Publications
85 found
Show per page
Espinoza Miranda, Suyen Solange, Abbaszade, Gorkhmaz, Hess, Wolfgang R., Microbiology and Molecular Biology Reviews, Online ahead of print. https://doi.org/10.1128/mmbr.00138-24
, Saliba, Antoine-Emmanuel, Zaburdaev, Vasily, Chai, Liraz, Dreisewerd, Klaus, Grünberger, Alexander, Westendorf, Christian, Müller, Susann, & Mascher, Thorsten. (2025). Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges [Journal-article].
Espinoza Miranda, Suyen Solange, Abbaszade, Gorkhmaz, Hess, Wolfgang R., Microbiology and Molecular Biology Reviews, Online ahead of print. https://doi.org/10.1128/mmbr.00138-24
, Saliba, Antoine-Emmanuel, Zaburdaev, Vasily, Chai, Liraz, Dreisewerd, Klaus, Grünberger, Alexander, Westendorf, Christian, Müller, Susann, & Mascher, Thorsten. (2025). Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges [Journal-article].
Ohmura, Takuya, Skinner, Dominic J., Neuhaus, Konstantin, Choi, Gary P. T., Dunkel, Jörn., & Advanced Materials. https://doi.org/10.1002/adma.202314059
. (2024). In vivo Microrheology Reveals Local Elastic and Plastic Responses Inside Three‐dimensional Bacterial Biofilms [Journal-article].
Ohmura, Takuya, Skinner, Dominic J., Neuhaus, Konstantin, Choi, Gary P. T., Dunkel, Jörn., & Advanced Materials. https://doi.org/10.1002/adma.202314059
. (2024). In vivo Microrheology Reveals Local Elastic and Plastic Responses Inside Three‐dimensional Bacterial Biofilms [Journal-article].
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions.
Sollier, Julie, Basler, Marek, Broz, Petr, Dittrich, Petra S., Nature Microbiology, 9(1), 1–3. https://doi.org/10.1038/s41564-023-01566-w
, Egli, Adrian, Harms, Alexander, Hierlemann, Andreas, Hiller, Sebastian, King, Carolyn G., McKinney, John D., Moran-Gilad, Jacob, Neher, Richard A., Page, Malcolm G. P., Panke, Sven, Persat, Alexandre, Picotti, Paola, Rentsch, Katharina M., Rivera-Fuentes, Pablo, et al. (2024). Revitalizing antibiotic discovery and development through in vitro modelling of in-patient conditions.
Moscovitz, Sofia Zoe, Amador, Cristina I., Maccario, Lorrie, Herschend, Jakob, Kramer, Isabel-Sophie, Jeckel, Hannah, Cooper, Vaughn S., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.08.561388
, Neu, Thomas R., Burmølle, Mette, & Røder, Henriette L. (2023). Evolution of genotypic and phenotypic diversity in multispecies biofilms [Posted-content]. In
Moscovitz, Sofia Zoe, Amador, Cristina I., Maccario, Lorrie, Herschend, Jakob, Kramer, Isabel-Sophie, Jeckel, Hannah, Cooper, Vaughn S., bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.10.08.561388
, Neu, Thomas R., Burmølle, Mette, & Røder, Henriette L. (2023). Evolution of genotypic and phenotypic diversity in multispecies biofilms [Posted-content]. In
Lubrano, Paul, Schramm, Thorben, Lorenz, Elisabeth, Alvarado, Alejandra, Eigenmann, Seraina Carmen, Stadelmann, Amelie, Thavapalan, Sevvalli, Waffenschmidt, Nils, Glatter, Timo, Peter, Silke, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.22.546106
, & Link, Hannes. (2023). Purine nucleotide limitation undermines antibiotic action in clinical Escherichia coli [Posted-content]. In
Lubrano, Paul, Schramm, Thorben, Lorenz, Elisabeth, Alvarado, Alejandra, Eigenmann, Seraina Carmen, Stadelmann, Amelie, Thavapalan, Sevvalli, Waffenschmidt, Nils, Glatter, Timo, Peter, Silke, bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.06.22.546106
, & Link, Hannes. (2023). Purine nucleotide limitation undermines antibiotic action in clinical Escherichia coli [Posted-content]. In
Hallatschek, Oskar, Datta, Sujit S., Nature Reviews Physics, 1–13. https://doi.org/10.1038/s42254-023-00593-0
, Dunkel, Jörn, Elgeti, Jens, Waclaw, Bartek, & Wingreen, Ned S. (2023). Proliferating active matter.
Hallatschek, Oskar, Datta, Sujit S., Nature Reviews Physics, 1–13. https://doi.org/10.1038/s42254-023-00593-0
, Dunkel, Jörn, Elgeti, Jens, Waclaw, Bartek, & Wingreen, Ned S. (2023). Proliferating active matter.
Jeckel, H., Nosho, K., Neuhaus, K., Hastewell, A. D., Skinner, D. J., Saha, D., Netter, N., Paczia, N., Dunkel, J., & Drescher, K. (2023). Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nature Microbiology. https://doi.org/10.1038/s41564-023-01518-4
Jeckel, H., Nosho, K., Neuhaus, K., Hastewell, A. D., Skinner, D. J., Saha, D., Netter, N., Paczia, N., Dunkel, J., & Drescher, K. (2023). Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nature Microbiology. https://doi.org/10.1038/s41564-023-01518-4
Jelli, Eric, Ohmura, Takuya, Netter, Niklas, Abt, Martin, Jiménez-Siebert, Eva, Neuhaus, Konstantin, Rode, Daniel K. H., Nadell, Carey D., & Molecular Microbiology, 119(6), 659–676. https://doi.org/10.1111/mmi.15064
. (2023). Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.
Jelli, Eric, Ohmura, Takuya, Netter, Niklas, Abt, Martin, Jiménez-Siebert, Eva, Neuhaus, Konstantin, Rode, Daniel K. H., Nadell, Carey D., & Molecular Microbiology, 119(6), 659–676. https://doi.org/10.1111/mmi.15064
. (2023). Single-cell segmentation in bacterial biofilms with an optimized deep learning method enables tracking of cell lineages and measurements of growth rates.
Manner, Christina, Dias Teixeira, Raphael, Saha, Dibya, Kaczmarczyk, Andreas, Zemp, Raphaela, Wyss, Fabian, Jaeger, Tina, Laventie, Benoit-Joseph, Boyer, Sebastien, Malone, Jacob G., Qvortrup, Katrine, Andersen, Jens Bo, Givskov, Michael, Tolker-Nielsen, Tim, Hiller, Sebastian, Nature Microbiology, 8(8), 1520–1533. https://doi.org/10.1038/s41564-023-01403-0
, & Jenal, Urs. (2023). A genetic switch controls Pseudomonas aeruginosa surface colonization.
Manner, Christina, Dias Teixeira, Raphael, Saha, Dibya, Kaczmarczyk, Andreas, Zemp, Raphaela, Wyss, Fabian, Jaeger, Tina, Laventie, Benoit-Joseph, Boyer, Sebastien, Malone, Jacob G., Qvortrup, Katrine, Andersen, Jens Bo, Givskov, Michael, Tolker-Nielsen, Tim, Hiller, Sebastian, Nature Microbiology, 8(8), 1520–1533. https://doi.org/10.1038/s41564-023-01403-0
, & Jenal, Urs. (2023). A genetic switch controls Pseudomonas aeruginosa surface colonization.
Skinner, Dominic J., Jeckel, Hannah, Martin, Adam C., Science Advances, 9(36), eadg1261. https://doi.org/10.1126/sciadv.adg1261
, & Dunkel, Jörn. (2023). Topological packing statistics of living and nonliving matter.
Skinner, Dominic J., Jeckel, Hannah, Martin, Adam C., Science Advances, 9(36), eadg1261. https://doi.org/10.1126/sciadv.adg1261
, & Dunkel, Jörn. (2023). Topological packing statistics of living and nonliving matter.
Vidakovic, Lucia, Mikhaleva, Sofya, Jeckel, Hannah, Nisnevich, Valerya, Strenger, Kerstin, Neuhaus, Konstantin, Raveendran, Keerthana, Ben-Moshe, Noa Bossel, Aznaourova, Marina, Nosho, Kazuki, Drescher, Antje, Schmeck, Bernd, Schulte, Leon N., Persat, Alexandre, Avraham, Roi, & Cell, 186(12), 2690–2704. https://doi.org/10.1016/j.cell.2023.05.008
. (2023). Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae.
Vidakovic, Lucia, Mikhaleva, Sofya, Jeckel, Hannah, Nisnevich, Valerya, Strenger, Kerstin, Neuhaus, Konstantin, Raveendran, Keerthana, Ben-Moshe, Noa Bossel, Aznaourova, Marina, Nosho, Kazuki, Drescher, Antje, Schmeck, Bernd, Schulte, Leon N., Persat, Alexandre, Avraham, Roi, & Cell, 186(12), 2690–2704. https://doi.org/10.1016/j.cell.2023.05.008
. (2023). Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae.
Jeckel, Hannah, Díaz-Pascual, Francisco, Skinner, Dominic J., Song, Boya, Jiménez-Siebert, Eva, Strenger, Kerstin, Jelli, Eric, Vaidya, Sanika, Dunkel, Jörn, & PLoS Biology, 20(10), e3001846. https://doi.org/10.1371/journal.pbio.3001846
. (2022). Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species.
Jeckel, Hannah, Díaz-Pascual, Francisco, Skinner, Dominic J., Song, Boya, Jiménez-Siebert, Eva, Strenger, Kerstin, Jelli, Eric, Vaidya, Sanika, Dunkel, Jörn, & PLoS Biology, 20(10), e3001846. https://doi.org/10.1371/journal.pbio.3001846
. (2022). Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species.
Ren, Zhi, Jeckel, Hannah, Simon-Soro, Aurea, Xiang, Zhenting, Liu, Yuan, Cavalcanti, Indira M., Xiao, Jin, Tin, Nyi-Nyi, Hara, Anderson, Proceedings of the National Academy of Sciences of the United States of America, 119(41), e2209699119. https://doi.org/10.1073/pnas.2209699119
, & Koo, Hyun. (2022). Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions.
Ren, Zhi, Jeckel, Hannah, Simon-Soro, Aurea, Xiang, Zhenting, Liu, Yuan, Cavalcanti, Indira M., Xiao, Jin, Tin, Nyi-Nyi, Hara, Anderson, Proceedings of the National Academy of Sciences of the United States of America, 119(41), e2209699119. https://doi.org/10.1073/pnas.2209699119
, & Koo, Hyun. (2022). Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions.
Skinner, D.J., Jeckel, H., Martin, A.C., arXiv. https://doi.org/10.48550/arXiv.2209.00703
, & Dunkel, J. (2022). Topological packing statistics distinguish living and non-living matter. In
Skinner, D.J., Jeckel, H., Martin, A.C., arXiv. https://doi.org/10.48550/arXiv.2209.00703
, & Dunkel, J. (2022). Topological packing statistics distinguish living and non-living matter. In
Teschler, Jennifer K., Jiménez-Siebert, Eva, Jeckel, Hannah, Singh, Praveen K., Park, Jin Hwan, Pukatzki, Stefan, Nadell, Carey D., mBio, 13(4), e0188522. https://doi.org/10.1128/mbio.01885-22
, & Yildiz, Fitnat H. (2022). VxrB Influences Antagonism within Biofilms by Controlling Competition through Extracellular Matrix Production and Type 6 Secretion.
Teschler, Jennifer K., Jiménez-Siebert, Eva, Jeckel, Hannah, Singh, Praveen K., Park, Jin Hwan, Pukatzki, Stefan, Nadell, Carey D., mBio, 13(4), e0188522. https://doi.org/10.1128/mbio.01885-22
, & Yildiz, Fitnat H. (2022). VxrB Influences Antagonism within Biofilms by Controlling Competition through Extracellular Matrix Production and Type 6 Secretion.
Teschler, Jennifer K., Nadell, Carey D., Annual Reviews of Microbiology, 76, 503–532. https://doi.org/10.1146/annurev-micro-111021-053553
, & Yildiz, Fitnat H. (2022). Mechanisms underlying Vibrio cholerae biofilm formation and dispersion.
Teschler, Jennifer K., Nadell, Carey D., Annual Reviews of Microbiology, 76, 503–532. https://doi.org/10.1146/annurev-micro-111021-053553
, & Yildiz, Fitnat H. (2022). Mechanisms underlying Vibrio cholerae biofilm formation and dispersion.
Goes, A., Vidakovic, L., Drescher, K., & Fuhrmann, G. (2021). Interaction of myxobacteria-derived outer membrane vesicles with biofilms: Antiadhesive and antibacterial effects. Nanoscale, 13(34), 14287–14296. https://doi.org/10.1039/d1nr02583j
Goes, A., Vidakovic, L., Drescher, K., & Fuhrmann, G. (2021). Interaction of myxobacteria-derived outer membrane vesicles with biofilms: Antiadhesive and antibacterial effects. Nanoscale, 13(34), 14287–14296. https://doi.org/10.1039/d1nr02583j
Jeckel, Hannah, Díaz-Pascual, Francisco, Skinner, Dominic J., Song, Boya, Jiménez-Siebert, Eva, Jelli, Eric, Vaidya, Sanika, Dunkel, Jörn, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.08.06.455416
. (2021). Multispecies phase diagram of biofilm architectures reveals biophysical principles of biofilm development [Posted-content]. In
Jeckel, Hannah, Díaz-Pascual, Francisco, Skinner, Dominic J., Song, Boya, Jiménez-Siebert, Eva, Jelli, Eric, Vaidya, Sanika, Dunkel, Jörn, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.08.06.455416
. (2021). Multispecies phase diagram of biofilm architectures reveals biophysical principles of biofilm development [Posted-content]. In
Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., Bayer, M., Rode, D. K. H., Vidakovic, L., Díaz-Pascual, F., Fong, J. C. N., Dragoš, A., Lamprecht, O., Thöming, J. G., Netter, N., Häussler, S., Nadell, C. D., Sourjik, V., Kovács, Á. T., Yildiz, F. H., & Drescher, K. (2021). Publisher Correction: Quantitative image analysis of microbial communities with BiofilmQ (Nature Microbiology, (2021), 6, 2, (151-156), 10.1038/s41564-020-00817-4). Nature Microbiology, 6(2). https://doi.org/10.1038/s41564-021-00863-6
Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., Bayer, M., Rode, D. K. H., Vidakovic, L., Díaz-Pascual, F., Fong, J. C. N., Dragoš, A., Lamprecht, O., Thöming, J. G., Netter, N., Häussler, S., Nadell, C. D., Sourjik, V., Kovács, Á. T., Yildiz, F. H., & Drescher, K. (2021). Publisher Correction: Quantitative image analysis of microbial communities with BiofilmQ (Nature Microbiology, (2021), 6, 2, (151-156), 10.1038/s41564-020-00817-4). Nature Microbiology, 6(2). https://doi.org/10.1038/s41564-021-00863-6
Bond, Matthew C., Vidakovic, Lucia, Singh, Praveen K., eLife, 10, e65355. https://doi.org/10.7554/elife.65355
, & Nadell, Carey D. (2021). Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells.
Bond, Matthew C., Vidakovic, Lucia, Singh, Praveen K., eLife, 10, e65355. https://doi.org/10.7554/elife.65355
, & Nadell, Carey D. (2021). Matrix-trapped viruses can prevent invasion of bacterial biofilms by colonizing cells.
Diaz-Pascual, Francisco, Lempp, Martin, Nosho, Kazuki, Jeckel, Hannah, Jo, Jeanyoung K., Neuhaus, Konstantin, Hartmann, Raimo, Jelli, Eric, Hansen, Mads Frederik, Price-Whelan, Alexa, Dietrich, Lars E. P., Link, Hannes, & eLife, 10, e70794. https://doi.org/10.7554/elife.70794
. (2021). Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies.
Diaz-Pascual, Francisco, Lempp, Martin, Nosho, Kazuki, Jeckel, Hannah, Jo, Jeanyoung K., Neuhaus, Konstantin, Hartmann, Raimo, Jelli, Eric, Hansen, Mads Frederik, Price-Whelan, Alexa, Dietrich, Lars E. P., Link, Hannes, & eLife, 10, e70794. https://doi.org/10.7554/elife.70794
. (2021). Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies.
Hartmann, Raimo, Jeckel, Hannah, Jelli, Eric, Singh, Praveen K., Vaidya, Sanika, Bayer, Miriam, Rode, Daniel K. H., Vidakovic, Lucia, Díaz-Pascual, Francisco, Fong, Jiunn C. N., Dragoš, Anna, Lamprecht, Olga, Thöming, Janne G., Netter, Niklas, Häussler, Susanne, Nadell, Carey D., Sourjik, Victor, Kovács, Ákos T., Yildiz, Fitnat H., & Nature Microbiology, 6(2), 151–156. https://doi.org/10.1038/s41564-020-00817-4
. (2021). Quantitative image analysis of microbial communities with BiofilmQ.
Hartmann, Raimo, Jeckel, Hannah, Jelli, Eric, Singh, Praveen K., Vaidya, Sanika, Bayer, Miriam, Rode, Daniel K. H., Vidakovic, Lucia, Díaz-Pascual, Francisco, Fong, Jiunn C. N., Dragoš, Anna, Lamprecht, Olga, Thöming, Janne G., Netter, Niklas, Häussler, Susanne, Nadell, Carey D., Sourjik, Victor, Kovács, Ákos T., Yildiz, Fitnat H., & Nature Microbiology, 6(2), 151–156. https://doi.org/10.1038/s41564-020-00817-4
. (2021). Quantitative image analysis of microbial communities with BiofilmQ.
Jeckel, Hannah, & FEMS Microbiology Reviews, 45(4), fuaa062. https://doi.org/10.1093/femsre/fuaa062
. (2021). Advances and opportunities in image analysis of bacterial cells and communities.
Jeckel, Hannah, & FEMS Microbiology Reviews, 45(4), fuaa062. https://doi.org/10.1093/femsre/fuaa062
. (2021). Advances and opportunities in image analysis of bacterial cells and communities.
Maestre-Reyna, Manuel, Huang, Wei-Cheng, Wu, Wen-Jin, Singh, Praveen K., Hartmann, Raimo, Wang, Po-Hsun, Lee, Cheng-Chung, Hikima, Takaaki, Yamamoto, Masaki, Bessho, Yoshitaka, IUBMB Life, 73(2), 418–431. https://doi.org/10.1002/iub.2439
, Tsai, Ming-Daw, & Wang, Andrew H.-J. (2021). Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity.
Maestre-Reyna, Manuel, Huang, Wei-Cheng, Wu, Wen-Jin, Singh, Praveen K., Hartmann, Raimo, Wang, Po-Hsun, Lee, Cheng-Chung, Hikima, Takaaki, Yamamoto, Masaki, Bessho, Yoshitaka, IUBMB Life, 73(2), 418–431. https://doi.org/10.1002/iub.2439
, Tsai, Ming-Daw, & Wang, Andrew H.-J. (2021). Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity.
Singh, Praveen K., Rode, Daniel K. H., Buffard, Pauline, Nosho, Kazuki, Bayer, Miriam, Jeckel, Hannah, Jelli, Eric, Neuhaus, Konstantin, Jiménez-Siebert, Eva, Peschek, Nikolai, Glatter, Timo, Papenfort, Kai, & Vibrio cholerae biofilm dispersal regulator causes cell release from matrix through type IV pilus retraction. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.05.02.442311
. (2021).
Singh, Praveen K., Rode, Daniel K. H., Buffard, Pauline, Nosho, Kazuki, Bayer, Miriam, Jeckel, Hannah, Jelli, Eric, Neuhaus, Konstantin, Jiménez-Siebert, Eva, Peschek, Nikolai, Glatter, Timo, Papenfort, Kai, & Vibrio cholerae biofilm dispersal regulator causes cell release from matrix through type IV pilus retraction. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.05.02.442311
. (2021).
Skinner, Dominic J., Song, Boya, Jeckel, Hannah, Jelli, Eric, Physical Review Letters, 126(4), 48101. https://doi.org/10.1103/physrevlett.126.048101
, & Dunkel, Jörn. (2021). Topological Metric Detects Hidden Order in Disordered Media.
Skinner, Dominic J., Song, Boya, Jeckel, Hannah, Jelli, Eric, Physical Review Letters, 126(4), 48101. https://doi.org/10.1103/physrevlett.126.048101
, & Dunkel, Jörn. (2021). Topological Metric Detects Hidden Order in Disordered Media.
Wimmi, Stephan, Balinovic, Alexander, Jeckel, Hannah, Selinger, Lisa, Lampaki, Dimitrios, Eisemann, Emma, Meuskens, Ina, Linke, Dirk, Nature Communications, 12(1), 1625. https://doi.org/10.1038/s41467-021-21863-4
, Endesfelder, Ulrike, & Diepold, Andreas. (2021). Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH.
Wimmi, Stephan, Balinovic, Alexander, Jeckel, Hannah, Selinger, Lisa, Lampaki, Dimitrios, Eisemann, Emma, Meuskens, Ina, Linke, Dirk, Nature Communications, 12(1), 1625. https://doi.org/10.1038/s41467-021-21863-4
, Endesfelder, Ulrike, & Diepold, Andreas. (2021). Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH.
Wong, Gerard C. L., Antani, Jyot D., Lele, Pushkar P., Chen, Jing, Nan, Beiyan, Kühn, Marco J., Persat, Alexandre, Bru, Jean-Louis, Molin Høyland-Kroghsbo, Nina, Siryaporn, Albert, Conrad, Jacinta C., Carrara, Francesco, Yawata, Yutaka, Stocker, Roman, Brun, Yves V., Whitfield, Gregory B., Lee, Calvin K., de Anda, Jaime, Schmidt, William C., et al. (2021). Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical biology, 18(5), 51501. https://doi.org/10.1088/1478-3975/abdc0e
Wong, Gerard C. L., Antani, Jyot D., Lele, Pushkar P., Chen, Jing, Nan, Beiyan, Kühn, Marco J., Persat, Alexandre, Bru, Jean-Louis, Molin Høyland-Kroghsbo, Nina, Siryaporn, Albert, Conrad, Jacinta C., Carrara, Francesco, Yawata, Yutaka, Stocker, Roman, Brun, Yves V., Whitfield, Gregory B., Lee, Calvin K., de Anda, Jaime, Schmidt, William C., et al. (2021). Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical biology, 18(5), 51501. https://doi.org/10.1088/1478-3975/abdc0e
Yordanov, Stoyan, Neuhaus, Konstantin, Hartmann, Raimo, Díaz-Pascual , Francisco, Vidakovic, Lucia, Singh, Praveen K., & Biomedical Optics Express, 12(6), 3372–3391. https://doi.org/10.1364/boe.420788
. (2021). Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries.
Yordanov, Stoyan, Neuhaus, Konstantin, Hartmann, Raimo, Díaz-Pascual , Francisco, Vidakovic, Lucia, Singh, Praveen K., & Biomedical Optics Express, 12(6), 3372–3391. https://doi.org/10.1364/boe.420788
. (2021). Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries.
Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K., & Nadell, C. D. (2020). Matrix-trapped viruses can protect bacterial biofilms from invasion by colonizing cells [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.10.28.358952
Bond, M. C., Vidakovic, L., Singh, P. K., Drescher, K., & Nadell, C. D. (2020). Matrix-trapped viruses can protect bacterial biofilms from invasion by colonizing cells [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.10.28.358952
Brückner, Stefan, Schubert, Rajib, Kraushaar, Timo, Hartmann, Raimo, Hoffmann, Daniel, Jelli, Eric, eLife, 9, e55587. https://doi.org/10.7554/elife.55587
, Müller, Daniel J., Oliver Essen, Lars, & Mösch, Hans-Ulrich. (2020). Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family.
Brückner, Stefan, Schubert, Rajib, Kraushaar, Timo, Hartmann, Raimo, Hoffmann, Daniel, Jelli, Eric, eLife, 9, e55587. https://doi.org/10.7554/elife.55587
, Müller, Daniel J., Oliver Essen, Lars, & Mösch, Hans-Ulrich. (2020). Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family.
Gallego-Hernandez, A. L., DePas, W. H., Park, J. H., Teschler, J. K., Hartmann, R., Jeckel, H., Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11010–11017. https://doi.org/10.1073/pnas.1916571117
, Beyhan, S., Newman, D. K., & Yildiz, F. H. (2020). Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity.
Gallego-Hernandez, A. L., DePas, W. H., Park, J. H., Teschler, J. K., Hartmann, R., Jeckel, H., Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11010–11017. https://doi.org/10.1073/pnas.1916571117
, Beyhan, S., Newman, D. K., & Yildiz, F. H. (2020). Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity.
Hartmann, Raimo, van Teeseling, Muriel C. F., Thanbichler, Martin, & Molecular Microbiology, 114(1), 140–150. https://doi.org/10.1111/mmi.14501
. (2020). BacStalk: A comprehensive and interactive image analysis software tool for bacterial cell biology.
Hartmann, Raimo, van Teeseling, Muriel C. F., Thanbichler, Martin, & Molecular Microbiology, 114(1), 140–150. https://doi.org/10.1111/mmi.14501
. (2020). BacStalk: A comprehensive and interactive image analysis software tool for bacterial cell biology.
Ishikawa, Takuji, Pedley, T. J., Journal of Fluid Mechanics, 903, A11. https://doi.org/10.1017/jfm.2020.613
, & Goldstein, Raymond E. (2020). Stability of dancing Volvox.
Ishikawa, Takuji, Pedley, T. J., Journal of Fluid Mechanics, 903, A11. https://doi.org/10.1017/jfm.2020.613
, & Goldstein, Raymond E. (2020). Stability of dancing Volvox.
Otto, Simon B., Martin, Marivic, Schäfer, Daniel, Hartmann, Raimo, mSystems, 5(4), e00425–20. https://doi.org/10.1128/msystems.00425-20
, Brix, Susanne, Dragoš, Anna, & Kovács, Ákos T. (2020). Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms.
Otto, Simon B., Martin, Marivic, Schäfer, Daniel, Hartmann, Raimo, mSystems, 5(4), e00425–20. https://doi.org/10.1128/msystems.00425-20
, Brix, Susanne, Dragoš, Anna, & Kovács, Ákos T. (2020). Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms.
Peschek, Nikolai, Herzog, Roman, Singh, Praveen K., Sprenger, Marcel, Meyer, Fabian, Fröhlich, Kathrin S., Schröger, Luise, Bramkamp, Marc, Nature Communications, 11(1), 6067. https://doi.org/10.1038/s41467-020-19890-8
, & Papenfort, Kai. (2020). RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae.
Peschek, Nikolai, Herzog, Roman, Singh, Praveen K., Sprenger, Marcel, Meyer, Fabian, Fröhlich, Kathrin S., Schröger, Luise, Bramkamp, Marc, Nature Communications, 11(1), 6067. https://doi.org/10.1038/s41467-020-19890-8
, & Papenfort, Kai. (2020). RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae.
Rode, Daniel K. H., Singh, Praveen K., & Biological Chemistry, 401(12), 1365–1374. https://doi.org/10.1515/hsz-2020-0213
. (2020). Multicellular and unicellular responses of microbial biofilms to stress.
Rode, Daniel K. H., Singh, Praveen K., & Biological Chemistry, 401(12), 1365–1374. https://doi.org/10.1515/hsz-2020-0213
. (2020). Multicellular and unicellular responses of microbial biofilms to stress.
Schwechheimer, Carmen, Hebert, Kassidy, Tripathi, Sarvind, Singh, Praveen K., Floyd, Kyle A., Brown, Elise R., Porcella, Monique E., Osorio, Jacqueline, Kiblen, Joseph T. M., Pagliai, Fernando A., PLoS Pathogens, 16(8), e1008745. https://doi.org/10.1371/journal.ppat.1008745
, Rubin, Seth M., & Yildiz, Fitnat H. (2020). A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae.
Schwechheimer, Carmen, Hebert, Kassidy, Tripathi, Sarvind, Singh, Praveen K., Floyd, Kyle A., Brown, Elise R., Porcella, Monique E., Osorio, Jacqueline, Kiblen, Joseph T. M., Pagliai, Fernando A., PLoS Pathogens, 16(8), e1008745. https://doi.org/10.1371/journal.ppat.1008745
, Rubin, Seth M., & Yildiz, Fitnat H. (2020). A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae.
Simmons, Emilia L., Bond, Matthew C., Koskella, Britt, mSystems, 5(3), e00877–19. https://doi.org/10.1128/msystems.00877-19
, Bucci, Vanni, & Nadell, Carey D. (2020). Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria.
Simmons, Emilia L., Bond, Matthew C., Koskella, Britt, mSystems, 5(3), e00877–19. https://doi.org/10.1128/msystems.00877-19
, Bucci, Vanni, & Nadell, Carey D. (2020). Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria.
Wimmi, S., Balinovic, A., Jeckel, H., Selinger, L., Lampaki, D., Eisemann, E., Meuskens, I., Linke, D., Drescher, K., Endesfelder, U., & Diepold, A. (2019, December 9). Dynamic relocalization of the cytosolic type III secretion system components prevents premature protein secretion at low external pH [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/869214
Wimmi, S., Balinovic, A., Jeckel, H., Selinger, L., Lampaki, D., Eisemann, E., Meuskens, I., Linke, D., Drescher, K., Endesfelder, U., & Diepold, A. (2019, December 9). Dynamic relocalization of the cytosolic type III secretion system components prevents premature protein secretion at low external pH [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/869214
Otto, S. B., Martin, M., Schäfer, D., Hartmann, R., Drescher, K., Brix, S., Dragoš, A., & Kovács, Á. T. (2019, August 21). Privatization of biofilm matrix in structurally heterogeneous biofilms [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/742593
Otto, S. B., Martin, M., Schäfer, D., Hartmann, R., Drescher, K., Brix, S., Dragoš, A., & Kovács, Á. T. (2019, August 21). Privatization of biofilm matrix in structurally heterogeneous biofilms [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/742593
Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., Bayer, M., Vidakovic, L., Díaz-Pascual, F., Fong, J. C. N., Dragoš, A., Besharova, O., Nadell, C. D., Sourjik, V., Kovács, Á. T., Yildiz, F. H., & Drescher, K. (2019). BiofilmQ, a software tool for quantitative image analysis of microbial biofilm communities [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/735423
Hartmann, R., Jeckel, H., Jelli, E., Singh, P. K., Vaidya, S., Bayer, M., Vidakovic, L., Díaz-Pascual, F., Fong, J. C. N., Dragoš, A., Besharova, O., Nadell, C. D., Sourjik, V., Kovács, Á. T., Yildiz, F. H., & Drescher, K. (2019). BiofilmQ, a software tool for quantitative image analysis of microbial biofilm communities [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/735423
Simmons, M., Bond, M. C., Drescher, K., Bucci, V., & Nadell, C. D. (2019, February 17). Evolutionary dynamics of phage resistance in bacterial biofilms [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/552265
Simmons, M., Bond, M. C., Drescher, K., Bucci, V., & Nadell, C. D. (2019, February 17). Evolutionary dynamics of phage resistance in bacterial biofilms [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/552265
Colin, Remy, Nature Communications, 10(1), 5329. https://doi.org/10.1038/s41467-019-13179-1
, & Sourjik, Victor. (2019). Chemotactic behaviour of Escherichia coli at high cell density.
Colin, Remy, Nature Communications, 10(1), 5329. https://doi.org/10.1038/s41467-019-13179-1
, & Sourjik, Victor. (2019). Chemotactic behaviour of Escherichia coli at high cell density.
Díaz-Pascual, Francisco, Hartmann, Raimo, Lempp, Martin, Vidakovic, Lucia, Song, Boya, Jeckel, Hannah, Thormann, Kai M., Yildiz, Fitnat H., Dunkel, Jörn, Link, Hannes, Nadell, Carey D., & Nature Microbiology, 4(12), 2136–2145. https://doi.org/10.1038/s41564-019-0579-2
. (2019). Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function.
Díaz-Pascual, Francisco, Hartmann, Raimo, Lempp, Martin, Vidakovic, Lucia, Song, Boya, Jeckel, Hannah, Thormann, Kai M., Yildiz, Fitnat H., Dunkel, Jörn, Link, Hannes, Nadell, Carey D., & Nature Microbiology, 4(12), 2136–2145. https://doi.org/10.1038/s41564-019-0579-2
. (2019). Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function.
BIOspektrum, 25(3), 258–260. https://doi.org/10.1007/s12268-019-1038-6
. (2019). Bakterielle Multizellularität in Biofilmen.
BIOspektrum, 25(3), 258–260. https://doi.org/10.1007/s12268-019-1038-6
. (2019). Bakterielle Multizellularität in Biofilmen.
Hartmann, Raimo, Singh, Praveen K., Pearce, Philip, Mok, Rachel, Song, Boya, Díaz-Pascual, Francisco, Dunkel, Jörn, & Nature Physics, 15(3), 251–256. https://doi.org/10.1038/s41567-018-0356-9
. (2019). Emergence of three-dimensional order and structure in growing biofilms.
Hartmann, Raimo, Singh, Praveen K., Pearce, Philip, Mok, Rachel, Song, Boya, Díaz-Pascual, Francisco, Dunkel, Jörn, & Nature Physics, 15(3), 251–256. https://doi.org/10.1038/s41567-018-0356-9
. (2019). Emergence of three-dimensional order and structure in growing biofilms.
Jeckel, Hannah, Jelli, Eric, Hartmann, Raimo, Singh, Praveen K., Mok, Rachel, Totz, Jan Frederik, Vidakovic, Lucia, Eckhardt, Bruno, Dunkel, Jörn, & Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1489–1494. https://doi.org/10.1073/pnas.1811722116
. (2019). Learning the space-time phase diagram of bacterial swarm expansion.
Jeckel, Hannah, Jelli, Eric, Hartmann, Raimo, Singh, Praveen K., Mok, Rachel, Totz, Jan Frederik, Vidakovic, Lucia, Eckhardt, Bruno, Dunkel, Jörn, & Proceedings of the National Academy of Sciences of the United States of America, 116(5), 1489–1494. https://doi.org/10.1073/pnas.1811722116
. (2019). Learning the space-time phase diagram of bacterial swarm expansion.
Jeckel, Hannah, Matthey, Noémie, & eLife, 8, e47019. https://doi.org/10.7554/elife.47019
. (2019). Common concepts for bacterial collectives.
Jeckel, Hannah, Matthey, Noémie, & eLife, 8, e47019. https://doi.org/10.7554/elife.47019
. (2019). Common concepts for bacterial collectives.
Nisbett, Lisa-Marie, Binnenkade, Lucas, Bacon, Bezalel, Hossain, Sajjad, Kotloski, Nicholas J., Brutinel, Evan D., Hartmann, Raimo, Biochemistry, 58(48), 4827–4841. https://doi.org/10.1021/acs.biochem.9b00706
, Arora, Dhruv P., Muralidharan, Sandhya, Thormann, Kai M., Gralnick, Jeffrey A., & Boon, Elizabeth M. (2019). NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in Shewanella oneidensis.
Nisbett, Lisa-Marie, Binnenkade, Lucas, Bacon, Bezalel, Hossain, Sajjad, Kotloski, Nicholas J., Brutinel, Evan D., Hartmann, Raimo, Biochemistry, 58(48), 4827–4841. https://doi.org/10.1021/acs.biochem.9b00706
, Arora, Dhruv P., Muralidharan, Sandhya, Thormann, Kai M., Gralnick, Jeffrey A., & Boon, Elizabeth M. (2019). NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in Shewanella oneidensis.
Pearce, Philip, Song, Boya, Skinner, Dominic J., Mok, Rachel, Hartmann, Raimo, Singh, Praveen K., Jeckel, Hannah, Oishi, Jeffrey S., Physical Review Letters, 123(25), 258101. https://doi.org/10.1103/physrevlett.123.258101
, & Dunkel, Jörn. (2019). Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms.
Pearce, Philip, Song, Boya, Skinner, Dominic J., Mok, Rachel, Hartmann, Raimo, Singh, Praveen K., Jeckel, Hannah, Oishi, Jeffrey S., Physical Review Letters, 123(25), 258101. https://doi.org/10.1103/physrevlett.123.258101
, & Dunkel, Jörn. (2019). Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms.
Colin, R., Drescher, K., & Sourjik, V. (2018, August 28). Chemotactic behaviour of<i>Escherichia coli</i>at high cell density [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/402289
Colin, R., Drescher, K., & Sourjik, V. (2018, August 28). Chemotactic behaviour of<i>Escherichia coli</i>at high cell density [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/402289
Hartmann, R., van Teeseling, M. C. F., Thanbichler, M., & Drescher, K. (2018, July 3). BacStalk: a comprehensive and interactive image analysis software tool for bacterial cell biology [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360230
Hartmann, R., van Teeseling, M. C. F., Thanbichler, M., & Drescher, K. (2018, July 3). BacStalk: a comprehensive and interactive image analysis software tool for bacterial cell biology [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/360230
Beuter, Dominik, Gomes-Filho, José Vicente, Randau, Lennart, Díaz-Pascual, Francisco, ACS Synthetic Biology, 7(12), 2775–2782. https://doi.org/10.1021/acssynbio.8b00379
, & Link, Hannes. (2018). Selective Enrichment of Slow-Growing Bacteria in a Metabolism-Wide CRISPRi Library with a TIMER Protein.
Beuter, Dominik, Gomes-Filho, José Vicente, Randau, Lennart, Díaz-Pascual, Francisco, ACS Synthetic Biology, 7(12), 2775–2782. https://doi.org/10.1021/acssynbio.8b00379
, & Link, Hannes. (2018). Selective Enrichment of Slow-Growing Bacteria in a Metabolism-Wide CRISPRi Library with a TIMER Protein.
Dragoš, Anna, Kiesewalter, Heiko, Martin, Marivic, Hsu, Chih-Yu, Hartmann, Raimo, Wechsler, Tobias, Eriksen, Carsten, Brix, Susanne, Current Biology, 28(12), 1903–1913. https://doi.org/10.1016/j.cub.2018.04.046
, Stanley-Wall, Nicola, Kümmerli, Rolf, & Kovács, Ákos T. (2018). Division of Labor during Biofilm Matrix Production.
Dragoš, Anna, Kiesewalter, Heiko, Martin, Marivic, Hsu, Chih-Yu, Hartmann, Raimo, Wechsler, Tobias, Eriksen, Carsten, Brix, Susanne, Current Biology, 28(12), 1903–1913. https://doi.org/10.1016/j.cub.2018.04.046
, Stanley-Wall, Nicola, Kümmerli, Rolf, & Kovács, Ákos T. (2018). Division of Labor during Biofilm Matrix Production.
Martínez-García, Ricardo, Nadell, Carey D., Hartmann, Raimo, PLoS Computational Biology, 14(4), e1006094. https://doi.org/10.1371/journal.pcbi.1006094
, & Bonachela, Juan A. (2018). Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms.
Martínez-García, Ricardo, Nadell, Carey D., Hartmann, Raimo, PLoS Computational Biology, 14(4), e1006094. https://doi.org/10.1371/journal.pcbi.1006094
, & Bonachela, Juan A. (2018). Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms.
Simmons, Matthew, ISME Journal, 12(2), 531–543. https://doi.org/10.1038/ismej.2017.190
, Nadell, Carey D., & Bucci, Vanni. (2018). Phage mobility is a core determinant of phage-bacteria coexistence in biofilms.
Simmons, Matthew, ISME Journal, 12(2), 531–543. https://doi.org/10.1038/ismej.2017.190
, Nadell, Carey D., & Bucci, Vanni. (2018). Phage mobility is a core determinant of phage-bacteria coexistence in biofilms.
Vidakovic, Lucia, Singh, Praveen K., Hartmann, Raimo, Nadell, Carey D., & Nature Microbiology, 3(1), 26–31. https://doi.org/10.1038/s41564-017-0050-1
. (2018). Dynamic biofilm architecture confers individual and collective mechanisms of viral protection.
Vidakovic, Lucia, Singh, Praveen K., Hartmann, Raimo, Nadell, Carey D., & Nature Microbiology, 3(1), 26–31. https://doi.org/10.1038/s41564-017-0050-1
. (2018). Dynamic biofilm architecture confers individual and collective mechanisms of viral protection.
Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C.-Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., Stanley-Wall, N., Kümmerli, R., & Kovács, Á. T. (2017, December 21). Division of labor during biofilm matrix production [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/237230
Dragoš, A., Kiesewalter, H., Martin, M., Hsu, C.-Y., Hartmann, R., Wechsler, T., Eriksen, C., Brix, S., Drescher, K., Stanley-Wall, N., Kümmerli, R., & Kovács, Á. T. (2017, December 21). Division of labor during biofilm matrix production [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/237230
Fong, Jiunn C. N., Rogers, Andrew, Michael, Alicia K., Parsley, Nicole C., Cornell, William-Cole, Lin, Yu-Cheng, Singh, Praveen K., Hartmann, Raimo, eLife, 6, e26163. https://doi.org/10.7554/elife.26163
, Vinogradov, Evgeny, Dietrich, Lars E. P., Partch, Carrie L., & Yildiz, Fitnat H. (2017). Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms.
Fong, Jiunn C. N., Rogers, Andrew, Michael, Alicia K., Parsley, Nicole C., Cornell, William-Cole, Lin, Yu-Cheng, Singh, Praveen K., Hartmann, Raimo, eLife, 6, e26163. https://doi.org/10.7554/elife.26163
, Vinogradov, Evgeny, Dietrich, Lars E. P., Partch, Carrie L., & Yildiz, Fitnat H. (2017). Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms.
Nadell, Carey D., Ricaurte, Deirdre, Yan, Jing, eLife, 6, e21855. https://doi.org/10.7554/elife.21855
, & Bassler, Bonnie L. (2017). Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.
Nadell, Carey D., Ricaurte, Deirdre, Yan, Jing, eLife, 6, e21855. https://doi.org/10.7554/elife.21855
, & Bassler, Bonnie L. (2017). Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.
Singh, Praveen K., Bartalomej, Sabina, Hartmann, Raimo, Jeckel, Hannah, Vidakovic, Lucia, Nadell, Carey D., & Current Biology, 27(21), 3359–3366. https://doi.org/10.1016/j.cub.2017.09.041
. (2017). Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal.
Singh, Praveen K., Bartalomej, Sabina, Hartmann, Raimo, Jeckel, Hannah, Vidakovic, Lucia, Nadell, Carey D., & Current Biology, 27(21), 3359–3366. https://doi.org/10.1016/j.cub.2017.09.041
. (2017). Vibrio cholerae Combines Individual and Collective Sensing to Trigger Biofilm Dispersal.
Besharova, Olga, Suchanek, Verena M., Hartmann, Raimo, Frontiers in Microbiology, 7, 1568. https://doi.org/10.3389/fmicb.2016.01568
, & Sourjik, Victor. (2016). Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli.
Besharova, Olga, Suchanek, Verena M., Hartmann, Raimo, Frontiers in Microbiology, 7, 1568. https://doi.org/10.3389/fmicb.2016.01568
, & Sourjik, Victor. (2016). Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli.
Proceedings of the National Academy of Sciences of the United States of America, 113(14), E2066–72. https://doi.org/10.1073/pnas.1601702113
, Dunkel, Jörn, Nadell, Carey D., van Teeffelen, Sven, Grnja, Ivan, Wingreen, Ned S., Stone, Howard A., & Bassler, Bonnie L. (2016). Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.
Proceedings of the National Academy of Sciences of the United States of America, 113(14), E2066–72. https://doi.org/10.1073/pnas.1601702113
, Dunkel, Jörn, Nadell, Carey D., van Teeffelen, Sven, Grnja, Ivan, Wingreen, Ned S., Stone, Howard A., & Bassler, Bonnie L. (2016). Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.
Nadell, Carey D., Nature Reviews Microbiology, 14(9), 589–600. https://doi.org/10.1038/nrmicro.2016.84
, & Foster, Kevin R. (2016). Spatial structure, cooperation and competition in biofilms.
Nadell, Carey D., Nature Reviews Microbiology, 14(9), 589–600. https://doi.org/10.1038/nrmicro.2016.84
, & Foster, Kevin R. (2016). Spatial structure, cooperation and competition in biofilms.
Nadell, Carey D., Hartmann, Raimo, & ACS Nano, 10(10), 9109–9110. https://doi.org/10.1021/acsnano.6b06461
. (2016). An Emerging Grip on the Growth of Grounded Bacteria.
Nadell, Carey D., Hartmann, Raimo, & ACS Nano, 10(10), 9109–9110. https://doi.org/10.1021/acsnano.6b06461
. (2016). An Emerging Grip on the Growth of Grounded Bacteria.
Nadell, Carey D., ISME Journal, 9(8), 1700–1709. https://doi.org/10.1038/ismej.2014.246
, Wingreen, Ned S., & Bassler, Bonnie L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms.
Nadell, Carey D., ISME Journal, 9(8), 1700–1709. https://doi.org/10.1038/ismej.2014.246
, Wingreen, Ned S., & Bassler, Bonnie L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms.
Persat, Alexandre, Nadell, Carey D., Kim, Minyoung Kevin, Ingremeau, Francois, Siryaporn, Albert, Cell, 161(5), 988–997. https://doi.org/10.1016/j.cell.2015.05.005
, Wingreen, Ned S., Bassler, Bonnie L., Gitai, Zemer, & Stone, Howard A. (2015). The mechanical world of bacteria.
Persat, Alexandre, Nadell, Carey D., Kim, Minyoung Kevin, Ingremeau, Francois, Siryaporn, Albert, Cell, 161(5), 988–997. https://doi.org/10.1016/j.cell.2015.05.005
, Wingreen, Ned S., Bassler, Bonnie L., Gitai, Zemer, & Stone, Howard A. (2015). The mechanical world of bacteria.
Current Biology, 24(1), 50–55. https://doi.org/10.1016/j.cub.2013.10.030
, Nadell, Carey D., Stone, Howard A., Wingreen, Ned S., & Bassler, Bonnie L. (2014). Solutions to the public goods dilemma in bacterial biofilms.
Current Biology, 24(1), 50–55. https://doi.org/10.1016/j.cub.2013.10.030
, Nadell, Carey D., Stone, Howard A., Wingreen, Ned S., & Bassler, Bonnie L. (2014). Solutions to the public goods dilemma in bacterial biofilms.
Kim, Minyoung Kevin, New Journal of Physics, 16(6), 65024. https://doi.org/10.1088/1367-2630/16/6/065024
, Pak, On Shun, Bassler, Bonnie L., & Stone, Howard A. (2014). Filaments in curved streamlines: Rapid formation of; Staphylococcus aureus; biofilm streamers.
Kim, Minyoung Kevin, New Journal of Physics, 16(6), 65024. https://doi.org/10.1088/1367-2630/16/6/065024
, Pak, On Shun, Bassler, Bonnie L., & Stone, Howard A. (2014). Filaments in curved streamlines: Rapid formation of; Staphylococcus aureus; biofilm streamers.
Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4345–4350. https://doi.org/10.1073/pnas.1300321110
, Shen, Yi, Bassler, Bonnie L., & Stone, Howard A. (2013). Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems.
Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4345–4350. https://doi.org/10.1073/pnas.1300321110
, Shen, Yi, Bassler, Bonnie L., & Stone, Howard A. (2013). Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems.
Dunkel, Jörn, Heidenreich, Sebastian, Physical Review Letters, 110(22), 228102. https://doi.org/10.1103/physrevlett.110.228102
, Wensink, Henricus H., Bär, Markus, & Goldstein, Raymond E. (2013). Fluid dynamics of bacterial turbulence.
Dunkel, Jörn, Heidenreich, Sebastian, Physical Review Letters, 110(22), 228102. https://doi.org/10.1103/physrevlett.110.228102
, Wensink, Henricus H., Bär, Markus, & Goldstein, Raymond E. (2013). Fluid dynamics of bacterial turbulence.
Nadell, Carey D., Bucci, Vanni, Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122770. https://doi.org/10.1098/rspb.2012.2770
, Levin, Simon A., Bassler, Bonnie L., & Xavier, João B. (2013). Cutting through the complexity of cell collectives.
Nadell, Carey D., Bucci, Vanni, Proceedings of the Royal Society B: Biological Sciences, 280(1755), 20122770. https://doi.org/10.1098/rspb.2012.2770
, Levin, Simon A., Bassler, Bonnie L., & Xavier, João B. (2013). Cutting through the complexity of cell collectives.
O’Loughlin, Colleen T., Miller, Laura C., Siryaporn, Albert, Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17981–17986. https://doi.org/10.1073/pnas.1316981110
, Semmelhack, Martin F., & Bassler, Bonnie L. (2013). A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.
O’Loughlin, Colleen T., Miller, Laura C., Siryaporn, Albert, Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17981–17986. https://doi.org/10.1073/pnas.1316981110
, Semmelhack, Martin F., & Bassler, Bonnie L. (2013). A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.
Sareh, Sina, Rossiter, Jonathan, Conn, Andrew, Journal of the Royal Society, Interface, 10(78), 20120666. https://doi.org/10.1098/rsif.2012.0666
, & Goldstein, Raymond E. (2013). Swimming like algae: biomimetic soft artificial cilia.
Sareh, Sina, Rossiter, Jonathan, Conn, Andrew, Journal of the Royal Society, Interface, 10(78), 20120666. https://doi.org/10.1098/rsif.2012.0666
, & Goldstein, Raymond E. (2013). Swimming like algae: biomimetic soft artificial cilia.
Wensink, Henricus H., Dunkel, Jörn, Heidenreich, Sebastian, Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14308–14313. https://doi.org/10.1073/pnas.1202032109
, Goldstein, Raymond E., Löwen, Hartmut, & Yeomans, Julia M. (2012). Meso-scale turbulence in living fluids.
Wensink, Henricus H., Dunkel, Jörn, Heidenreich, Sebastian, Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14308–14313. https://doi.org/10.1073/pnas.1202032109
, Goldstein, Raymond E., Löwen, Hartmut, & Yeomans, Julia M. (2012). Meso-scale turbulence in living fluids.
Proceedings of the National Academy of Sciences of the United States of America, 108(27), 10940–10945. https://doi.org/10.1073/pnas.1019079108
, Dunkel, Jörn, Cisneros, Luis H., Ganguly, Sujoy, & Goldstein, Raymond E. (2011). Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering.
Proceedings of the National Academy of Sciences of the United States of America, 108(27), 10940–10945. https://doi.org/10.1073/pnas.1019079108
, Dunkel, Jörn, Cisneros, Luis H., Ganguly, Sujoy, & Goldstein, Raymond E. (2011). Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering.
Solari, Cristian A., Journal of the Royal Society, Interface, 8(63), 1409–1417. https://doi.org/10.1098/rsif.2011.0023
, Ganguly, Sujoy, Kessler, John O., Michod, Richard E., & Goldstein, Raymond E. (2011). Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number.
Solari, Cristian A., Journal of the Royal Society, Interface, 8(63), 1409–1417. https://doi.org/10.1098/rsif.2011.0023
, Ganguly, Sujoy, Kessler, John O., Michod, Richard E., & Goldstein, Raymond E. (2011). Flagellar phenotypic plasticity in volvocalean algae correlates with Péclet number.
Solari, Cristian A., Journal of Phycology, 47(3), 580–583. https://doi.org/10.1111/j.1529-8817.2011.00983.x
, & Goldstein, Raymond E. (2011). The flagellar photoresponse in Volvox species.
Solari, Cristian A., Journal of Phycology, 47(3), 580–583. https://doi.org/10.1111/j.1529-8817.2011.00983.x
, & Goldstein, Raymond E. (2011). The flagellar photoresponse in Volvox species.
Physical Review Letters, 105(16), 168101. https://doi.org/10.1103/physrevlett.105.168101
, Goldstein, Raymond E., Michel, Nicolas, Polin, Marco, & Tuval, Idan. (2010). Direct measurement of the flow field around swimming microorganisms.
Physical Review Letters, 105(16), 168101. https://doi.org/10.1103/physrevlett.105.168101
, Goldstein, Raymond E., Michel, Nicolas, Polin, Marco, & Tuval, Idan. (2010). Direct measurement of the flow field around swimming microorganisms.
Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11171–11176. https://doi.org/10.1073/pnas.1000901107
, Goldstein, Raymond E., & Tuval, Idan. (2010). Fidelity of adaptive phototaxis.
Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11171–11176. https://doi.org/10.1073/pnas.1000901107
, Goldstein, Raymond E., & Tuval, Idan. (2010). Fidelity of adaptive phototaxis.
Bulte, Daniel P., Magnetic Resonance in Medicine, 61(2), 391–398. https://doi.org/10.1002/mrm.21862
, & Jezzard, Peter. (2009). Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI.
Bulte, Daniel P., Magnetic Resonance in Medicine, 61(2), 391–398. https://doi.org/10.1002/mrm.21862
, & Jezzard, Peter. (2009). Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI.
Review of Scientific Instruments, 80(1), 14301. https://doi.org/10.1063/1.3053242
, Leptos, Kyriacos C., & Goldstein, Raymond E. (2009). How to track protists in three dimensions.
Review of Scientific Instruments, 80(1), 14301. https://doi.org/10.1063/1.3053242
, Leptos, Kyriacos C., & Goldstein, Raymond E. (2009). How to track protists in three dimensions.
Physical Review Letters, 102(16), 168101. https://doi.org/10.1103/physrevlett.102.168101
, Leptos, Kyriacos C., Tuval, Idan, Ishikawa, Takuji, Pedley, Timothy J., & Goldstein, Raymond E. (2009). Dancing volvox: hydrodynamic bound states of swimming algae.
Physical Review Letters, 102(16), 168101. https://doi.org/10.1103/physrevlett.102.168101
, Leptos, Kyriacos C., Tuval, Idan, Ishikawa, Takuji, Pedley, Timothy J., & Goldstein, Raymond E. (2009). Dancing volvox: hydrodynamic bound states of swimming algae.
Polin, Marco, Tuval, Idan, Science, 325(5939), 487–490. https://doi.org/10.1126/science.1172667
, Gollub, J. P., & Goldstein, Raymond E. (2009). Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion.
Polin, Marco, Tuval, Idan, Science, 325(5939), 487–490. https://doi.org/10.1126/science.1172667
, Gollub, J. P., & Goldstein, Raymond E. (2009). Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion.