Publications
23 found
Show per page
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Lahr, Maria, Kandler, Steffen, Imhof, Fabia, & Science, 385(6710). https://doi.org/10.1126/science.adk0997
. (2024). Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics [Journal-article].
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Lahr, Maria, Kandler, Steffen, Imhof, Fabia, & Science, 385(6710). https://doi.org/10.1126/science.adk0997
. (2024). Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics [Journal-article].
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Kandler, Steffen, Imhof, Fabia, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.11.06.565779
. (2023). Divergent Recruitment of Developmentally-Defined Neuronal Ensembles Supports Memory Dynamics [Posted-content]. In
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Kandler, Steffen, Imhof, Fabia, & bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2023.11.06.565779
. (2023). Divergent Recruitment of Developmentally-Defined Neuronal Ensembles Supports Memory Dynamics [Posted-content]. In
European Journal of Neuroscience, 58(12), 4427–4428. https://doi.org/10.1111/ejn.15763
, & Ryan, Tomás J. (2023). Framing the future of neuroscience in a time of great upheaval: Introducing a series of essays by the scholars of the FENS-Kavli network.
European Journal of Neuroscience, 58(12), 4427–4428. https://doi.org/10.1111/ejn.15763
, & Ryan, Tomás J. (2023). Framing the future of neuroscience in a time of great upheaval: Introducing a series of essays by the scholars of the FENS-Kavli network.
Gonzalo Cogno, Soledad, Obenhaus, Horst A., Jacobsen, R. Irene, Minute-scale oscillatory sequences in medial entorhinal cortex. bioRxiv. https://doi.org/10.1101/2022.05.02.490273
, Moser, May-Britt, & Moser, Edvard I. (2022).
Gonzalo Cogno, Soledad, Obenhaus, Horst A., Jacobsen, R. Irene, Minute-scale oscillatory sequences in medial entorhinal cortex. bioRxiv. https://doi.org/10.1101/2022.05.02.490273
, Moser, May-Britt, & Moser, Edvard I. (2022).
Jacobsen, R. Irene, Nair, Rajeevkumar R., Obenhaus, Horst A., Cell reports methods, 2(5), 100221. https://doi.org/10.1016/j.crmeth.2022.100221
, Slettmoen, Torstein, Moser, May-Britt, & Moser, Edvard I. (2022). All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain.
Jacobsen, R. Irene, Nair, Rajeevkumar R., Obenhaus, Horst A., Cell reports methods, 2(5), 100221. https://doi.org/10.1016/j.crmeth.2022.100221
, Slettmoen, Torstein, Moser, May-Britt, & Moser, Edvard I. (2022). All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain.
Obenhaus, Horst A., Zong, Weijian, Jacobsen, R. Irene, Rose, Tobias, Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2121655119. https://doi.org/10.1073/pnas.2121655119
, Chen, Liangyi, Cheng, Heping, Bonhoeffer, Tobias, Moser, May-Britt, & Moser, Edvard I. (2022). Functional network topography of the medial entorhinal cortex.
Obenhaus, Horst A., Zong, Weijian, Jacobsen, R. Irene, Rose, Tobias, Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2121655119. https://doi.org/10.1073/pnas.2121655119
, Chen, Liangyi, Cheng, Heping, Bonhoeffer, Tobias, Moser, May-Britt, & Moser, Edvard I. (2022). Functional network topography of the medial entorhinal cortex.
Ohana, Ora, Alberini, Cristina M., & Hippocampus, 32(2), 69–72. https://doi.org/10.1002/hipo.23406
. (2022). Introduction to the special issue on the ontogeny of hippocampal functions.
Ohana, Ora, Alberini, Cristina M., & Hippocampus, 32(2), 69–72. https://doi.org/10.1002/hipo.23406
. (2022). Introduction to the special issue on the ontogeny of hippocampal functions.
Journal of Neuroscience, 41(5), 920–926. https://doi.org/10.1523/jneurosci.1651-20.2020
, Alberini, Cristina M., Amso, Dima, Dragoi, George, Dranovsky, Alex, & Newcombe, Nora S. (2021). The Ontogeny of Hippocampus-Dependent Memories.
Journal of Neuroscience, 41(5), 920–926. https://doi.org/10.1523/jneurosci.1651-20.2020
, Alberini, Cristina M., Amso, Dima, Dragoi, George, Dranovsky, Alex, & Newcombe, Nora S. (2021). The Ontogeny of Hippocampus-Dependent Memories.
Science, 370(6523), 1410–1411. https://doi.org/10.1126/science.abf4523
. (2020). A gatekeeper for learning.
Science, 370(6523), 1410–1411. https://doi.org/10.1126/science.abf4523
. (2020). A gatekeeper for learning.
Lahr, Maria, & Current Biology, 30(10), R430–R432. https://doi.org/10.1016/j.cub.2020.03.069
. (2020). Navigation: How Spatial Cognition Is Transformed into Action.
Lahr, Maria, & Current Biology, 30(10), R430–R432. https://doi.org/10.1016/j.cub.2020.03.069
. (2020). Navigation: How Spatial Cognition Is Transformed into Action.
Baram, Tallie Z., Learning & Memory, 26(7), 206–218. https://doi.org/10.1101/lm.049239.118
, & Holmes, Gregory L. (2019). Construction and disruption of spatial memory networks during development.
Baram, Tallie Z., Learning & Memory, 26(7), 206–218. https://doi.org/10.1101/lm.049239.118
, & Holmes, Gregory L. (2019). Construction and disruption of spatial memory networks during development.
Current Biology : CB, 29(17), R829–R831. https://doi.org/10.1016/j.cub.2019.07.008
. (2019). Motor Control: Head-Turning Modular Organization of the Superior Colliculus.
Current Biology : CB, 29(17), R829–R831. https://doi.org/10.1016/j.cub.2019.07.008
. (2019). Motor Control: Head-Turning Modular Organization of the Superior Colliculus.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 21(9), 1290. https://doi.org/10.1038/s41593-018-0179-0
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2018). Author Correction: PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 21(9), 1290. https://doi.org/10.1038/s41593-018-0179-0
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2018). Author Correction: PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Science, 358(6362), 456–457. https://doi.org/10.1126/science.aap9533
. (2017). Assembling the brain from deep within.
Science, 358(6362), 456–457. https://doi.org/10.1126/science.aap9533
. (2017). Assembling the brain from deep within.
Science, 355(6330), eaai8178. https://doi.org/10.1126/science.aai8178
, Jacobsen, R. Irene, Moser, May-Britt, & Moser, Edvard I. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit.
Science, 355(6330), eaai8178. https://doi.org/10.1126/science.aai8178
, Jacobsen, R. Irene, Moser, May-Britt, & Moser, Edvard I. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit.
Nature, 533(7603), 325. https://doi.org/10.1038/nature17899
, & Moser, Edvard I. (2016). A world away from reality in “Neuroscience: Virtual reality explored”.
Nature, 533(7603), 325. https://doi.org/10.1038/nature17899
, & Moser, Edvard I. (2016). A world away from reality in “Neuroscience: Virtual reality explored”.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 19(3), 454–464. https://doi.org/10.1038/nn.4231
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2016). PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 19(3), 454–464. https://doi.org/10.1038/nn.4231
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2016). PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Neuron, 85(4), 770–786. https://doi.org/10.1016/j.neuron.2015.01.011
, Chowdhury, Ananya, Lahr, Maria, & Caroni, Pico. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning.
Neuron, 85(4), 770–786. https://doi.org/10.1016/j.neuron.2015.01.011
, Chowdhury, Ananya, Lahr, Maria, & Caroni, Pico. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning.
Nature, 504(7479), 272–276. https://doi.org/10.1038/nature12866
, Rompani, Santiago Belluco, & Caroni, Pico. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.
Nature, 504(7479), 272–276. https://doi.org/10.1038/nature12866
, Rompani, Santiago Belluco, & Caroni, Pico. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.
Caroni, Pico, Nature Reviews. Neuroscience, 13(7), 478–490. https://doi.org/10.1038/nrn3258
, & Muller, Dominique. (2012). Structural plasticity upon learning: regulation and functions.
Caroni, Pico, Nature Reviews. Neuroscience, 13(7), 478–490. https://doi.org/10.1038/nrn3258
, & Muller, Dominique. (2012). Structural plasticity upon learning: regulation and functions.
Ruediger, Sarah, Spirig, Dominique, Nature Neuroscience, 15(11), 1563–1571. https://doi.org/10.1038/nn.3224
, & Caroni, Pico. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning.
Ruediger, Sarah, Spirig, Dominique, Nature Neuroscience, 15(11), 1563–1571. https://doi.org/10.1038/nn.3224
, & Caroni, Pico. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning.
Deguchi, Yuichi, Nature Neuroscience, 14(4), 495–504. https://doi.org/10.1038/nn.2768
, Galimberti, Ivan, Cabuy, Erik, & Caroni, Pico. (2011). Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus.
Deguchi, Yuichi, Nature Neuroscience, 14(4), 495–504. https://doi.org/10.1038/nn.2768
, Galimberti, Ivan, Cabuy, Erik, & Caroni, Pico. (2011). Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus.
Galimberti, Ivan, Bednarek, Ewa, Neuron, 65(5), 627–642. https://doi.org/10.1016/j.neuron.2010.02.016
, & Caroni, Pico. (2010). EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus.
Galimberti, Ivan, Bednarek, Ewa, Neuron, 65(5), 627–642. https://doi.org/10.1016/j.neuron.2010.02.016
, & Caroni, Pico. (2010). EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus.