
Kovtun, Oleksiy, Leneva, Natalya, Bykov, Yury S., Ariotti, Nicholas, Teasdale, Rohan D., Schaffer, Miroslava, Nature, 561(7724), 561–564. https://doi.org/10.1038/s41586-018-0526-z
, Owen, David J., Briggs, John A. G., & Collins, Brett M. (2018). Structure of the membrane-assembled retromer coat determined by cryo-electron tomography.
Mosalaganti, Shyamal, Kosinski, Jan, Albert, Sahradha, Schaffer, Miroslava, Strenkert, Daniela, Salomé, Patrice A., Merchant, Sabeeha S., Plitzko, Jürgen M., Baumeister, Wolfgang, Nature Communications, 9(1), 2361. https://doi.org/10.1038/s41467-018-04739-y
, & Beck, Martin. (2018). In situ architecture of the algal nuclear pore complex.
Mosalaganti, Shyamal, Kosinski, Jan, Albert, Sahradha, Schaffer, Miroslava, Strenkert, Daniela, Salomé, Patrice A., Merchant, Sabeeha S., Plitzko, Jürgen M., Baumeister, Wolfgang, Nature Communications, 9(1), 2361. https://doi.org/10.1038/s41467-018-04739-y
, & Beck, Martin. (2018). In situ architecture of the algal nuclear pore complex.
Albanese, Pascal, Melero, Roberto, Scientific Reports, 7(1), 10067. https://doi.org/10.1038/s41598-017-10700-8
, Grinzato, Alessandro, Berto, Paola, Manfredi, Marcello, Chiodoni, Angelica, Vargas, Javier, Sorzano, Carlos Óscar Sánchez, Marengo, Emilio, Saracco, Guido, Zanotti, Giuseppe, Carazo, Jose-Maria, & Pagliano, Cristina. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap.
Albanese, Pascal, Melero, Roberto, Scientific Reports, 7(1), 10067. https://doi.org/10.1038/s41598-017-10700-8
, Grinzato, Alessandro, Berto, Paola, Manfredi, Marcello, Chiodoni, Angelica, Vargas, Javier, Sorzano, Carlos Óscar Sánchez, Marengo, Emilio, Saracco, Guido, Zanotti, Giuseppe, Carazo, Jose-Maria, & Pagliano, Cristina. (2017). Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap.
Albert, Sahradha, Schaffer, Miroslava, Beck, Florian, Mosalaganti, Shyamal, Asano, Shoh, Thomas, Henry F., Plitzko, Jürgen M., Beck, Martin, Baumeister, Wolfgang, & Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13726–13731. https://doi.org/10.1073/pnas.1716305114
(2017). Proteasomes tether to two distinct sites at the nuclear pore complex.
Albert, Sahradha, Schaffer, Miroslava, Beck, Florian, Mosalaganti, Shyamal, Asano, Shoh, Thomas, Henry F., Plitzko, Jürgen M., Beck, Martin, Baumeister, Wolfgang, & Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13726–13731. https://doi.org/10.1073/pnas.1716305114
(2017). Proteasomes tether to two distinct sites at the nuclear pore complex.
Bykov, Yury S., Schaffer, Miroslava, Dodonova, Svetlana O., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, eLife, 6, e32493. https://doi.org/10.7554/elife.32493
, & Briggs, John Ag. (2017). The structure of the COPI coat determined within the cell.
Bykov, Yury S., Schaffer, Miroslava, Dodonova, Svetlana O., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, eLife, 6, e32493. https://doi.org/10.7554/elife.32493
, & Briggs, John Ag. (2017). The structure of the COPI coat determined within the cell.
Freeman Rosenzweig, Elizabeth S., Xu, Bin, Kuhn Cuellar, Luis, Martinez-Sanchez, Antonio, Schaffer, Miroslava, Strauss, Mike, Cartwright, Heather N., Ronceray, Pierre, Plitzko, Jürgen M., Förster, Friedrich, Wingreen, Ned S., Cell, 171(1), 148–162. https://doi.org/10.1016/j.cell.2017.08.008
, Mackinder, Luke C. M., & Jonikas, Martin C. (2017). The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization.
Freeman Rosenzweig, Elizabeth S., Xu, Bin, Kuhn Cuellar, Luis, Martinez-Sanchez, Antonio, Schaffer, Miroslava, Strauss, Mike, Cartwright, Heather N., Ronceray, Pierre, Plitzko, Jürgen M., Förster, Friedrich, Wingreen, Ned S., Cell, 171(1), 148–162. https://doi.org/10.1016/j.cell.2017.08.008
, Mackinder, Luke C. M., & Jonikas, Martin C. (2017). The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization.
Pfeffer, Stefan, Dudek, Johanna, Schaffer, Miroslava, Ng, Bobby G., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, Zimmermann, Richard, Freeze, Hudson H., Nature Communications, 8, 14516. https://doi.org/10.1038/ncomms14516
, & Förster, Friedrich. (2017). Dissecting the molecular organization of the translocon-associated protein complex.
Pfeffer, Stefan, Dudek, Johanna, Schaffer, Miroslava, Ng, Bobby G., Albert, Sahradha, Plitzko, Jürgen M., Baumeister, Wolfgang, Zimmermann, Richard, Freeze, Hudson H., Nature Communications, 8, 14516. https://doi.org/10.1038/ncomms14516
, & Förster, Friedrich. (2017). Dissecting the molecular organization of the translocon-associated protein complex.
Schaffer, Miroslava, Mahamid, Julia, Journal of Structural Biology, 197(2), 73–82. https://doi.org/10.1016/j.jsb.2016.07.010
, Laugks, Tim, Baumeister, Wolfgang, & Plitzko, Jürgen M. (2017). Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins.
Schaffer, Miroslava, Mahamid, Julia, Journal of Structural Biology, 197(2), 73–82. https://doi.org/10.1016/j.jsb.2016.07.010
, Laugks, Tim, Baumeister, Wolfgang, & Plitzko, Jürgen M. (2017). Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins.
Asano, Shoh, Journal of Molecular Biology, 428(2 Pt A), 332–343. https://doi.org/10.1016/j.jmb.2015.09.030
, & Baumeister, Wolfgang. (2016). In situ cryo-electron tomography: a post-reductionist approach to structural biology.
Asano, Shoh, Journal of Molecular Biology, 428(2 Pt A), 332–343. https://doi.org/10.1016/j.jmb.2015.09.030
, & Baumeister, Wolfgang. (2016). In situ cryo-electron tomography: a post-reductionist approach to structural biology.
Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11264–11269. https://doi.org/10.1073/pnas.1515337112
, Schaffer, Miroslava, Albert, Sahradha, Asano, Shoh, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). In situ structural analysis of Golgi intracisternal protein arrays.
Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11264–11269. https://doi.org/10.1073/pnas.1515337112
, Schaffer, Miroslava, Albert, Sahradha, Asano, Shoh, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). In situ structural analysis of Golgi intracisternal protein arrays.
eLife, September, 1. https://doi.org/10.7554/elife.11383
, Schaffer, Miroslava, Cueller Kuhn, Luis, Villa, Elizabeth, Plitzko, Jürgen M, & Baumeister, Wolfgang. (2015). Correction: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography.
eLife, September, 1. https://doi.org/10.7554/elife.11383
, Schaffer, Miroslava, Cueller Kuhn, Luis, Villa, Elizabeth, Plitzko, Jürgen M, & Baumeister, Wolfgang. (2015). Correction: Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography.
eLife, 4, e04889. https://doi.org/10.7554/elife.04889
, Schaffer, Miroslava, Kuhn Cuellar, Luis, Villa, Elizabeth, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography.
eLife, 4, e04889. https://doi.org/10.7554/elife.04889
, Schaffer, Miroslava, Kuhn Cuellar, Luis, Villa, Elizabeth, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography.
Schaffer, Miroslava, Bio-protocol, 5(17), e1575. https://doi.org/10.21769/bioprotoc.1575
, Laugks, Tim, Mahamid, Julia, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography.
Schaffer, Miroslava, Bio-protocol, 5(17), e1575. https://doi.org/10.21769/bioprotoc.1575
, Laugks, Tim, Mahamid, Julia, Plitzko, Jürgen M., & Baumeister, Wolfgang. (2015). Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography.
Bhogaraju, Sagar, Weber, Kristina, BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 36(5), 463–467. https://doi.org/10.1002/bies.201400007
, Lechtreck, Karl-Ferdinand, & Lorentzen, Esben. (2014). Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?
Bhogaraju, Sagar, Weber, Kristina, BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 36(5), 463–467. https://doi.org/10.1002/bies.201400007
, Lechtreck, Karl-Ferdinand, & Lorentzen, Esben. (2014). Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?
Bhogaraju, Sagar, Cilia, 2(1), 10. https://doi.org/10.1186/2046-2530-2-10
, & Lorentzen, Esben. (2013). Intraflagellar transport complex structure and cargo interactions.
Bhogaraju, Sagar, Cilia, 2(1), 10. https://doi.org/10.1186/2046-2530-2-10
, & Lorentzen, Esben. (2013). Intraflagellar transport complex structure and cargo interactions.
Shih, Sheng Min, eLife, 2, e00744. https://doi.org/10.7554/elife.00744
, Kocabas, Fatih, Bilyard, Thomas, Gennerich, Arne, Marshall, Wallace F., & Yildiz, Ahmet. (2013). Intraflagellar transport drives flagellar surface motility.
Shih, Sheng Min, eLife, 2, e00744. https://doi.org/10.7554/elife.00744
, Kocabas, Fatih, Bilyard, Thomas, Gennerich, Arne, Marshall, Wallace F., & Yildiz, Ahmet. (2013). Intraflagellar transport drives flagellar surface motility.
Journal of Cell Biology, 199(1), 151–167. https://doi.org/10.1083/jcb.201206068
, Ishikawa, Hiroaki, Wemmer, Kimberly A., Geimer, Stefan, Wakabayashi, Ken-ichi, Hirono, Masafumi, Craige, Branch, Pazour, Gregory J., Witman, George B., Kamiya, Ritsu, & Marshall, Wallace F. (2012). The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function.
Journal of Cell Biology, 199(1), 151–167. https://doi.org/10.1083/jcb.201206068
, Ishikawa, Hiroaki, Wemmer, Kimberly A., Geimer, Stefan, Wakabayashi, Ken-ichi, Hirono, Masafumi, Craige, Branch, Pazour, Gregory J., Witman, George B., Kamiya, Ritsu, & Marshall, Wallace F. (2012). The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function.
Mizuno, Naoko, Taschner, Michael, Journal of Molecular Biology, 422(2), 163–180. https://doi.org/10.1016/j.jmb.2012.05.040
, & Lorentzen, Esben. (2012). Structural studies of ciliary components.
Mizuno, Naoko, Taschner, Michael, Journal of Molecular Biology, 422(2), 163–180. https://doi.org/10.1016/j.jmb.2012.05.040
, & Lorentzen, Esben. (2012). Structural studies of ciliary components.
Rigort, Alexander, Villa, Elizabeth, Bäuerlein, Felix J. B., Methods in Cell Biology, 111, 259–281. https://doi.org/10.1016/b978-0-12-416026-2.00014-5
, & Plitzko, Jürgen M. (2012). Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining.
Rigort, Alexander, Villa, Elizabeth, Bäuerlein, Felix J. B., Methods in Cell Biology, 111, 259–281. https://doi.org/10.1016/b978-0-12-416026-2.00014-5
, & Plitzko, Jürgen M. (2012). Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining.
Cell Motility and the Cytoskeleton, 68(3), 188–203. https://doi.org/10.1002/cm.20504
, Ishikawa, Hiroaki, Feldman, Jessica L., Wilson, Christopher W., Chuang, Pao-Tien, Snedecor, June, Williams, Janice, Sun, Zhaoxia, & Marshall, Wallace F. (2011). A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow.
Cell Motility and the Cytoskeleton, 68(3), 188–203. https://doi.org/10.1002/cm.20504
, Ishikawa, Hiroaki, Feldman, Jessica L., Wilson, Christopher W., Chuang, Pao-Tien, Snedecor, June, Williams, Janice, Sun, Zhaoxia, & Marshall, Wallace F. (2011). A cell-based screen for inhibitors of flagella-driven motility in Chlamydomonas reveals a novel modulator of ciliary length and retrograde actin flow.
Methods in cell biology, 93, 157–177. https://doi.org/10.1016/s0091-679x(08)93009-0
, Lechtreck, Karl-Ferdinand, Sakai, Tsuyoshi, Ikebe, Mitsuo, Witman, George B., & Marshall, Wallace F. (2009). Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella.
Methods in cell biology, 93, 157–177. https://doi.org/10.1016/s0091-679x(08)93009-0
, Lechtreck, Karl-Ferdinand, Sakai, Tsuyoshi, Ikebe, Mitsuo, Witman, George B., & Marshall, Wallace F. (2009). Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella.
Journal of Cell Biology, 187(1), 81–89. https://doi.org/10.1083/jcb.200812084
, Ludington, William B., & Marshall, Wallace F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.
Journal of Cell Biology, 187(1), 81–89. https://doi.org/10.1083/jcb.200812084
, Ludington, William B., & Marshall, Wallace F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.