Publications
18 found
Show per page
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Lahr, Maria, Kandler, Steffen, Imhof, Fabia, & Science, 385(6710). https://doi.org/10.1126/science.adk0997
. (2024). Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics [Journal-article].
Kveim, Vilde A., Salm, Laurenz, Ulmer, Talia, Lahr, Maria, Kandler, Steffen, Imhof, Fabia, & Science, 385(6710). https://doi.org/10.1126/science.adk0997
. (2024). Divergent recruitment of developmentally defined neuronal ensembles supports memory dynamics [Journal-article].
Leibold, N. S., Higgs, N. F., Kandler, S., Khan, A., Donato, F., & Andreae, L. C. (2024). NMDA receptor activation drives early synapse formation in vivo [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.23.595343
Leibold, N. S., Higgs, N. F., Kandler, S., Khan, A., Donato, F., & Andreae, L. C. (2024). NMDA receptor activation drives early synapse formation in vivo [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.05.23.595343
Gonzalo Cogno, S., Obenhaus, H. A., Lautrup, A., Jacobsen, R. I., Clopath, C., Andersson, S. O., Donato, F., Moser, M.-B., & Moser, E. I. (2024). Minute-scale oscillatory sequences in medial entorhinal cortex. Nature, 625(7994), 338–344. https://doi.org/10.1038/s41586-023-06864-1
Gonzalo Cogno, S., Obenhaus, H. A., Lautrup, A., Jacobsen, R. I., Clopath, C., Andersson, S. O., Donato, F., Moser, M.-B., & Moser, E. I. (2024). Minute-scale oscillatory sequences in medial entorhinal cortex. Nature, 625(7994), 338–344. https://doi.org/10.1038/s41586-023-06864-1
Donato, F., Schwartzlose, A. X., & Mendes, R. A. V. (2023). How Do You Build a Cognitive Map? The Development of Circuits and Computations for the Representation of Space in the Brain. Annual Review of Neuroscience, 46, 281–299. https://doi.org/10.1146/annurev-neuro-090922-010618
Donato, F., Schwartzlose, A. X., & Mendes, R. A. V. (2023). How Do You Build a Cognitive Map? The Development of Circuits and Computations for the Representation of Space in the Brain. Annual Review of Neuroscience, 46, 281–299. https://doi.org/10.1146/annurev-neuro-090922-010618
Jacobsen, R. Irene, Nair, Rajeevkumar R., Obenhaus, Horst A., Cell reports methods, 2(5), 100221. https://doi.org/10.1016/j.crmeth.2022.100221
, Slettmoen, Torstein, Moser, May-Britt, & Moser, Edvard I. (2022). All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain.
Jacobsen, R. Irene, Nair, Rajeevkumar R., Obenhaus, Horst A., Cell reports methods, 2(5), 100221. https://doi.org/10.1016/j.crmeth.2022.100221
, Slettmoen, Torstein, Moser, May-Britt, & Moser, Edvard I. (2022). All-viral tracing of monosynaptic inputs to single birthdate-defined neurons in the intact brain.
Obenhaus, Horst A., Zong, Weijian, Jacobsen, R. Irene, Rose, Tobias, Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2121655119. https://doi.org/10.1073/pnas.2121655119
, Chen, Liangyi, Cheng, Heping, Bonhoeffer, Tobias, Moser, May-Britt, & Moser, Edvard I. (2022). Functional network topography of the medial entorhinal cortex.
Obenhaus, Horst A., Zong, Weijian, Jacobsen, R. Irene, Rose, Tobias, Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2121655119. https://doi.org/10.1073/pnas.2121655119
, Chen, Liangyi, Cheng, Heping, Bonhoeffer, Tobias, Moser, May-Britt, & Moser, Edvard I. (2022). Functional network topography of the medial entorhinal cortex.
Journal of Neuroscience, 41(5), 920–926. https://doi.org/10.1523/jneurosci.1651-20.2020
, Alberini, Cristina M., Amso, Dima, Dragoi, George, Dranovsky, Alex, & Newcombe, Nora S. (2021). The Ontogeny of Hippocampus-Dependent Memories.
Journal of Neuroscience, 41(5), 920–926. https://doi.org/10.1523/jneurosci.1651-20.2020
, Alberini, Cristina M., Amso, Dima, Dragoi, George, Dranovsky, Alex, & Newcombe, Nora S. (2021). The Ontogeny of Hippocampus-Dependent Memories.
Baram, Tallie Z., Learning & Memory, 26(7), 206–218. https://doi.org/10.1101/lm.049239.118
, & Holmes, Gregory L. (2019). Construction and disruption of spatial memory networks during development.
Baram, Tallie Z., Learning & Memory, 26(7), 206–218. https://doi.org/10.1101/lm.049239.118
, & Holmes, Gregory L. (2019). Construction and disruption of spatial memory networks during development.
Science, 358(6362), 456–457. https://doi.org/10.1126/science.aap9533
. (2017). Assembling the brain from deep within.
Science, 358(6362), 456–457. https://doi.org/10.1126/science.aap9533
. (2017). Assembling the brain from deep within.
Science, 355(6330), eaai8178. https://doi.org/10.1126/science.aai8178
, Jacobsen, R. Irene, Moser, May-Britt, & Moser, Edvard I. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit.
Science, 355(6330), eaai8178. https://doi.org/10.1126/science.aai8178
, Jacobsen, R. Irene, Moser, May-Britt, & Moser, Edvard I. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit.
Nature, 533(7603), 325. https://doi.org/10.1038/nature17899
, & Moser, Edvard I. (2016). A world away from reality in “Neuroscience: Virtual reality explored”.
Nature, 533(7603), 325. https://doi.org/10.1038/nature17899
, & Moser, Edvard I. (2016). A world away from reality in “Neuroscience: Virtual reality explored”.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 19(3), 454–464. https://doi.org/10.1038/nn.4231
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2016). PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Karunakaran, Smitha, Chowdhury, Ananya, Nature Neuroscience, 19(3), 454–464. https://doi.org/10.1038/nn.4231
, Quairiaux, Charles, Michel, Christoph M., & Caroni, Pico. (2016). PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation.
Neuron, 85(4), 770–786. https://doi.org/10.1016/j.neuron.2015.01.011
, Chowdhury, Ananya, Lahr, Maria, & Caroni, Pico. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning.
Neuron, 85(4), 770–786. https://doi.org/10.1016/j.neuron.2015.01.011
, Chowdhury, Ananya, Lahr, Maria, & Caroni, Pico. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning.
Nature, 504(7479), 272–276. https://doi.org/10.1038/nature12866
, Rompani, Santiago Belluco, & Caroni, Pico. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.
Nature, 504(7479), 272–276. https://doi.org/10.1038/nature12866
, Rompani, Santiago Belluco, & Caroni, Pico. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.
Caroni, Pico, Nature Reviews. Neuroscience, 13(7), 478–490. https://doi.org/10.1038/nrn3258
, & Muller, Dominique. (2012). Structural plasticity upon learning: regulation and functions.
Caroni, Pico, Nature Reviews. Neuroscience, 13(7), 478–490. https://doi.org/10.1038/nrn3258
, & Muller, Dominique. (2012). Structural plasticity upon learning: regulation and functions.
Ruediger, Sarah, Spirig, Dominique, Nature Neuroscience, 15(11), 1563–1571. https://doi.org/10.1038/nn.3224
, & Caroni, Pico. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning.
Ruediger, Sarah, Spirig, Dominique, Nature Neuroscience, 15(11), 1563–1571. https://doi.org/10.1038/nn.3224
, & Caroni, Pico. (2012). Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning.
Deguchi, Yuichi, Nature Neuroscience, 14(4), 495–504. https://doi.org/10.1038/nn.2768
, Galimberti, Ivan, Cabuy, Erik, & Caroni, Pico. (2011). Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus.
Deguchi, Yuichi, Nature Neuroscience, 14(4), 495–504. https://doi.org/10.1038/nn.2768
, Galimberti, Ivan, Cabuy, Erik, & Caroni, Pico. (2011). Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus.
Galimberti, Ivan, Bednarek, Ewa, Neuron, 65(5), 627–642. https://doi.org/10.1016/j.neuron.2010.02.016
, & Caroni, Pico. (2010). EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus.
Galimberti, Ivan, Bednarek, Ewa, Neuron, 65(5), 627–642. https://doi.org/10.1016/j.neuron.2010.02.016
, & Caroni, Pico. (2010). EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus.