Publications
67 found
Show per page
, Thoenen, Lisa, Zuest, Tobias, Pestalozzi, Christine, Kreuzer, Marco, Mateo, Pierre, Deslandes, Gabriel, Robert, Christelle, Bruggmann, Remy, & Erb, Matthias. (2025). Synthetic communities of maize root bacteria interact and redirect benzoxazinoid metabolization [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.03.12.642850
, Thoenen, Lisa, Zuest, Tobias, Pestalozzi, Christine, Kreuzer, Marco, Mateo, Pierre, Deslandes, Gabriel, Robert, Christelle, Bruggmann, Remy, & Erb, Matthias. (2025). Synthetic communities of maize root bacteria interact and redirect benzoxazinoid metabolization [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2025.03.12.642850
Henry Janse van Rensburg, Niklas Schandry, Jan Waelchli, Katja Stengele, Selma Cadot, Katharina Jandrasits, Claude Becker, & . (2025). A TNL receptor mediates microbiome feedbacks in Arabidopsis. https://doi.org/10.1101/2025.02.25.640125
Henry Janse van Rensburg, Niklas Schandry, Jan Waelchli, Katja Stengele, Selma Cadot, Katharina Jandrasits, Claude Becker, & . (2025). A TNL receptor mediates microbiome feedbacks in Arabidopsis. https://doi.org/10.1101/2025.02.25.640125
Guan, H., Caggìa, V., Gómez-Chamorro, A., Coll-Crespí, M., Chávez-Capilla, T., Schlaeppi, K., Ramette, A., Mestrot, A., & Bigalke, M. (2025). Soil Indigenous Microbes Interact with Maize Plants in High-Arsenic Soils to Limit the Translocation of Inorganic Arsenic Species to Maize Upper Tissues [Journal-article]. Exposure and Health, 17(1), 201–219. https://doi.org/10.1007/s12403-024-00655-3
Guan, H., Caggìa, V., Gómez-Chamorro, A., Coll-Crespí, M., Chávez-Capilla, T., Schlaeppi, K., Ramette, A., Mestrot, A., & Bigalke, M. (2025). Soil Indigenous Microbes Interact with Maize Plants in High-Arsenic Soils to Limit the Translocation of Inorganic Arsenic Species to Maize Upper Tissues [Journal-article]. Exposure and Health, 17(1), 201–219. https://doi.org/10.1007/s12403-024-00655-3
Joelle Sasse, Charlotte Joller, & . (2025). Amino acid pathways are central for defense in Arabidopsis revealed by time-resolved, integrated multi-omics analysis. https://doi.org/10.21203/rs.3.rs-5659933/v1
Joelle Sasse, Charlotte Joller, & . (2025). Amino acid pathways are central for defense in Arabidopsis revealed by time-resolved, integrated multi-omics analysis. https://doi.org/10.21203/rs.3.rs-5659933/v1
Jin, Xue, Jia, Huiting, Ran, Lingyi, Wu, Fengzhi, Liu, Junjie, , Dini-Andreote, Francisco, Wei, Zhong, & Zhou, Xingang. (2024). Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49218-9
Jin, Xue, Jia, Huiting, Ran, Lingyi, Wu, Fengzhi, Liu, Junjie, , Dini-Andreote, Francisco, Wei, Zhong, & Zhou, Xingang. (2024). Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49218-9
Thoenen, Lisa, Kreuzer, Marco, Pestalozzi, Christine, Florean, Matilde, Mateo, Pierre, Züst, Tobias, Wei, Anlun, Giroud, Caitlin, Rouyer, Liza, Gfeller, Valentin, Notter, Matheus D., Knoch, Eva, Hapfelmeier, Siegfried, Becker, Claude, Schandry, Niklas, Robert, Christelle A. M., Köllner, Tobias G., Bruggmann, Rémy, Erb, Matthias, & . (2024). The lactonase BxdA mediates metabolic specialisation of maize root bacteria to benzoxazinoids [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49643-w
Thoenen, Lisa, Kreuzer, Marco, Pestalozzi, Christine, Florean, Matilde, Mateo, Pierre, Züst, Tobias, Wei, Anlun, Giroud, Caitlin, Rouyer, Liza, Gfeller, Valentin, Notter, Matheus D., Knoch, Eva, Hapfelmeier, Siegfried, Becker, Claude, Schandry, Niklas, Robert, Christelle A. M., Köllner, Tobias G., Bruggmann, Rémy, Erb, Matthias, & . (2024). The lactonase BxdA mediates metabolic specialisation of maize root bacteria to benzoxazinoids [Journal-article]. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49643-w
Katja Stengele, Lea Stauber, Lisa Thoenen, Henry Janse van Rensburg, Viola D’Adda, & . (2024). Benzoxazinoid-mediated microbiome feedbacks enhance Arabidopsis growth and defense. https://doi.org/10.1101/2024.10.21.619081
Katja Stengele, Lea Stauber, Lisa Thoenen, Henry Janse van Rensburg, Viola D’Adda, & . (2024). Benzoxazinoid-mediated microbiome feedbacks enhance Arabidopsis growth and defense. https://doi.org/10.1101/2024.10.21.619081
Janse van Rensburg, Henry, Stengele, Katja, & . (2024). Understanding plant responsiveness to microbiome feedbacks [Journal-article]. Current Opinion in Plant Biology, 81, 102603. https://doi.org/10.1016/j.pbi.2024.102603
Janse van Rensburg, Henry, Stengele, Katja, & . (2024). Understanding plant responsiveness to microbiome feedbacks [Journal-article]. Current Opinion in Plant Biology, 81, 102603. https://doi.org/10.1016/j.pbi.2024.102603
von Saldern, Lena, Thurre, Loïc, Jan, Waelchli, Kobler, Judith, Krenz, Juliane, & . (2024). A Combination of Few Physicochemical and Fungal Parameters Can Explain the Soil-Dependent Variation in Wheat Biomass After Inoculation With Cladosporium tenuissimum. Journal of Sustainable Agriculture and Environment, 3(4). https://doi.org/10.1002/sae2.70029
von Saldern, Lena, Thurre, Loïc, Jan, Waelchli, Kobler, Judith, Krenz, Juliane, & . (2024). A Combination of Few Physicochemical and Fungal Parameters Can Explain the Soil-Dependent Variation in Wheat Biomass After Inoculation With Cladosporium tenuissimum. Journal of Sustainable Agriculture and Environment, 3(4). https://doi.org/10.1002/sae2.70029
Joller, C., Schlaeppi, K., & Sasse, J. (2024). Time-resolved, integrated multi-omic analysis reveals central role of amino acid pathways for defense responses in Arabidopsis thaliana [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609849
Joller, C., Schlaeppi, K., & Sasse, J. (2024). Time-resolved, integrated multi-omic analysis reveals central role of amino acid pathways for defense responses in Arabidopsis thaliana [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.08.27.609849
Guan, H., Caggìa, V., Gómez-Chamorro, A., Fischer, D., Coll-Crespí, M., Liu, X., Chávez-Capilla, T., Schlaeppi, K., Ramette, A., Mestrot, A., & Bigalke, M. (2024). The Effects of Soil Microbial Disturbance and Plants on Arsenic Concentrations and Speciation in Soil Water and Soils. Exposure and Health, 16(3), 805–820. https://doi.org/10.1007/s12403-023-00593-6
Guan, H., Caggìa, V., Gómez-Chamorro, A., Fischer, D., Coll-Crespí, M., Liu, X., Chávez-Capilla, T., Schlaeppi, K., Ramette, A., Mestrot, A., & Bigalke, M. (2024). The Effects of Soil Microbial Disturbance and Plants on Arsenic Concentrations and Speciation in Soil Water and Soils. Exposure and Health, 16(3), 805–820. https://doi.org/10.1007/s12403-023-00593-6
Wasimuddin, Chiaia-Hernandez, A., Terrettaz, C., Thoenen, L., Caggìa, V., Matteo, P., Coll-Crespi, M., Notter, M., Mukherjee, M., Chavez-Capilla, T., Ronchi, F., Ganal-Vonarburg, S. C., Grosjean, M., Bigalke, M., Spielvogel, S., Macpherson, A., Mestrot, A., Hapfelmeier, S., Erb, M., et al. (2024). Component specific responses of the microbiomes to common chemical stressors in the human food chain [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.20.590402
Wasimuddin, Chiaia-Hernandez, A., Terrettaz, C., Thoenen, L., Caggìa, V., Matteo, P., Coll-Crespi, M., Notter, M., Mukherjee, M., Chavez-Capilla, T., Ronchi, F., Ganal-Vonarburg, S. C., Grosjean, M., Bigalke, M., Spielvogel, S., Macpherson, A., Mestrot, A., Hapfelmeier, S., Erb, M., et al. (2024). Component specific responses of the microbiomes to common chemical stressors in the human food chain [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.04.20.590402
Caggìa, Veronica, Wälchli, Jan, Deslandes-Hérold, Gabriel, Mateo, Pierre, Robert, Christelle A. M., Guan, Hang, Bigalke, Moritz, Spielvogel, Sandra, Mestrot, Adrien, , & Erb, Matthias. (2024). Root-exuded specialized metabolites reduce arsenic toxicity in maize [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 121(13). https://doi.org/10.1073/pnas.2314261121
Caggìa, Veronica, Wälchli, Jan, Deslandes-Hérold, Gabriel, Mateo, Pierre, Robert, Christelle A. M., Guan, Hang, Bigalke, Moritz, Spielvogel, Sandra, Mestrot, Adrien, , & Erb, Matthias. (2024). Root-exuded specialized metabolites reduce arsenic toxicity in maize [Journal-article]. Proceedings of the National Academy of Sciences of the United States of America, 121(13). https://doi.org/10.1073/pnas.2314261121
Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1). https://doi.org/10.1186/s40793-023-00521-w
Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1). https://doi.org/10.1186/s40793-023-00521-w
Lutz, S., Bodenhausen, N., Hess, J., Valzano-Held, A., Waelchli, J., Deslandes-Hérold, G., Schlaeppi, K., & van der Heijden, M. G. A. (2023). Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nature Microbiology, 8(12), 2277–2289. https://doi.org/10.1038/s41564-023-01520-w
Lutz, S., Bodenhausen, N., Hess, J., Valzano-Held, A., Waelchli, J., Deslandes-Hérold, G., Schlaeppi, K., & van der Heijden, M. G. A. (2023). Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nature Microbiology, 8(12), 2277–2289. https://doi.org/10.1038/s41564-023-01520-w
Caggìa, V., Waelchli, J., Chiaia-Hernandez, A. C., Weihermueller, L., Grosjean, M., Spielvogel, S., & Schlaeppi, K. (2023). Glyphosate and terbuthylazine effects on soil functions, microbiome composition and crop performance. Applied Soil Ecology, 191. https://doi.org/10.1016/j.apsoil.2023.105036
Caggìa, V., Waelchli, J., Chiaia-Hernandez, A. C., Weihermueller, L., Grosjean, M., Spielvogel, S., & Schlaeppi, K. (2023). Glyphosate and terbuthylazine effects on soil functions, microbiome composition and crop performance. Applied Soil Ecology, 191. https://doi.org/10.1016/j.apsoil.2023.105036
Gross, J. J., Mateo, P., Schlaeppi, K., Wyss, U., Kramer, E., Ramhold, D., Erb, M., & Robert, C. A. M. (2023). Short communication: Metabolization of benzoxazinoids during silage fermentation of maize and their effects on silage quality. Animal Feed Science and Technology, 304. https://doi.org/10.1016/j.anifeedsci.2023.115748
Gross, J. J., Mateo, P., Schlaeppi, K., Wyss, U., Kramer, E., Ramhold, D., Erb, M., & Robert, C. A. M. (2023). Short communication: Metabolization of benzoxazinoids during silage fermentation of maize and their effects on silage quality. Animal Feed Science and Technology, 304. https://doi.org/10.1016/j.anifeedsci.2023.115748
Bodenhausen, N., Hess, J., Valzano, A., Deslandes-Hérold, G., Waelchli, J., Furrer, R., van der Heijden, M. G. A., & Schlaeppi, K. (2023). Predicting soil fungal communities from chemical and physical properties. Journal of Sustainable Agriculture and Environment, 2(3), 225–237. https://doi.org/10.1002/sae2.12055
Bodenhausen, N., Hess, J., Valzano, A., Deslandes-Hérold, G., Waelchli, J., Furrer, R., van der Heijden, M. G. A., & Schlaeppi, K. (2023). Predicting soil fungal communities from chemical and physical properties. Journal of Sustainable Agriculture and Environment, 2(3), 225–237. https://doi.org/10.1002/sae2.12055
Gfeller, V., Waelchli, J., Pfister, S., Deslandes-Hérold, G., Mascher, F., Glauser, G., Aeby, Y., Mestrot, A., Robert, C. A. M., Schlaeppi, K., & Erb, M. (2023). Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. eLife, 12. https://doi.org/10.7554/elife.84988
Gfeller, V., Waelchli, J., Pfister, S., Deslandes-Hérold, G., Mascher, F., Glauser, G., Aeby, Y., Mestrot, A., Robert, C. A. M., Schlaeppi, K., & Erb, M. (2023). Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. eLife, 12. https://doi.org/10.7554/elife.84988
Liu, X., Huang, Y., Guan, H., Wiggenhauser, M., Caggìa, V., Schlaeppi, K., Mestrot, A., & Bigalke, M. (2023). Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. Science of the Total Environment, 875. https://doi.org/10.1016/j.scitotenv.2023.162490
Liu, X., Huang, Y., Guan, H., Wiggenhauser, M., Caggìa, V., Schlaeppi, K., Mestrot, A., & Bigalke, M. (2023). Soil (microbial) disturbance affect the zinc isotope biogeochemistry but has little effect on plant zinc uptake. Science of the Total Environment, 875. https://doi.org/10.1016/j.scitotenv.2023.162490
Thoenen, L., Giroud, C., Kreuzer, M., Waelchli, J., Gfeller, V., Deslandes-Hérold, G., Mateo, P., Robert, C. A. M., Ahrens, C. H., Rubio-Somoza, I., Bruggmann, R., Erb, M., & Schlaeppi, K. (2023). Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. Proceedings of the National Academy of Sciences of the United States of America, 120(44). https://doi.org/10.1073/pnas.2310134120
Thoenen, L., Giroud, C., Kreuzer, M., Waelchli, J., Gfeller, V., Deslandes-Hérold, G., Mateo, P., Robert, C. A. M., Ahrens, C. H., Rubio-Somoza, I., Bruggmann, R., Erb, M., & Schlaeppi, K. (2023). Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. Proceedings of the National Academy of Sciences of the United States of America, 120(44). https://doi.org/10.1073/pnas.2310134120
Gfeller, V., Waelchli, J., Pfister, S., Deslandes-Hérold, G., Mascher, F., Glauser, G., Aeby, Y., Mestrot, A., Robert, C. A. M., Schlaeppi, K., & Erb, M. (2022, November 10). Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.09.515047
Gfeller, V., Waelchli, J., Pfister, S., Deslandes-Hérold, G., Mascher, F., Glauser, G., Aeby, Y., Mestrot, A., Robert, C. A. M., Schlaeppi, K., & Erb, M. (2022, November 10). Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2022.11.09.515047
Alguacil, María Del Mar, , López-García, Álvaro, van der Heijden, Marcel G. A., & Querejeta, José Ignacio. (2022). Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland. Microbial Ecology, 84(3), 941–944. https://doi.org/10.1007/s00248-021-01886-6
Alguacil, María Del Mar, , López-García, Álvaro, van der Heijden, Marcel G. A., & Querejeta, José Ignacio. (2022). Contrasting Responses of Arbuscular Mycorrhizal Fungal Families to Simulated Climate Warming and Drying in a Semiarid Shrubland. Microbial Ecology, 84(3), 941–944. https://doi.org/10.1007/s00248-021-01886-6
Querejeta, José Ignacio, , López-García, Álvaro, Ondoño, Sara, Prieto, Iván, León-Sánchez, Lupe, van der Heijden, Marcel G. A., & Alguacil, María Del Mar. (2022). Corrigendum. The New Phytologist, 234(3), 1102. https://doi.org/10.1111/nph.17986
Querejeta, José Ignacio, , López-García, Álvaro, Ondoño, Sara, Prieto, Iván, León-Sánchez, Lupe, van der Heijden, Marcel G. A., & Alguacil, María Del Mar. (2022). Corrigendum. The New Phytologist, 234(3), 1102. https://doi.org/10.1111/nph.17986
Bodenhausen, Natacha, Deslandes-Hérold, Gabriel, Waelchli, Jan, Held, Alain, van der Heijden, Marcel G. A., & . (2021). Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza, 31(2), 137–148. https://doi.org/10.1007/s00572-020-01014-1
Bodenhausen, Natacha, Deslandes-Hérold, Gabriel, Waelchli, Jan, Held, Alain, van der Heijden, Marcel G. A., & . (2021). Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza, 31(2), 137–148. https://doi.org/10.1007/s00572-020-01014-1
Cadot, Selma, Gfeller, Valentin, Hu, Lingfei, Singh, Nikhil, Sánchez-Vallet, Andrea, Glauser, Gaétan, Croll, Daniel, Erb, Matthias, van der Heijden, Marcel G. A., & . (2021). Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Plant, Cell & Environment, 44(12), 3502–3514. https://doi.org/10.1111/pce.14184
Cadot, Selma, Gfeller, Valentin, Hu, Lingfei, Singh, Nikhil, Sánchez-Vallet, Andrea, Glauser, Gaétan, Croll, Daniel, Erb, Matthias, van der Heijden, Marcel G. A., & . (2021). Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. Plant, Cell & Environment, 44(12), 3502–3514. https://doi.org/10.1111/pce.14184
Cadot, Selma, Guan, Hang, Bigalke, Moritz, Walser, Jean-Claude, Jander, Georg, Erb, Matthias, van der Heijden, Marcel G. A., & . (2021). Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 9(1), 103. https://doi.org/10.1186/s40168-021-01049-2
Cadot, Selma, Guan, Hang, Bigalke, Moritz, Walser, Jean-Claude, Jander, Georg, Erb, Matthias, van der Heijden, Marcel G. A., & . (2021). Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome, 9(1), 103. https://doi.org/10.1186/s40168-021-01049-2
Liu, Yuanhui, Ma, Bin, Chen, Wenfeng, , Erb, Matthias, Stirling, Erinne, Hu, Lingfei, Wang, Entao, Zhang, Yunzeng, Zhao, Kankan, Lu, Zhijiang, Ye, Shudi, & Xu, Jianming. (2021). Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Frontiers in Microbiology, 12, 709012. https://doi.org/10.3389/fmicb.2021.709012
Liu, Yuanhui, Ma, Bin, Chen, Wenfeng, , Erb, Matthias, Stirling, Erinne, Hu, Lingfei, Wang, Entao, Zhang, Yunzeng, Zhao, Kankan, Lu, Zhijiang, Ye, Shudi, & Xu, Jianming. (2021). Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Frontiers in Microbiology, 12, 709012. https://doi.org/10.3389/fmicb.2021.709012
Querejeta, José Ignacio, , López-García, Álvaro, Ondoño, Sara, Prieto, Iván, van der Heijden, Marcel G. A., & Del Mar Alguacil, María. (2021). Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. The New Phytologist, 232(3), 1399–1413. https://doi.org/10.1111/nph.17661
Querejeta, José Ignacio, , López-García, Álvaro, Ondoño, Sara, Prieto, Iván, van der Heijden, Marcel G. A., & Del Mar Alguacil, María. (2021). Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. The New Phytologist, 232(3), 1399–1413. https://doi.org/10.1111/nph.17661
, Gross, Josef J., Hapfelmeier, Siegfried, & Erb, Matthias. (2021). Plant chemistry and food web health. New Phytologist, 231(3), 957–962. https://doi.org/10.1111/nph.17385
, Gross, Josef J., Hapfelmeier, Siegfried, & Erb, Matthias. (2021). Plant chemistry and food web health. New Phytologist, 231(3), 957–962. https://doi.org/10.1111/nph.17385
Wittwer, Raphaël A., Bender, S. Franz, Hartman, Kyle, Hydbom, Sofia, Lima, Ruy A. A., Loaiza, Viviana, Nemecek, Thomas, Oehl, Fritz, Olsson, Pål Axel, Petchey, Owen, Prechsl, Ulrich E., , Scholten, Thomas, Seitz, Steffen, Six, Johan, & van der Heijden, Marcel G. A. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34). https://doi.org/10.1126/sciadv.abg6995
Wittwer, Raphaël A., Bender, S. Franz, Hartman, Kyle, Hydbom, Sofia, Lima, Ruy A. A., Loaiza, Viviana, Nemecek, Thomas, Oehl, Fritz, Olsson, Pål Axel, Petchey, Owen, Prechsl, Ulrich E., , Scholten, Thomas, Seitz, Steffen, Six, Johan, & van der Heijden, Marcel G. A. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34). https://doi.org/10.1126/sciadv.abg6995
Cadot, S., Guan, H., Bigalke, M., Walser, J.-C., Jander, G., Erb, M., van der Heijden, M., & Schlaeppi, K. (2020, May 4). Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.05.03.075135
Cadot, S., Guan, H., Bigalke, M., Walser, J.-C., Jander, G., Erb, M., van der Heijden, M., & Schlaeppi, K. (2020, May 4). Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.05.03.075135
Hohmann, Pierre, , & Sessitsch, Angela. (2020). miCROPe 2019 - emerging research priorities towards microbe-assisted crop production. FEMS Microbiology Ecology, 96(10). https://doi.org/10.1093/femsec/fiaa177
Hohmann, Pierre, , & Sessitsch, Angela. (2020). miCROPe 2019 - emerging research priorities towards microbe-assisted crop production. FEMS Microbiology Ecology, 96(10). https://doi.org/10.1093/femsec/fiaa177
Wasimuddin, , Ronchi, Francesca, Leib, Stephen L., Erb, Matthias, & Ramette, Alban. (2020). Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Molecular Ecology Resources, 20(6), 1558–1571. https://doi.org/10.1111/1755-0998.13215
Wasimuddin, , Ronchi, Francesca, Leib, Stephen L., Erb, Matthias, & Ramette, Alban. (2020). Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Molecular Ecology Resources, 20(6), 1558–1571. https://doi.org/10.1111/1755-0998.13215
Wasimuddin, Schlaeppi, K., Ronchi, F., Leib, S. L., Erb, M., & Ramette, A. (2019, November 15). Evaluation of primer pairs for microbiome profiling across a food chain from soils to humans within the One Health framework [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/843144
Wasimuddin, Schlaeppi, K., Ronchi, F., Leib, S. L., Erb, M., & Ramette, A. (2019, November 15). Evaluation of primer pairs for microbiome profiling across a food chain from soils to humans within the One Health framework [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/843144
Banerjee, Samiran, , & van der Heijden, Marcel G. A. (2019). Reply to ‘Can we predict microbial keystones?’. Nature Reviews Microbiology, 17(3), 194. https://doi.org/10.1038/s41579-018-0133-x
Banerjee, Samiran, , & van der Heijden, Marcel G. A. (2019). Reply to ‘Can we predict microbial keystones?’. Nature Reviews Microbiology, 17(3), 194. https://doi.org/10.1038/s41579-018-0133-x
Bender, S. Franz, , Held, Alain, & Van der Heijden, Marcel G. A. (2019). Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agriculture Ecosystems & Environment, 273, 13–24. https://doi.org/10.1016/j.agee.2018.12.003
Bender, S. Franz, , Held, Alain, & Van der Heijden, Marcel G. A. (2019). Establishment success and crop growth effects of an arbuscular mycorrhizal fungus inoculated into Swiss corn fields. Agriculture Ecosystems & Environment, 273, 13–24. https://doi.org/10.1016/j.agee.2018.12.003
Berendsen, Roeland, & . (2019). Editorial overview: Environmental microbiology: #PlantMicrobiome. Current Opinion in Microbiology, 49, iii–iiv. https://doi.org/10.1016/j.mib.2019.11.002
Berendsen, Roeland, & . (2019). Editorial overview: Environmental microbiology: #PlantMicrobiome. Current Opinion in Microbiology, 49, iii–iiv. https://doi.org/10.1016/j.mib.2019.11.002
Bodenhausen, Natacha, Somerville, Vincent, Desiro, Alessandro, Walser, Jean-Claude, Borghi, Lorenzo, van der Heijden, Marcel G. A., & . (2019). Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation. Phytobiomes Journal, 3(2), 112–124. https://doi.org/10.1094/pbiomes-12-18-0057-r
Bodenhausen, Natacha, Somerville, Vincent, Desiro, Alessandro, Walser, Jean-Claude, Borghi, Lorenzo, van der Heijden, Marcel G. A., & . (2019). Petunia- and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation. Phytobiomes Journal, 3(2), 112–124. https://doi.org/10.1094/pbiomes-12-18-0057-r
Wagg, Cameron, , Banerjee, Samiran, Kuramae, Eiko E., & van der Heijden, Marcel G. A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10(1), 4841. https://doi.org/10.1038/s41467-019-12798-y
Wagg, Cameron, , Banerjee, Samiran, Kuramae, Eiko E., & van der Heijden, Marcel G. A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10(1), 4841. https://doi.org/10.1038/s41467-019-12798-y
Bodenhausen, N., Somerville, V., Desirò, A., Walser, J.-C., Borghi, L., van der Heijden, M. G. A., & Schlaeppi, K. (2018, August 25). Species-Specific Root Microbiota Dynamics in Response to Plant-Available Phosphorus [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/400119
Bodenhausen, N., Somerville, V., Desirò, A., Walser, J.-C., Borghi, L., van der Heijden, M. G. A., & Schlaeppi, K. (2018, August 25). Species-Specific Root Microbiota Dynamics in Response to Plant-Available Phosphorus [Posted-content]. Cold Spring Harbor Laboratory. https://doi.org/10.1101/400119
Banerjee, Samiran, , & van der Heijden, Marcel G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567–576. https://doi.org/10.1038/s41579-018-0024-1
Banerjee, Samiran, , & van der Heijden, Marcel G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567–576. https://doi.org/10.1038/s41579-018-0024-1
Dennert, Francesca, Imperiali, Nicola, Staub, Cornelia, Schneider, Jana, Laessle, Titouan, Zhang, Tao, Wittwer, Raphaël, van der Heijden, Marcel G. A., Smits, Theo H. M., , Keel, Christoph, & Maurhofer, Monika. (2018). Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiology Ecology, 94(8), fiy075. https://doi.org/10.1093/femsec/fiy075
Dennert, Francesca, Imperiali, Nicola, Staub, Cornelia, Schneider, Jana, Laessle, Titouan, Zhang, Tao, Wittwer, Raphaël, van der Heijden, Marcel G. A., Smits, Theo H. M., , Keel, Christoph, & Maurhofer, Monika. (2018). Conservation tillage and organic farming induce minor variations in Pseudomonas abundance, their antimicrobial function and soil disease resistance. FEMS Microbiology Ecology, 94(8), fiy075. https://doi.org/10.1093/femsec/fiy075
Hartman, Kyle, van der Heijden, Marcel G. A., Wittwer, Raphaël A., Banerjee, Samiran, Walser, Jean-Claude, & . (2018). Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 74. https://doi.org/10.1186/s40168-018-0456-x
Hartman, Kyle, van der Heijden, Marcel G. A., Wittwer, Raphaël A., Banerjee, Samiran, Walser, Jean-Claude, & . (2018). Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 74. https://doi.org/10.1186/s40168-018-0456-x
Hartman, Kyle, van der Heijden, Marcel G. A., Wittwer, Raphaël A., Banerjee, Samiran, Walser, Jean-Claude, & . (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 14. https://doi.org/10.1186/s40168-017-0389-9
Hartman, Kyle, van der Heijden, Marcel G. A., Wittwer, Raphaël A., Banerjee, Samiran, Walser, Jean-Claude, & . (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6(1), 14. https://doi.org/10.1186/s40168-017-0389-9
Hu, Lingfei, Robert, Christelle A. M., Cadot, Selma, Zhang, Xi, Ye, Meng, Li, Beibei, Manzo, Daniele, Chervet, Noemie, Steinger, Thomas, van der Heijden, Marcel G. A., , & Erb, Matthias. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. https://doi.org/10.1038/s41467-018-05122-7
Hu, Lingfei, Robert, Christelle A. M., Cadot, Selma, Zhang, Xi, Ye, Meng, Li, Beibei, Manzo, Daniele, Chervet, Noemie, Steinger, Thomas, van der Heijden, Marcel G. A., , & Erb, Matthias. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. https://doi.org/10.1038/s41467-018-05122-7
Ramirez, Kelly S., Knight, Christopher G., de Hollander, Mattias, Brearley, Francis Q., Constantinides, Bede, Cotton, Anne, Creer, Si, Crowther, Thomas W., Davison, John, Delgado-Baquerizo, Manuel, Dorrepaal, Ellen, Elliott, David R., Fox, Graeme, Griffiths, Robert I., Hale, Chris, Hartman, Kyle, Houlden, Ashley, Jones, David L., Krab, Eveline J., et al. (2018). Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 3(2), 189–196. https://doi.org/10.1038/s41564-017-0062-x
Ramirez, Kelly S., Knight, Christopher G., de Hollander, Mattias, Brearley, Francis Q., Constantinides, Bede, Cotton, Anne, Creer, Si, Crowther, Thomas W., Davison, John, Delgado-Baquerizo, Manuel, Dorrepaal, Ellen, Elliott, David R., Fox, Graeme, Griffiths, Robert I., Hale, Chris, Hartman, Kyle, Houlden, Ashley, Jones, David L., Krab, Eveline J., et al. (2018). Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 3(2), 189–196. https://doi.org/10.1038/s41564-017-0062-x
Toju, Hirokazu, Peay, Kabir G., Yamamichi, Masato, Narisawa, Kazuhiko, Hiruma, Kei, Naito, Ken, Fukuda, Shinji, Ushio, Masayuki, Nakaoka, Shinji, Onoda, Yusuke, Yoshida, Kentaro, , Bai, Yang, Sugiura, Ryo, Ichihashi, Yasunori, Minamisawa, Kiwamu, & Kiers, E. Toby. (2018). Publisher Correction: Core microbiomes for sustainable agroecosystems. Nature Plants. Scientific Reports, 4(9), 733. https://doi.org/10.1038/s41477-018-0245-3
Toju, Hirokazu, Peay, Kabir G., Yamamichi, Masato, Narisawa, Kazuhiko, Hiruma, Kei, Naito, Ken, Fukuda, Shinji, Ushio, Masayuki, Nakaoka, Shinji, Onoda, Yusuke, Yoshida, Kentaro, , Bai, Yang, Sugiura, Ryo, Ichihashi, Yasunori, Minamisawa, Kiwamu, & Kiers, E. Toby. (2018). Publisher Correction: Core microbiomes for sustainable agroecosystems. Nature Plants. Scientific Reports, 4(9), 733. https://doi.org/10.1038/s41477-018-0245-3
Toju, Hirokazu, Peay, Kabir G., Yamamichi, Masato, Narisawa, Kazuhiko, Hiruma, Kei, Naito, Ken, Fukuda, Shinji, Ushio, Masayuki, Nakaoka, Shinji, Onoda, Yusuke, Yoshida, Kentaro, , Bai, Yang, Sugiura, Ryo, Ichihashi, Yasunori, Minamisawa, Kiwamu, & Kiers, E. Toby. (2018). Core microbiomes for sustainable agroecosystems. Nature Plants. Scientific Reports, 4(5), 247–257. https://doi.org/10.1038/s41477-018-0139-4
Toju, Hirokazu, Peay, Kabir G., Yamamichi, Masato, Narisawa, Kazuhiko, Hiruma, Kei, Naito, Ken, Fukuda, Shinji, Ushio, Masayuki, Nakaoka, Shinji, Onoda, Yusuke, Yoshida, Kentaro, , Bai, Yang, Sugiura, Ryo, Ichihashi, Yasunori, Minamisawa, Kiwamu, & Kiers, E. Toby. (2018). Core microbiomes for sustainable agroecosystems. Nature Plants. Scientific Reports, 4(5), 247–257. https://doi.org/10.1038/s41477-018-0139-4
Dombrowski, Nina, , Agler, Matthew T., Hacquard, Stéphane, Kemen, Eric, Garrido-Oter, Ruben, Wunder, Jörg, Coupland, George, & Schulze-Lefert, Paul. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME Journal, 11(1), 43–55. https://doi.org/10.1038/ismej.2016.109
Dombrowski, Nina, , Agler, Matthew T., Hacquard, Stéphane, Kemen, Eric, Garrido-Oter, Ruben, Wunder, Jörg, Coupland, George, & Schulze-Lefert, Paul. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME Journal, 11(1), 43–55. https://doi.org/10.1038/ismej.2016.109
Hartman, Kyle, van der Heijden, Marcel Ga, Roussely-Provent, Valexia, Walser, Jean-Claude, & . (2017). Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 5(1), 2. https://doi.org/10.1186/s40168-016-0220-z
Hartman, Kyle, van der Heijden, Marcel Ga, Roussely-Provent, Valexia, Walser, Jean-Claude, & . (2017). Deciphering composition and function of the root microbiome of a legume plant. Microbiome, 5(1), 2. https://doi.org/10.1186/s40168-016-0220-z
Imperiali, Nicola, Chiriboga, Xavier, , Fesselet, Marie, Villacrés, Daniela, Jaffuel, Geoffrey, Bender, S. Franz, Dennert, Francesca, Blanco-Pérez, Ruben, van der Heijden, Marcel G. A., Maurhofer, Monika, Mascher, Fabio, Turlings, Ted C. J., Keel, Christoph J., & Campos-Herrera, Raquel. (2017). Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 8, 1809. https://doi.org/10.3389/fpls.2017.01809
Imperiali, Nicola, Chiriboga, Xavier, , Fesselet, Marie, Villacrés, Daniela, Jaffuel, Geoffrey, Bender, S. Franz, Dennert, Francesca, Blanco-Pérez, Ruben, van der Heijden, Marcel G. A., Maurhofer, Monika, Mascher, Fabio, Turlings, Ted C. J., Keel, Christoph J., & Campos-Herrera, Raquel. (2017). Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance. Frontiers in Plant Science, 8, 1809. https://doi.org/10.3389/fpls.2017.01809
Symanczik, Sarah, Gisler, Michelle, Thonar, Cécile, , Van der Heijden, Marcel, Kahmen, Ansgar, Boller, Thomas, & Mäder, Paul. (2017). Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 8, 1263. https://doi.org/10.3389/fpls.2017.01263
Symanczik, Sarah, Gisler, Michelle, Thonar, Cécile, , Van der Heijden, Marcel, Kahmen, Ansgar, Boller, Thomas, & Mäder, Paul. (2017). Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 8, 1263. https://doi.org/10.3389/fpls.2017.01263
van der Heijden, Marcel G. A., Dombrowski, Nina, & . (2017). Continuum of root-fungal symbioses for plant nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11574–11576. https://doi.org/10.1073/pnas.1716329114
van der Heijden, Marcel G. A., Dombrowski, Nina, & . (2017). Continuum of root-fungal symbioses for plant nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11574–11576. https://doi.org/10.1073/pnas.1716329114
Walder, Florian, , Wittwer, Raphaël, Held, Alain Y., Vogelgsang, Susanne, & van der Heijden, Marcel G. A. (2017). Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing. Frontiers in Plant Science, 8, 2019. https://doi.org/10.3389/fpls.2017.02019
Walder, Florian, , Wittwer, Raphaël, Held, Alain Y., Vogelgsang, Susanne, & van der Heijden, Marcel G. A. (2017). Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing. Frontiers in Plant Science, 8, 2019. https://doi.org/10.3389/fpls.2017.02019
, Bender, S. Franz, Mascher, Fabio, Russo, Giancarlo, Patrignani, Andrea, Camenzind, Tessa, Hempel, Stefan, Rillig, Matthias C., & van der Heijden, Marcel G. A. (2016). High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytologis, 212(3), 780–791. https://doi.org/10.1111/nph.14070
, Bender, S. Franz, Mascher, Fabio, Russo, Giancarlo, Patrignani, Andrea, Camenzind, Tessa, Hempel, Stefan, Rillig, Matthias C., & van der Heijden, Marcel G. A. (2016). High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytologis, 212(3), 780–791. https://doi.org/10.1111/nph.14070
Stahl, Elia, Bellwon, Patricia, Huber, Stefan, , Bernsdorff, Friederike, Vallat-Michel, Armelle, Mauch, Felix, & Zeier, Jürgen. (2016). Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 9(5), 662–681. https://doi.org/10.1016/j.molp.2016.01.005
Stahl, Elia, Bellwon, Patricia, Huber, Stefan, , Bernsdorff, Friederike, Vallat-Michel, Armelle, Mauch, Felix, & Zeier, Jürgen. (2016). Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 9(5), 662–681. https://doi.org/10.1016/j.molp.2016.01.005
van der Heijden, Marcel G. A., de Bruin, Susanne, Luckerhoff, Ludo, van Logtestijn, Richard S. P., & . (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 10(2), 389–399. https://doi.org/10.1038/ismej.2015.120
van der Heijden, Marcel G. A., de Bruin, Susanne, Luckerhoff, Ludo, van Logtestijn, Richard S. P., & . (2016). A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME Journal, 10(2), 389–399. https://doi.org/10.1038/ismej.2015.120
, & Bulgarelli, Davide. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions, 28(3), 212–217. https://doi.org/10.1094/mpmi-10-14-0334-fi
, & Bulgarelli, Davide. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions, 28(3), 212–217. https://doi.org/10.1094/mpmi-10-14-0334-fi
van der Heijden, Marcel G. A., & . (2015). Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 300–2299. https://doi.org/10.1073/pnas.1500709112
van der Heijden, Marcel G. A., & . (2015). Root surface as a frontier for plant microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 300–2299. https://doi.org/10.1073/pnas.1500709112
, Dombrowski, Nina, Oter, Ruben Garrido, Ver Loren van Themaat, Emiel, & Schulze-Lefert, Paul. (2014). Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 92–585. https://doi.org/10.1073/pnas.1321597111
, Dombrowski, Nina, Oter, Ruben Garrido, Ver Loren van Themaat, Emiel, & Schulze-Lefert, Paul. (2014). Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 92–585. https://doi.org/10.1073/pnas.1321597111
Bulgarelli, Davide, , Spaepen, Stijn, Ver Loren van Themaat, Emiel, & Schulze-Lefert, Paul. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 38–807. https://doi.org/10.1146/annurev-arplant-050312-120106
Bulgarelli, Davide, , Spaepen, Stijn, Ver Loren van Themaat, Emiel, & Schulze-Lefert, Paul. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 38–807. https://doi.org/10.1146/annurev-arplant-050312-120106
Schlaeppi, K., Van Themaat, E. V. L., Bulgarelli, D., & Schulze-Lefert, P. (2013). Arabidopsis thaliana as Model for Studies on the Bacterial Root Microbiota. In Molecular Microbial Ecology of the Rhizosphere: Volume 1 (Vol. 1, pp. 245–256). wiley. https://doi.org/10.1002/9781118297674.ch23
Schlaeppi, K., Van Themaat, E. V. L., Bulgarelli, D., & Schulze-Lefert, P. (2013). Arabidopsis thaliana as Model for Studies on the Bacterial Root Microbiota. In Molecular Microbial Ecology of the Rhizosphere: Volume 1 (Vol. 1, pp. 245–256). wiley. https://doi.org/10.1002/9781118297674.ch23
Bulgarelli, Davide, Rott, Matthias, , Ver Loren van Themaat, Emiel, Ahmadinejad, Nahal, Assenza, Federica, Rauf, Philipp, Huettel, Bruno, Reinhardt, Richard, Schmelzer, Elmon, Peplies, Joerg, Gloeckner, Frank Oliver, Amann, Rudolf, Eickhorst, Thilo, & Schulze-Lefert, Paul. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 5–91. https://doi.org/10.1038/nature11336
Bulgarelli, Davide, Rott, Matthias, , Ver Loren van Themaat, Emiel, Ahmadinejad, Nahal, Assenza, Federica, Rauf, Philipp, Huettel, Bruno, Reinhardt, Richard, Schmelzer, Elmon, Peplies, Joerg, Gloeckner, Frank Oliver, Amann, Rudolf, Eickhorst, Thilo, & Schulze-Lefert, Paul. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409), 5–91. https://doi.org/10.1038/nature11336
, Abou-Mansour, Eliane, Buchala, Antony, & Mauch, Felix. (2010). Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant Journal, 62(5), 51–840. https://doi.org/10.1111/j.1365-313x.2010.04197.x
, Abou-Mansour, Eliane, Buchala, Antony, & Mauch, Felix. (2010). Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant Journal, 62(5), 51–840. https://doi.org/10.1111/j.1365-313x.2010.04197.x
, & Mauch, Felix. (2010). Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae. Plant Signaling & Behavior, 5(9), 101–1099. https://doi.org/10.4161/psb.5.9.12410
, & Mauch, Felix. (2010). Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae. Plant Signaling & Behavior, 5(9), 101–1099. https://doi.org/10.4161/psb.5.9.12410
, Bodenhausen, Natacha, Buchala, Antony, Mauch, Felix, & Reymond, Philippe. (2008). The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal : For Cell and Molecular Biology, 55(5), 774–786. https://doi.org/10.1111/j.1365-313x.2008.03545.x
, Bodenhausen, Natacha, Buchala, Antony, Mauch, Felix, & Reymond, Philippe. (2008). The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. The Plant Journal : For Cell and Molecular Biology, 55(5), 774–786. https://doi.org/10.1111/j.1365-313x.2008.03545.x